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Abstract

Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of
nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an
approach depends on the response of production and species composition to the interactive drivers of nitrogen and water
availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated
wet year precipitation) and nitrogen (0, 25 and 50 kg N ha-1 yr-1) addition in Inner Mongolia. We hypothesized that nitrogen
fertilization would increase forage production when water availability was relatively high. However, the extent to which
nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown. Above-
ground net primary production (ANPP) increased in response to nitrogen when precipitation was similar to or higher than
the long-term average, but not when precipitation was below average. This shift in limitation was also reflected by water
and nitrogen use efficiency. Belowground live biomass significantly increased with increasing water availability, but was not
affected by nitrogen addition. Under natural precipitation (NP treatment), the inter-annual variation of ANPP was 3-fold
greater than with stable water availability (CVANPP = 6166% and 1763% for NP and SWP treatment, respectively) and
nitrogen addition increased CVANPP even more (89614%). This occurred in part because fertilizer nitrogen left in the soil in
dry years remained available for uptake during wet years and because of high production by unpalatable annual species in
wet years in the NP treatment. In summary, plant growth by residual fertilizer nitrogen could lead to sufficient yields to
offset lack of additional production in dry years. However, the utility of fertilization for restoration may be constrained by
shifts in species composition and the lack of response by belowground biomass, which reduces replacement of soil carbon
and nitrogen.
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Introduction

As the main grassland region of China and part of the world’s

largest contiguous steppe ecosystem, the Inner Mongolian steppe

plays an important role in livestock farming and environmental

conservation [1]. However, this ecosystem has been severely

degraded in recent decades from increasing human pressures,

including traditional utilization of livestock dung as fuel for

cooking and heating, and poor management, such as serious

overgrazing [2,3]. Disturbance by long-term over-grazing can

cause deterioration of soil chemical and physical properties in

grasslands, such as decreased organic carbon and total nitrogen

concentrations by at least two mechanisms [4]. First, heavy

grazing often results in lower vegetation cover, accelerated soil

evaporation, and altered storage of water in the soil [5,6], thus

favoring soil erosion by wind with associated loss of soil organic

carbon and nitrogen [7,8]. Second, long-term livestock over-

grazing also may cause a negative imbalance in nutrient input and

output, leading to soil resource depletion [3,9,10]. For both of

these reasons, potentially greater resource limitation could occur in

heavily grazed sites.

Since nitrogen (N) is an important limiting resource in Inner

Mongolian steppe, applying nitrogen may be a useful approach to

restore degraded grasslands [11,12]. However, the effectiveness of

nitrogen addition as a restoration technique may depend on water

availability. In arid and semiarid ecosystems, precipitation is often

the major primary limiting factor for plant growth and

productivity [13,14], in which case nitrogen fertilization may only

be effective at increasing rangeland production in wet years.

However, dryland systems often respond to nitrogen fertilization as

well as increased water availability. Co-limitation by water and

nitrogen could occur if each increases production independently

and in combination. Alternatively, limitation could shift from

water in dry years, to co-limitation in moderate precipitation

years, to nitrogen in wet years [15,16]. Furthermore, production

response to precipitation can depend on rainfall regime (i.e.,

frequency of rainfall and amount of water per rainfall event) as

much as on absolute amounts [17–20]. In Inner Mongolian
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grassland, ANPP correlated with precipitation from 1980 to 2004

with the exception of four extraordinarily wet years [21], implying

that the primary limiting factors might have shifted from water to

nitrogen during wet years [15,22]. However, there has been a lack

of long-term studies assessing nitrogen and water limitation in

degraded grasslands in Inner Mongolia to clearly resolve this issue.

In addition to questions about primary limitation of grassland

production, added nitrogen can have negative consequences for plant

and soil communities. Many studies in Europe and America have

found that nitrogen enrichment in native grasslands causes loss of

species by favoring opportunistic annual species and/or invasion of

exotics in plant communities, especially at high levels of nitrogen

application [23–25]. Consequently added nitrogen may increase the

inter-annual variation of production due to shifts in species composition

under naturally variable weather conditions [26,27]. Regions with

different management regimes may respond to additional nitrogen in

different ways [28–30] and the effects of low levels of nitrogen addition,

which are most relevant to herders, remain poorly understood at

heavily grazed sites in Inner Mongolian grassland.

