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Abstract: Background: Rice (Oryza sativa L.) is the main food source for more than half of humankind.
Rice is rich in phytochemicals and antioxidants with several biological activities; among these
compounds, the presence of γ-oryzanol is noteworthy. The present study aims to explore the
effects of γ-oryzanol on cognitive performance in a mouse model of neuroinflammation and
cognitive alterations. Methods: Mice received 100 mg/kg γ-oryzanol (ORY) or vehicle once
daily for 21 consecutive days and were then exposed to an inflammatory stimulus elicited by
lipopolysaccharide (LPS). A novel object recognition test and mRNA expression of antioxidant
and neuroinflammatory markers in the hippocampus were evaluated. Results: ORY treatment was
able to improve cognitive performance during the neuroinflammatory response. Furthermore, phase
II antioxidant enzymes such as heme oxygenase-1 (HO-1) and NADPH-dehydrogenase-quinone-1
(NQO1) were upregulated in the hippocampi of ORY and ORY+LPS mice. Lastly, γ-oryzanol showed
a strong anti-inflammatory action by downregulating inflammatory genes after LPS treatment.
Conclusion: These results suggest that chronic consumption of γ-oryzanol can revert the LPS-induced
cognitive and memory impairments by promoting hippocampal antioxidant and anti-inflammatory
molecular responses.

Keywords: γ-oryzanol; cognitive performance; neuroinflammation; second-generation
antioxidant enzymes

1. Introduction

The genus Oryza includes about 23 species, among which rice (Oryza sativa L.) is one of the major
sources of nutrition for about two-thirds of humankind [1,2]. Although two subspecies (indica and
japonica), mainly grown in Japan, Korea, and northern China, have been identified, a phylogenetic
analysis unravelled five distinct subpopulations of Oryza sativa L., two in indica (indica and aus) and
three in japonica (temperate japonica, tropical japonica, and aromatic) [3]. In addition, Oryza glaberrima Steud
is another endemic species cultivated in West Africa [4]. O. sativa, besides being one of the main source
of complex carbohydrates in different diets, contains many bioactive compounds including vitamins,
polyphenols, and minerals [5]. In particular, rice bran is rich in γ-oryzanol (ORY), an antioxidant
polyphenol whose quantity and quality changes according to the rice variety and cultivar [6–10]. ORY
extracted from rice bran is actually a mixture of several organic molecules (Figure 1A) consisting mainly
of cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesteryl ferulate, and β-sitosteryl
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ferulate, which are all ferulate esters of phytosterols [11]. The biological benefits of ORY have been
intensively studied. In particular, its antioxidant activities and its beneficial properties, including
anti-inflammatory and hypocholesterolemic effects, have been well documented [12–14]. Moreover,
ORY is recognized as a good dietary supplement and a pharmaceutical candidate for the maintenance
and enhancement of human health during ageing [15]. Thanks to its lipophilic characteristics, ORY
passes through the blood-brain barrier and exerts effects even in the central nervous system (CNS) [16].
For example, in mouse models of anxiety and stress, Kozuka and colleagues demonstrated that
ORY exerted its therapeutic effects by modulating dopamine receptor 2 [17]. Nevertheless, only few
works have described the effects of ORY on cognitive functions, and its mechanism of action remains
still unclear.
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The main objective of this study was to investigate the effects of ORY in an in vivo model of
neuroinflammation elicited by lipopolysaccharides (LPS). In particular, we explored the cognitive
performance and the gene expression of inflammatory mediators as well as the phase II antioxidant
enzymes in mice that were chronically treated with ORY and then challenged with an acute
inflammatory insult.
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2. Materials and Methods

2.1. Animals

Thirty-seven male B6/129PF2 mice (aged 12–14 months, average weight: 43 g) were purchased
from The Jackson Laboratories (Bar Harbor, ME, USA). The mice were housed three-to-four per cage
in a 12 h light/dark cycle (light phase from 8:00 a.m. to 8:00 p.m.) and were maintained at 50%
relative humidity and a 12 h light/dark cycle at 20–22 ◦C. Mice were fed normal weighted chow (70%
carbohydrate, 20% protein, 10% fat, total 3.95 kcal/g; standard diet 4RF21 (Mucedola, Milan, Italy)
and water ad libitum. All experiments were conducted in conformity with the European Communities
Council Directive of 1986 (86/609/EEC), approved by the Italian Ministry of Health and the Animal
Care and Use Committee of the University of Brescia.