This multi-year study investigated the effects of nutrient and water

limitation on plant production in a heavily grazed site in Inner

Mongolia. We used low levels of nitrogen application (25–50 kg N

ha21, equivalent to nitrogen deposition in other regions) and

additional water in an amount to emulate the long-term mean

growing season precipitation in wet years in the region. We ran the

experiment for five years and analyzed the relationships of ANPP,

belowground production and ecosystem resource use efficiency with

precipitation and nutrient availability to test four hypotheses: 1)

nitrogen co-limits production with water under natural precipitation

regimes, such that addition of either would lead to increased primary

production and biomass, but addition of both would give the largest

response; 2) nitrogen application would increase the inter-annual

variation of production across years, but this effect would depend on

precipitation; 3) fertilizer use efficiency would increase with increasing

precipitation and water use efficiency would increase with increasing

nitrogen availability, reflecting co-limitation by water and nitrogen;

and 4) important forage species (perennial grasses) would show less

strong responses to nitrogen than unpalatable annual species.

Methods

Study site
We conducted this study at the Inner Mongolian Grassland

Ecosystem Research Station (IMGERS), located in the Xilin River

Basin (43u269–44u299N, 115u329–117u129E), Inner Mongolia,

China. The average annual precipitation was 343 mm. More

than 80% of the annual precipitation occurs between May and

September, approximately covering the plant-growing season from

May to late August [21] (Figure S1). From the 22 year climate

database, mean annual temperature was 0.7uC and .0 average

daily temperature was 12.2uC. The heavily grazed site (HG) had a

stocking rate of 4 sheep ha21 during the past 30 years, resulting in

different plant species composition and soil physical and chemical

properties compared to more moderately grazed sites [4]. The

dominant plant species at the HG site were Artemisia scoparia,

Artemisia frigida, Carex korshinskyi and Potentilla tanacetifolia at the

beginning of the experiment. The predominant soil types are

Calcic Chernozems derived from aeolian sediments above acid

volcanic rocks [31]. No fertilizers had been applied before they

were fenced for this study in May 2005.

Fertilization and irrigation
In May 2005, an area of 0.2 ha each was fenced at the HG site,

and the vegetation was mown down to 3 cm height in April 2005.

The experiment was designed as a two-factorial split-plot,

combined over years with 4 replicates of each treatment. The

main plots were two water supply levels, i.e. natural precipitation

(NP, no additional water supply) and simulated wet year

precipitation (SWP), within which were subplots with three

nitrogen fertilizer (urea) rates at 0, 25, and 50 kg N ha21 (N0,

N25, and N50). The dimensions of each subplot were 5 m 68 m.

The watering treatments and subplots were separated by 3 m and

0.8 m walkways, respectively. To apply fertilizer evenly, we mixed

granular urea (1.5 mm diameter) with air-dried and fine-sieved

(,2 mm) soil particles at a ratio of 1:10 and spread this mixture by

hand on May 15th every year.

We determined the amount of water in the SWP treatment from

the long-term rainfall data (1982–2003) obtained from the

meteorological station at IMGERS. The rainfall data were ranked

from driest to wettest years and divided into three groups: dry (6

years), moderate (10 years) and wet (6 years). The mean annual

precipitation for dry, moderate, and wet years were 201 mm,

248 mm, and 431 mm, respectively. Supplemental irrigation was

applied to simulate the amount and distribution of the long-term

wet year precipitation from May to September. The fields were

irrigated at 10-day intervals with the amount of the average wet

year 10-day precipitation during the same period using a pump-

line injector system at a windless time (often at sunset). If the actual

rainfall in a given 10-day interval during the experimental period

was greater than the historical wet year precipitation in the same

period, irrigation was withheld for that 10-day interval and the

amount of irrigation in the subsequent 10-day interval was

adjusted according to the actual precipitation received in the

previous 10-day interval.