2.2. Chemicals and Treatment

Mice were weighed, divided into 2 groups and exposed to 3 weeks of chronic treatment with
ORY (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) (20 mice) or a vehicle (VH, 17 mice).
The vehicle consisted of a physiological solution (0.9% NaCl) (Sigma-Aldrich, Merck KGaA, Darmstadt,
Germany). ORY and VH were administered by oral gavage once per day (Figure 1B). The dosage of
ORY (100 mg/kg) was chosen according to previously reported data [18]. Individual body weights
and cage food consumption were recorded weekly. At the end of the 21 days of treatment, 10 mice
treated with ORY and 9 mice treated with VH received intraperitoneally (i.p.) 10 µg/mouse of
lipopolysaccharide (LPS, Sigma-Aldrich, Merck KGaA, Darmstadt, Germany). After 48 h, mice were
placed in the behavioural room for 30 min to acclimatize before each test was performed. In the
behaviour room, the behavioural test area was separated from the operator by a dark sliding door.
Rotarod and novel object recognition tests were executed as reported below.

2.3. Rotarod Test

To measure motor performance, mice were placed one by one on the rotarod treadmill (Ugo Basile,
Varese, Italy), and a trial of 30 s at a constant speed of 2 rpm was executed. Immediately afterwards,
the test was performed at an initial intensity of 2 rpm, and a final intensity of 20 rpm was reached 300 s
later. Finally, the time that each rodent managed to stay on top of the rotarod treadmill was recorded.

2.4. Novel Object Recognition

To establish the cognitive performance of the mice in terms of long-term memory, the novel object
recognition (NOR) test was used. This protocol was executed over three consecutive days, as previously
reported [19,20], in a 40 × 40 cm Plexiglas square arena, and the average latency between the test
phases was 24 h. On Day 1, the mice were allowed to acclimatize to an empty arena for 5 min. On Day
2, the mice were exposed to two identical objects for a 5-min period. On Day 3, one of the objects
was replaced with a new object, and mice were let free to explore for 5 min. Each trial was recorded,
and videos were analyzed with EthoVision XT software (Noldus IT, Wageningen, The Netherlands).
The lengths of time spent with the familiar object and the novel object were calculated.

2.5. Gene Expression

After the behavioural tests, mice were sacrificed, and their hippocampi were isolated for mRNA
analysis. The total RNA was extracted using the TRIzol® Reagent (Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany), and two micrograms of total mRNA were reverse-transcribed using M-MLV
reverse transcriptase (Promega, Madison, WI, USA) following the manufacturer’s instructions. Table 1
shows the murine-specific primers used for q-PCR. Amplification and detection were performed with
the ViiA7 Real Time PCR Detection System (Applied Biosystems, Foster City, CA, USA). The reaction
mix contained 6 µL of SYBR Green Master Mix (Bio Rad Laboratories, Richmond, CA, USA), 6 pmol of
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each forward and reverse primer, and 2 µL of diluted cDNA. The samples were run in duplicate, and
the PCR program was initiated by 10 min at 95 ◦C before 40 cycles, each of 1 s at 95 ◦C and 30 s at 64 ◦C.
The gene expression levels were normalized to β-Actin expression, and the data are presented as the
fold change in target gene expression. Relative quantification was performed using the comparative
Ct method.

Table 1. Primers used for q-PCR.