Sampling methods and data collection
We took plant tissue samples at peak aboveground biomass

production on August 15–16 each year. Three aboveground plant

samples were taken from 0.25 m 61 m areas of each subplot by

clipping all plant material at the soil surface. Quadrats were

located to eliminate spatial overlap among all years. We

composited the samples, separated plant material by species, and

separated green vegetation from standing dead tissue and litter.

After oven-drying (75uC for 48 hours) and weighing for dry mass,

we milled the samples first in a micro hammer mill (Culatti,

Zurich, Switzerland) and then with a ball mixer mill (MM200,

Retsch, Haan, Germany). Nitrogen and carbon concentrations of

the samples were analyzed by an elemental analyzer (EA1108,

Carlo Erba, Torino, Italy). We estimated aboveground net

primary production (ANPP) from the aboveground biomass of

live plants.

We took plant root samples on August 17–20 each year during

2006–2009 using a 100 mm diameter soil auger down to a depth

of 50 cm in the same area where plant materials were clipped. The

samples were placed into mesh bags (mesh size 0.4 mm), and

cleaned under a water stream. We separated root samples into live

and dead root parts by a combination of magnifying glass, hand-

sorting and wet sieving. We determined dead and live roots

visually based on color and flexibility. Roots were subsequently

oven dried at 75uC for 48 hours, and then weighed for dry mass.

At the end of September each year, vegetation was mown down to

3 cm height for all treatments with clippings removed from the site

for hay. This practice emulated actual management effects of

grazing as closely as possible by eliminating potential effects of

biomass carry-over.

We took soil samples from 0–15, 15–30 and 30–50 cm depths

from all plots on 12–14 May before fertilization and 15–17 August

after plant sampling during 2005–2009. For each plot, we
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composited three soil cores collected using a soil auger 30 mm

diameter. We stored all soil samples in a refrigerator at 4uC until

extraction (within 2 days) with 100 mL of 0.01 M CaCl2. The

extracts were analyzed for ammonium (NH4
+) and nitrate (NO3

2)

by Continuous Flow Analysis (Autoanalyzer TRAACS Model

2000, Bran and Luebbe, Germany). At same time, soil moisture

was measured using the gravimetric method (48 hours at 108uC).

Statistics and data analysis
We performed statistical analyses using SAS version 8.0 (SAS,

1996); PROC MIXED was used for analysis of variance

(ANOVA) and repeated measures was used for effects of year.

We tested significance of treatments according to the model for

split-plot design, where year, water, and nitrogen were considered

as fixed effects and the random effect was ‘Block x water’. Blocks had

no significant effect on any measured variable and thus are not

reported in the results. Multiple comparisons of means were done

with the Tukey test.

We estimated water use efficiency (WUE) by the ratio of ANPP

to the annual water input:

WUE~ANPP= PzIð Þ

where P and I are crop year precipitation (1st September of last

year to 30th August this year) and growing season irrigation (1st

May to 30th August), respectively. Crop Year is the time period

used for agricultural commodities, it is the duration from one

year’s harvest to the next, and has been used in many other studies

[32,33].

Accumulated nitrogen fertilizer use efficiency (aNUE) was

assessed by:

Figure 1. Monthly water input of long-term average and wet years and of individual experiment years 2005–2009. For the natural
precipitation treatments (NP, left panel), the column represents precipitation only; for the simulated wet year precipitation treatments (SWP, right
panel), the column represents precipitation plus irrigation. The solid and dotted line indicate long-term average and wet year precipitation during
1982–2003, respectively.
doi:10.1371/journal.pone.0016909.g001
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aNUEi(%)~
Xi

2005
(Ni

fert:{Ni
nonfert:)=

Xi

2005
Ni

input � 100%

where i is year; Ni
fert. and Ni

nonfert. are the aboveground plant

nitrogen content in a given year in the fertilized and non-fertilized

treatments, respectively. Plant nitrogen content was determined by

plant aboveground tissue nitrogen concentration times above-

ground biomass. Ni
input is the nitrogen fertilizer amount in a given

year. We used the accumulated nitrogen efficiency because

measurements indicated that substantial nitrogen remained in

the soil following dry years, and this nitrogen can be used for

growth in subsequent years [34,35].