Genes Primer Sequences

Rel-A (p65) f-5′-TTCCTGGCGAGAGAAGCAC-3′;
r-5′-AAGCTATGGATACTGCGGTCT-3′

Inducible nitric oxide synthase (iNOS) f-5′-CAGCTGGGCTGTACAAAC-3′;
r-5′-CATTGGAAGTGAAGCGTTTCG-3′

Cyclooxygenase 2 (COX-2) f-5′-GCAAATCCTTGCTGTTCCAACCCA-3′;
r-5′-TTGGGGATCCGGGATGAACTCTCT-3′

Interleukin 1 beta (IL-1β) f-5′-GCTTCAGGCAGGCAGTATC-3′;
r-5′-TAATGGGAACGTCACACACC-3′

Interleukin 6 (IL-6) f-5′-CCTACCCCAATTTCCAATGCT-3′;
r-5′-TATTTTCTGACCACAGTGAGGAAT-3′

Heme oxygenase 1 (HO-1) f-5′-TGAAGGAGGCCACCAAGGAGG-3′;
r-5′-AGAGGTCACCCAGGTAGCGGG-3′

NAD(P)H dehydrogenase (quinone) 1 (NQO1) f-5′-AGGATGGGAGGTACTCGAATC-3′;
r-5′-TGCTAGAGATGACTCGGAAGG-3′

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) f-5′-AGCCCCATTCACAAAAGACA-3′;
r-5′-GAAGTCATCAACAGGGAGGTTA-3′

Actin (β-act) f-5′-AGCCATGTACGTAGCCATCC-3′;
r-5′-CTCTCAGCTGTGGTGGTGAA-3′

2.6. Statistical Analysis

Two-way Repeated Measures ANOVA tests with the Bonferroni post-test were used to determine
the significance of the pharmacological effect on body weight, food intake during the chronic treatment,
and novel object recognition. One-way ANOVA tests with the Newman-Keuls post-test were instead
adopted to determine the statistical difference for the rotarod test and the molecular analysis after
the ORY and LPS treatments. Data are presented as the means ± S.E.M. (standard error mean). All
statistical analyses were performed using GraphPad Prism version 6 (GraphPad Software, San Diego
CA, USA), and the statistical significance level was set at p < 0.05.

3. Results

3.1. γ-oryzanol has No Effect on Mouse Body Weight or Food Intake

The effects of chronic treatment with ORY were initially assessed in regard to the mice’s vital
parameters, including body weight and food intake. At the beginning of the experiment, the group of
mice (n = 20) tagged ORY and those labelled vehicle (VH) (n = 17) showed comparable body weights
(43.28 ± 1.42 g) (Table 2). Three weeks of ORY treatment did not affect body weight or food intake
(Table 2).

Table 2. Body weight and food intake. VH: vehicle; ORY: γ-oryzanol.

Body Weight (g) Food Intake (g)

Days of Treatment VH ORY VH ORY

0 41.9 ± 1.9 44.7 ± 1.3 / /
7 40.4 ± 1.8 41.7 ± 1.2 19.3 ± 0.7 17.4 ± 0.5
14 40.0 ± 1.8 41.7 ± 1.1 19.8 ± 0.5 20.0 ± 0.4
21 41.3 ± 1.9 42.5 ± 1.2 22.9 ± 1.0 22.6 ± 0.5
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3.2. γ-oryzanol Prevents LPS-induced Cognitive Impairment

In order to evaluate the effects of ORY on LPS-induced cognitive impairment, ORY or VH
pre-treated mice were injected intraperitoneally with 10 µg/mouse LPS, and 48 h later, they were
subjected to behavioral tests (Figure 1B).

Since LPS induces acute and widespread inflammation accompanied by an outbreak of
pro-inflammatory mediators, prior to the cognitive test, mobility performance was evaluated by
using the rotarod test (Figure 2A). Motor activity was comparable between the two groups, showing
no differences in term of latency to fall (Ftreatment (3, 33) = 0.24, p = 0.87). In addition, LPS did not affect
mobility in the ORY group or in the VH group.
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Figure 2. Motor performances of mice (A). Graphic scheme of the novel object recognition (NOR)
test protocol and data of time spent exploring the familiar and novel objects are reported. For all
experimental conditions, the full color bars represent the familiar object, while the patterned bars
represent the novel object (B). Data are expressed as the mean ± S.E.M. Two-way ANOVA tests with
Sidak’s multiple comparisons test were used to test statistical significance (* p < 0.05 vs. the familiar
object). VH: vehicle; ORY: γ-oryzanol; LPS: lipopolysaccharide.
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The effect of ORY on long-term memory was then assessed by using the novel object recognition
test (NOR) (Figure 2B). This test included three phases: habituation (day 1), the acquisition trial (day 2),
and the actual test (day 3). In the acquisition phase, the time spent exploring the two identical objects
was similar for ORY and VH mice treated or not treated with LPS (data not shown). When one of the
two objects was substituted with a new one (third day of the trial), both ORY and VH mice showed
higher interest for the novel object compared to the familiar object. On the contrary, mice treated
with LPS lost their ability to distinguish the new object from the familiar one and indiscriminately
explored both. Interestingly, mice pre-treated with ORY and subsequently injected with LPS were able
to distinguish the novel object, spending more time exploring it than the familiar one (Finteraction (3, 66)
= 1.15, p = 0.33; Ftreatment (3, 66) = 2.92, p < 0.05; Fobjects (1, 66) = 6.99, p < 0.05).

3.3. γ-oryzanol is Able to Counteract the Increase of LPS-dependent Proinflammatory Markers Increase in
the Hippocampus

After behavioural tests, mice were sacrificed, and hippocampi were collected for molecular
analysis of the inflammatory mediators (Figure 3). As expected, LPS treatment increased the
mRNA expression of both cytokines, IL-1β and IL-6, as well as of RelA (coding gene of Nuclear
Factor-κB (NF-κB) p65 protein), the inducible nitric oxide synthase (iNOS), and cyclooxygenase-2
(COX-2), when compared to the control group (VH-treated mice). ORY-pre-treated mice challenged
with LPS showed a statistically significant reduction of mRNA expression for all the mediators
analyzed: RelA (Ftreatment (3, 33) = 17.7, p < 0.0001), IL-1β (Ftreatment (3, 33) = 11.5, p < 0.0001),
IL-6 (Ftreatment (3, 33) = 5.6, p < 0.005), iNOS (Ftreatment (3, 33) = 12.92, p < 0.0001), and COX-2
(Ftreatment (3, 33) = 4.36, p < 0.05).
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(β-Actin). Data are shown as the mean ± S.E.M. One-way ANOVA tests with Newman–Keuls post-test were used to determine statistical significance, * p < 0.05,
** p < 0.005, *** p < 0.0005 and **** p < 0.0001 vs. VH, # p < 0.05, ## p < 0.005 and ### p < 0.0005 vs. LPS. VH: vehicle; ORY: γ-oryzanol; LPS: lipopolysaccharide.
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3.4. γ-oryzanol Upregulates the Expression of Second-generation Antioxidant Enzymes in the Hippocampus