Results

Under natural conditions, annual and growing season precip-

itation during the experimental periods were much lower than the

long-term average precipitation and even lower than the mean

value of dry years, with the exception of 2008 (Figure 1 left panels).

However, the precipitation before the growing season in 2007

(mainly during fall and winter, September 2006– April 2007) was

similar to the long-term wet year average, which led to high soil

moisture in 2007 (Figure S2). Using precipitation and soil

moisture, we defined 2005, 2006 and 2009 as dry years, and

2007 and 2008 as moist years in this text. The water inputs in

SWP treatments agreed well with the long-term mean wet year

precipitation and its patterns except in 2005 when we had

technical difficulties establishing the irrigation system (Figure 1,

right panels). The mean annual precipitation of the five

experimental years was 243 and 398 mm in NP and SWP

treatments, respectively (Figure 1).

Primary production, root biomass and allocation
Above ground net primary production was significantly affected

by water, nitrogen, and water by nitrogen interactions, and these

effects depended on year (Table 1). Looking across years, ANPP in

the NP treatment was significantly higher in the moist years of

2007 and 2008 than in the dry years of 2005, 2006 and 2009,

while in the SWP treatment there were no significant differences

among years except for somewhat higher production in 2008

(Figure 2A). Not surprisingly, watering effects depended on

amounts of natural precipitation in each year. ANPP was

significantly higher in SWP than in NP in years with low

precipitation (2005, 2006 and 2009; Figure 1 and 2A), while it was

the same in 2007 and significantly lower in SWP than in NP in

2008 (Figure 2A).

Nitrogen effects on ANPP were influenced by water and the

variation in precipitation among years (Table 1). Under dry years

of the NP treatment in 2005, 2006, and 2009, ANPP did not differ

among the nitrogen treatments, while ANPP increased signifi-

cantly with nitrogen application in the moist years of 2007 and

2008 (Figure 2B). Furthermore, ANPP responses to nitrogen

addition were much higher than expected in 2008 when natural

precipitation was similar to the long-term average for most of the

growing season (Figure 2B). Under SWP, however, ANPP

increased significantly with increasing nitrogen inputs in all five

years (Figure 2C). In the SWP treatment, ANPP increased on

average 31% and 61% in the 25 and 50 kg ha21 nitrogen

additions, respectively, compared to the no nitrogen treatment.

Inter-annual variations of ANPP (CVANPP, %) within nitrogen

levels were significantly higher in the NP treatment than in the

SWP treatment. Nitrogen addition increased CVANPP in the NP,

but not in the SWP treatment (Figure 2D).

Only water availability, either across years or across watering

treatments, influenced belowground live biomass. Belowground

live biomass was higher in the moist years of 2007 and 2008 than

in the dry years of 2006 and 2009 in the NP treatment (Figure 3A).

On average, belowground live biomass was greater in the SWP

treatment than in the NP treatment, especially in dry years (2006

and 2009) (Table 1, Figure 3A). Watering increased belowground

biomass, but less than it increased aboveground biomass (Figure 2A

and 3A). This influenced plant allocation, such that the ratio of

biomass allocated belowground was lower in the SWP than in the

NP treatment in dry years (2006 and 2009), but not in moist years

(2007 and 2008, Figure 3C). Nitrogen application did not

influence belowground live biomass (Table 1, Figure 3B), while

the fraction of belowground live biomass decreased with increasing

N inputs (Figure 3D) due to greater ANPP in fertilized treatments.

Precipitation use efficiency and accumulated nitrogen
fertilizer use efficiency

Water use efficiency (WUE) varied among years, watering

treatments, and fertilization treatments (Table 1). Water addition

increased WUE in dry years (2005, 2006 and 2009), whereas it

decreased WUE in moist years (2007, 2008) (Figure 4A). Nitrogen

application significantly increased WUE in moist years of NP and

in all years of the SWP treatment (Figure 4B). In concert with the

lack of effect of nitrogen on ANPP in dry years of the NP

treatment, nitrogen addition did not affect WUE in dry years

(Figure 4B). Overall, the accumulated nitrogen fertilizer use

efficiency (aNUE) was significantly higher in SWP than in NP

(Figure 5). In the SWP treatment, aNUE was 5063%, with no

difference found among the five years (Figure 5). In the NP,

however, aNUE increased 300–800% over the same time period,

from only 6% in 2005 and 2006 to 53% in 2008 (Figure 5).

Added nitrogen accumulated in the upper soil layers in the NP

treatments, but not in the SWP treatment (Table 2). The soil

mineral nitrogen content was significantly higher in NP plots than

in SWP plots at the beginning of the growing season before

fertilization in 2007 (Table 2). Soil mineral nitrogen increased

significantly with nitrogen fertilizer application in NP plots, while

Table 1. Degrees of freedom and F-statistics from repeated
measures analysis to assess the effects of year (Y, from 2005–
2009), water (W), and nitrogen (N) on aboveground net
primary production (ANPP, g m22), water use efficiency (WUE,
g m22 mm21), accumulated nitrogen fertilizer use efficiency
(aNUE, %), belowground live biomass (BGBL, g m22) and the
fraction of total dry mass allocated belowground (fBGBL).

Source DF ANPP WUE aNUE DF BGBL fBGBL

Y 4 111.69***1 49.78*** 14.47*** 3 12.09*** 8.76***

W 1 42.19*** 0.06ns 12.84** 1 7.80* 2.27ns

W*Y 4 48.99*** 38.47*** 10.9*** 3 1.13ns 8.85***

N 2 37.63*** 23.62*** 0.14ns 2 0.23ns 10.34***

N*Y 8 5.07*** 2.72* 0.59ns 5 0.51ns 0.74ns

W*N 2 3.94* 0.98ns 0.00ns 2 0.20ns 1.10ns

W*N*Y 8 2.81* 2.2* 0.72ns 5 0.24ns 0.18ns

1Pr.F;
***,0.001;
***,0.01;
***,0.05;
ns.: not significant.
doi:10.1371/journal.pone.0016909.t001
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Figure 2. Aboveground net primary production (ANPP, g m-2 yr-1) as influenced by year, water and nitrogen. (A) ANPP as influenced
by year and water interaction, with data pooled over all nitrogen treatments (n = 12). (B, C) ANPP as influenced by the nitrogen by water by year
interaction (n = 4). (D) Coefficients of variation of ANPP (CVANPP%) among 5 years (n = 4). Bars labeled with the same lowercase letters were not
significantly different (P.0.05) between watering treatments (A) or among nitrogen treatments (B, C). In panel A, bars labeled with the same italic
and erect capital letter represent no significant difference among years in NP and SWP treatments, respectively (P.0.05).
doi:10.1371/journal.pone.0016909.g002

Figure 3. Belowground live biomass and the fraction of total dry mass allocated belowground. (A, C) Belowground live biomass (g m-2)
and the fraction of belowground live biomass as affected by year and water interaction, with data pooled over all nitrogen treatments (n = 12). (B, D)
Belowground live biomass and the fraction of belowground live biomass as influenced by nitrogen, with data pooled over all water treatments and
years (n = 32). Bars labeled with the same lowercase letter were not significantly different between levels of water and nitrogen treatments (P.0.05).
Bars labeled with the same italic capital letters were not significantly different among years in the NP treatment (P.0.05). There were no significant
differences among years in the SWP treatment.
doi:10.1371/journal.pone.0016909.g003
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soil mineral nitrogen did not differ across fertilizer treatments in

SWP plots (Table 2).