It is well known that the Nrf2-ARE phase II enzymes play a key role in the antioxidant and anti-
inflammatory response [21]. In establishing the effects of ORY on this pathway, the mRNA expressions
of Nrf2, HO-1, and NQO1 were evaluated (Figure 4). Nrf2 mRNA expression did not significantly
change among the different experimental groups (Ftreatment (3, 33) = 3.23, p = 0.305). On the other
hand, chronic ORY treatment notably increased HO-1 (Ftreatment (3, 33) = 9.34, p < 0.005) and NQO1
(Ftreatment (3, 33) = 11.92, p < 0.0001) gene expression compared to VH. Interestingly, ORY was able to
induce the gene expression of Phase II antioxidant enzymes, even after pro-inflammatory stimulation,
although the magnitude of the increase was lower respect to ORY alone. Indeed, HO-1 and NQO1
mRNA expression was statistically higher in ORY-treated mice challenged with LPS compared with
animals from the reference group (VH plus LPS) (HO-1: p < 0.005; NQO1: p < 0.05).
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Figure 4. Graphic representation of quantitative RT-PCR data obtained from RNA extracted from VH,
ORY, LPS, and ORY+LPS mice hippocampi. Data are expressed as the fold change of target genes (Nrf2
in (A), HO-1 in (B) and NQO1 in (C)) normalized to the internal standard control gene (β-Actin). Data
are shown as the mean ± S.E.M. One-way ANOVA tests with the Newman–Keuls post-test were used
to determine statistical significance, * p < 0.05 and ** p < 0.005. VH, # p < 0.05, and ## p < 0.005 vs. LPS.
VH: vehicle; ORY: γ-oryzanol; LPS: lipopolysaccharide.
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4. Discussion

In this study, we demonstrated that chronic treatment with ORY restored cognitive impairment
and exerted anti-inflammatory effects in a mouse model of neuroinflammation. In particular, we found
a correlation between ORY treatment and improvement of long-term memory with the reduction of
the inflammatory response in mice exposed to LPS. In addition, ORY alone was able to increase the
antioxidant response through the induction of the expression of Phase II antioxidant enzymes, such as
HO-1 and NQO1, suggesting a “para-hormetic” action against future insults.

It is well recognized that neuroinflammation induced by LPS or by polyinosinic:polycytidylic
acid (poly I:C) are known experimental paradigms to explore the mechanisms related to deficits
in behavioural performance [22,23]. Moreover, the upregulation of pro-inflammatory cytokines
induced by LPS has been associated with altered redox homeostasis and cognitive impairment [24–27].
In accordance with other authors [28–30], 48 h after a single dose of LPS (10 µg/mouse), we observed
evident inflammation at the hippocampal level without an effect on locomotor activity. In addition,
as far as cognitive aspects are concerned, LPS-treated mice lost the ability to distinguish between the
novel object and the familiar object in the NOR test. Interestingly, mice pre-treated with ORY and then
challenged with LPS showed some improvement in cognitive performance, as they spent more time
interacting with the novel object than with the familiar one. This result is in line with that found by
Mamiya and colleagues, who demonstrated that pre-treatment with ferulic acid, the main γ-oryzanol
metabolite, rescued a deficit in memory and cognitive functions in the NOR test [31].

How ORY prevented LPS-induced cognitive impairment is a main point of interest.
We hypothesized that such effect could be associated with its well-known antioxidant and
anti-inflammatory effects. Among the mediators of inflammation, nuclear factor-κB (NF-κB) plays a
central role [32,33]. It consists of a family of transcription factors that includes RelA (p65), RelB, c-rel,
p50, and p52 [32], which mediate many physio-pathological pathways, including immune responses,
inflammation, neurodevelopment, and proliferation [33–37]. The reduction of RelA (p65) by ORY in
LPS treated mice could be an upstream event in the anti-inflammatory response of this rice compound.
In fact, other studies have demonstrated that cycloartenyl ferulate, a phytosteryl ferulate of ORY, and
ORY itself reduce the transactivation of pro-inflammatory genes throughout the inhibition of NF-κB
p65 nuclear translocation, both in macrophages and inflamed peripheral tissues [38,39]. It is known that
pro-inflammatory genes, including IL-1β, IL-6, iNOS, and COX2, recognized to be under the control
of NF-κB p65 [40,41], are also involved in several diseases involving strong cognitive and memory
alterations [27,42–45]. In particular, IL-1β modulates memory processes related to fear and stress [46],
and when upregulated, it is associated with memory alterations [27]. Sparkman and colleagues
showed that the expression of IL-6, induced by LPS treatment, alters long-term memory performance,
increasing the expression of IL-1β and TNF-α [47,48]. In addition, elevated iNOS and COX-2 levels
were associated with poor cognitive test performance and neurodegenerative disorders [44,49]. Our
data confirmed a strong upregulation of all these mediators at the hippocampal level after LPS
treatment. On the other hand, ORY pre-treatment prevented the increase in the LPS-induced mRNA
levels of the cytokines IL-1β and IL-6 and the enzymes iNOS and COX2 in the mouse hippocampus.