Aboveground biomass of perennial and annual species
Differences across years in ANPP in the NP treatment were

driven primarily by the responses of annual plants, rather than by

perennial grasses, which are the primary forage species. During

the whole experimental period, annual species were absent from or

at very low abundances in the SWP plots at the HG site (Figure 6).

In the NP plots, the relative abundance of annual species was

lower than 16% in 2005 and 2006, but unpalatable annuals (Salsola

collina and Chenopodium glaucum)suddenly dominated (47–87%)

following nitrogen addition in the wet years of 2007 and 2008,

before disappearing again in 2009. While aboveground biomass of

annuals greatly increased with 25 kg ha21 or 50 kg ha21 nitrogen

application in the NP treatment, aboveground biomass of

perennial species did not (Figure 6). Aboveground biomass of

perennial species was higher in the SWP than the NP treatment,

and responded significantly to nitrogen addition in the SWP

treatment as well (Figure 6).

Discussion

Our results indicated that the strength of nutrient limitation in

these degraded grasslands depended strongly on water availability.

Similar to other studies [15,36], we found the primary limiting

factor for production shifted from water to nitrogen with

increasing precipitation. The extent to which low levels of nitrogen

fertilization could act as a tool to improve primary production in

degraded grasslands depends on several issues. On one hand, the

leftover fertilizer nitrogen in the soil from dry years remained

available for uptake during wet years. Plant growth by residual

fertilizer nitrogen could therefore lead to sufficient yields to offset

lack of higher fertilized yields in dry years. However, the utility of

this approach will depend on the influence of additional nitrogen

on species composition, forage quality, and long-term sustainable

stocking rates with increased inter-annual variation of ANPP

under nitrogen addition [12,37,38].

Shift of primary limiting factor on production from water
to nitrogen

We found a clear shift from water to nitrogen limitation in

response to inter-annual and experimental increases in water

availability in this ecosystem. In dry years, precipitation was the

primary factor limiting the production of the Inner Mongolian

grassland (Figure 2 and 4A). We saw nitrogen limitation in 2007,

which was a lower precipitation year but with even precipitation

distribution. Finally, when precipitation was similar to the long-

term average (NP in 2008) and reached the mean value of wet year

precipitation (SWP), the primary limiting factor for ANPP shifted

from water to nitrogen (Figure 2). For this reason, ANPP cannot

be predicted only by precipitation amount, particularly in wet

years [21,39].

Water and nitrogen fertilizer use efficiencies also reflected the

shift in limiting factors with changing precipitation. In our study,

water addition significantly increased WUE in dry years, but

decreased WUE in moist years (2007, 2008; Figure 4A). This was

consistent with the findings of other studies that WUE was low at

both dry and wet extremes of the annual precipitation range and

that peak WUE occurred at moderate precipitation levels [40,41].

Several mechanisms could explain this transition in WUE. In

water-limited environments, plants adapt with traits such as small

plant size, low specific leaf area, slow growth, and low rates of

tissue turnover, leading to trade-offs between relative growth rate

and drought resistance [42,43]. In very dry years, plant survival

may restrict ANPP and WUE. In moist years, water addition likely

decreased WUE due to limited growth response from functional

trait tradeoffs and the shift to nitrogen limitation at high water

availability (Figure 4B) [22,44].

Nitrogen fertilizer use efficiency was affected by water

availability. When water availability was consistently high,

accumulated nitrogen fertilizer use efficiency was relatively stable

(5063%, SWP treatments), and was much higher than that of low

water availability treatments (25621%, averaged across all NP

treatments and years). The large increase in aNUE from the dry

years of 2005 and 2006 to the moist years of 2007 and 2008 is

particularly striking because the additional growth and nitrogen

uptake responses in 2007 and 2008 were strong enough to offset

the low production in the previous two years (Figure 5). The

nitrogen left in the soil from fertilization in previous dry years

(Table 2) remained available for uptake during wet years, helping

to fuel this additional growth. This pattern suggests that plant

growth by residual fertilizer nitrogen could lead to sufficient yields

to offset lack of increased yields from fertilizer in dry years.