The Nrf2 system is strictly involved in the modulation of inflammatory pathways [21]. Nrf2
activation regulates the expression of cytoprotective and antioxidant genes [50]. Under basal conditions,
Nrf2 forms a complex with Kelch-like ECH-related protein 1 (Keap1), resulting in the degradation and
inactivation of Nrf2 via ubiquitination. After a harmful stimulus, including LPS, Nrf2 separates
from Keap1 and translocates into the nucleus where it can bind to the regulatory antioxidant
response element (ARE) to induce the expression of enzymes such as glutathione-S-transferase, HO-1,
and NQO1 [51]. Recently, in an in vitro model, we demonstrated that ORY is able to trigger the Nrf2
pathway in terms of the upregulation of Nrf2 mRNA and protein expression, translocation into the
nucleus, and induction of the Nrf2-dependent defence genes [14]. Our new data show that in vitro
treatment with ORY was not sufficient to increase Nrf2 mRNA expression. However, indirect evidence
of the effects of ORY on Nrf2 pathway activation was given by its effects on HO-1 and NQO1 gene
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expression. Indeed, we observed hippocampal mRNA upregulation of HO-1 and NQO1 in mice that
were chronically treated with ORY, which was still maintained upon LPS-induced neuroinflammation.
These two enzymes, which regulate redox homeostasis and inflammatory responses [52,53], are even
involved in cognitive performance. Indeed, HO-1 signalling was found to increase memory and
learning abilities in mice [54] and to attenuate cognitive deficits induced by amyloid beta in an animal
model of Alzheimer-like pathology [55]. A recent study also reported that ferulic acid improves
cognitive abilities through the activation of the HO-1 pathway in the rat hippocampus [56]. NQO1,
which is typically co-expressed with HO-1, is a cytosolic homodimeric flavoprotein that catalyses the
two-electron reduction of quinones, preventing the formation of reactive semiquinones. Chhetri and
colleagues recently reported an association between Alzheimer’s disease-related cognitive decline and
the downregulation of the Nrf2 system, which also involves NQO1 [57]. The fact that chronic treatment
with ORY increased the steady state levels of HO-1 and NQO1, exerting protective action against
noxious stimuli, could also explain its cognitive improvement in the NOR test (ORY vs. VH mice).

Lastly, the reciprocal crosstalk existing between NF-κB p65 and Nrf2/HO-1 pathways [58] could
explain the effects of ORY on the LPS mice model. It is noteworthy that the LPS-induced increase
in p65 subunit expression was significantly higher in nuclear extracts of Nrf2 knockout mice than
in wild-type mice [58]. Moreover, Nrf2-dependent HO-1 increased expression inhibits NF-κB p65
activity [59]. The inhibition of NF-κB activity was also induced by Keap1, the activator of Nrf2,
through ubiquitination [60]. Therefore, on the basis of our results, it seems that ORY acts on these
transcriptional factors, favoring antioxidant mediators and providing protection from inflammatory
stimuli, and this condition promotes better cognitive performance. The central role of Nrf2 pathways
in cognitive processes can be corroborated by some recent data on their capacity to regulate adult
hippocampal neurogenesis by participating in the maintenance of synaptic networks [61–63]. Further
studies are needed in this area.

5. Conclusions

Oryza sativa L., the millennial plant that feeds the entire globe has emerged as not only an
important nutrient supply, but can also be considered as a food for healthy brains. In fact, rice bran is
an abundant source of γ-oryzanol which, as demonstrated, induces molecular changes in the brain
that are able to prevent cognitive impairment related to neuroinflammation, preserving memory and
cognitive “homeostasis”.
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