Different ecosystems with different climate conditions and

grassland management may respond to additional nitrogen in

different ways [30] and differences in the precipitation threshold

from water to nitrogen limitation can have important implications

for management. Research in California grasslands indicated co-

limitation of water and nitrogen on production in a year of below

average rainfall [45]. In contrast, in savanna ecosystems in Africa,

water was the primary limiting factor for productivity, with no

effect of nitrogen addition on ANPP until precipitation was at least

130% of the average [46]. In this experiment in Inner Mongolian

steppe, nitrogen limitation on production occurred when precip-

itation was similar to the long-term average year (NP in 2008) or

even in a lower precipitation year with good precipitation

distribution (2007, Figure 1 and 2B), indicating the possibility

that nitrogen fertilizer could serve as a tool for restoring degraded

grasslands in that region.

Despite the seemingly promising response of production to

residual fertilizer nitrogen, however, almost all of the additional

growth in wet years in the NP treatment resulted from annual

species with low palatability. These species became dominant in

moist years (2007 and 2008) and then disappeared in the following

dry year (2009, Figure 6). Bai et al. (2008) also found higher WUE

with fertilization that resulted primarily from increased growth of

annuals [36], as in this study. The low palatability and

unpredictability of this growth may constrain stocking rates to

those sustainable in drier years in heavily grazed sites [47,48]. This

poses challenges for herders who seek to maximize their revenue in

any given year but who also need to avoid overgrazing in dry

years. Future studies are needed that focus on how plant functional

traits relevant to grazing are affected by resource addition and

precipitation variation.

In parallel with the responses of ANPP, belowground

production improved significantly with increasing water availabil-

ity (Figure 3A). Water addition (SWP treatment) led to consistent

allocation to roots (,25%) and shoots (,75%) across all years,

which was similar to allocation in moist years in NP (Figure 3C).

Fractional root allocation in dry years (2006 and 2009) was high,

however, and greatly decreased with water input (Figure 3C).

These results support the functional equilibrium theory [49].

According to this idea, shoot and root growth co-ordinate to

balance the water demand of leaf transpiration with the water

absorbing capacity of roots. Belowground resource limitations

(such as water or nitrogen shortage) promote dry mass allocation

to belowground parts [50,51], while aboveground resource (light)

Shifts in Species Constrain Grassland Restoration
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limitation promotes more dry mass allocation to shoots [52].

Nitrogen addition did not change live belowground biomass but

greatly decreased proportional root allocation (Figure 3B, D),

presumably to compete for light [53]. Similar findings occurred in

tallgrass prairie ecosystems in North America [54]. Unlike the

ANPP response to nitrogen addition, belowground production did

not respond to nitrogen fertilizer in these degraded grasslands,

suggesting little additional carbon storage or organic matter

accumulation from roots with low levels of nitrogen fertilization.

The strength of this conclusion depends on rates of root and soil

organic carbon turnover, however.

Response of overgrazed grasslands to stable and
unstable resource availability

Variability in ANPP was influenced by a combination of

precipitation variation and biogeochemical constraints such as

nitrogen availability [40,55]. Under the conditions of simulated

wet year precipitation (SWP), with similar amount and pattern of

precipitation across the 5 years, inter-annual variation of ANPP

(CVANPP) was low and there was no nitrogen effect on CVANPP

Figure 4. Water use efficiency (WUE, g m-2 mm-1) in response to water and nitrogen availability. (A) WUE as influenced by the year by
water interaction, with data pooled over all nitrogen treatments (n = 12). Bars within years labeled with the same letter were not significantly different
(P.0.05). (B) Nitrogen effect on WUE in NP treatment of dry years (2005, 2006, 2009, n = 12), moist years (2007 and 2008, n = 8) and SWP treatment
(n = 20) respectively. Points within a line labeled with the same letter were not significantly different within water availability designations (P.0.05).
doi:10.1371/journal.pone.0016909.g004

Figure 5. Accumulated nitrogen fertilizer use efficiency (aNUE,
%) as affected by water over five years. Points labeled with the
same letter were not significantly different among years (P.0.05).
Effects of water are indicated by *** (P,0.001), ** (P ,0.01), * (P ,0.05)
or ns (not significant). There were no significant differences between
nitrogen treatments, so the values for N25 and N50 were pooled (n = 8).
doi:10.1371/journal.pone.0016909.g005

Table 2. Soil mineral nitrogen (kg N ha21) before fertilization
at the beginning of the 2007 growing season and results of
two way ANOVAs to assess the effects of water (W) and
nitrogen (N) on soil mineral nitrogen.

Soil mineral nitrogen

Precipitation Nitrogen 0–15 cm 15–30 cm 30–50 cm

NP N0 8.361.6 c 7.560.3 c 4.560.6 b

N25 2063.6 b 1563.3 b 8.060.9 a

N50 3263.9 a 2262.8 a 8.061.4 a

SWP N0 1161.2 a 3.860.8 a 3.560.5 a

N25 1462.8 a 4.761.2 a 3.560.8 a

N50 8.561.5 a 5.960.8 a 4.060.8 a

Two way ANOVA Probability of treatment effects

Water (W) ,0.001 ,0.001 ,0.001

Nitrogen (N) 0.001 ,0.001 0.069

W*N ,0.001 0.006 0.129

Different small letters indicate significant differences among nitrogen levels
within NP and SWP treatments and within soil layers (p,0.05, n = 4).
doi:10.1371/journal.pone.0016909.t002
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(Figure 1 and Figure 2D). However, strong variation of ANPP was

found among years with highly variable precipitation (Figure 1,

Figure 2B, D), and CVANPP increased even more with nitrogen

addition. Low nitrogen availability, on the one hand, is one of the

most important limiting factors for production in Inner Mongolian

grasslands [12]; on the other hand, the extent of nitrogen

limitation depended heavily on water availability (Figure 2B, C).

Due to strong inter-annual variation in precipitation in this

ecosystem, there might be a high frequency of transition between

water and nitrogen as limiting factors for ANPP [22] (Figure 2B).

The question remains unresolved as to whether application of

small amounts of nitrogen fertilizer can serve as a tool for

grassland restoration for heavy grazing. A four-year nitrogen

fertilizer experiment in this ecosystem indicated that nitrogen

addition increased ANPP, and that the dominance of perennial

rhizomatous species was important for the restoration of degraded

grasslands [12]. However, that study did not evaluate the

interactive effects of nitrogen and precipitation on production,

and the precipitation during that experiment period was stable and

close to the long-term average precipitation (crop year precipita-

tion was 309629mm). In contrast, precipitation during our study

period was even lower than long-term mean dry years, with crop

year precipitation varying from 190 to 354 mm (Figure 1). Several

global climate change models have predicted that between-year

variability in precipitation will increase in the future [16,56,57].

Facing such variability, combined with the frequent shift from

water to nitrogen limitation, our five year results suggested plant

growth by residual fertilizer N in dry years increased yields in

following wet years. However, most of this increase resulted from

unpalatable annual forbs, with no effect on more desirable

perennial grasses. Interestingly, these annual species disappeared

again in a subsequent dry year. Considering these effects of

nitrogen application, longer-term study is needed to comprehen-

sively appraise the impact of low-level nitrogen addition on

ecosystem stability and the possible change of plant species

composition in Inner Mongolian grasslands.

Figure 6. Aboveground biomass of perennial and annual species as affected by water and nitrogen supplementation. Bars within
each water treatment labeled with the same letter were not significantly different (P.0.05, n = 4).
doi:10.1371/journal.pone.0016909.g006
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Supporting Information

Figure S1 Average ten day temperature (oC) among
experiment years.
(TIF)

Figure S2 Average soil moisture from the beginning and
the end of growing seasons at 0-30 cm soil depth. Data

were averaged across all nitrogen treatments (n = 12).

(TIF)
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