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Purpose: Automated machine learning (AutoML) has emerged as a novel tool for medical professionals
lacking coding experience, enabling them to develop predictive models for treatment outcomes. This study
evaluated the performance of AutoML tools in developing models predicting the success of pneumatic retinopexy
(PR) in treatment of rhegmatogenous retinal detachment (RRD). These models were then compared with custom
models created by machine learning (ML) experts.

Design: Retrospective multicenter study.
Participants: Five hundred and thirty nine consecutive patients with primary RRD that underwent PR by a

vitreoretinal fellow at 6 training hospitals between 2002 and 2022.
Methods: We used 2 AutoML platforms: MATLAB Classification Learner and Google Cloud AutoML. Addi-

tional models were developed by computer scientists. We included patient demographics and baseline char-
acteristics, including lens and macula status, RRD size, number and location of breaks, presence of vitreous
hemorrhage and lattice degeneration, and physicians’ experience. The dataset was split into a training (n ¼ 483)
and test set (n ¼ 56). The training set, with a 2:1 success-to-failure ratio, was used to train the MATLAB models.
Because Google Cloud AutoML requires a minimum of 1000 samples, the training set was tripled to create a new
set with 1449 datapoints. Additionally, balanced datasets with a 1:1 success-to-failure ratio were created using
Python.

Main Outcome Measures: Single-procedure anatomic success rate, as predicted by the ML models. F2
scores and area under the receiver operating curve (AUROC) were used as primary metrics to compare models.

Results: The best performing AutoML model (F2 score: 0.85; AUROC: 0.90; MATLAB), showed comparable
performance to the custom model (0.92, 0.86) when trained on the balanced datasets. However, training the
AutoML model with imbalanced data yielded misleadingly high AUROC (0.81) despite low F2-score (0.2) and
sensitivity (0.17).

Conclusions: We demonstrated the feasibility of using AutoML as an accessible tool for medical pro-
fessionals to develop models from clinical data. Such models can ultimately aid in the clinical decision-making,
contributing to better patient outcomes. However, outcomes can be misleading or unreliable if used naively.
Limitations exist, particularly if datasets contain missing variables or are highly imbalanced. Proper model se-
lection and data preprocessing can improve the reliability of AutoML tools.
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Pneumatic retinopexy (PR) is a minimally invasive procedure
commonly used for the treatment of rhegmatogenous retinal
detachment (RRD).1 Compared with scleral buckling or pars
plana vitrectomy, PR offers several advantages, including
lower costs,2 feasibility to perform in an outpatient setting,
faster recovery, and reduced morbidity.3 However, the
single procedure anatomic success rates for the PR have
Published by Elsevier on behalf of the American Academy of Ophthalmology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
been reported to range from 60% to 91%,4 which is
comparatively lower than that of pars plana vitrectomy
(93%)5, scleral buckling only (82%)6, and combined pars
plana vitrectomy with scleral buckling (92.2%).6

The reattachment rates after PR heavily depend on pa-
tient selection,7 surgeon experience,8 and proper
postprocedure positioning.9 Pneumatic retinopexy is
1https://doi.org/10.1016/j.xops.2024.100470
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primarily indicated for RRDs with � 1 retinal breaks within
1 clock hour located in the superior 8 clock hours of the
retina.7 More favorable outcomes are observed in phakic
patients10 and when procedure is performed by more
experienced specialists.8 Previous studies have also
indicated that the presence of vitreous hemorrhage,11

inferior retinal breaks,12 aphakic or pseudophakic lens
status,13 retinal tears > 1 clock hour,14 greater number of
retinal breaks,13,14 and male sex are associated with a
higher rate of failure. However, no definitive predictive
measures and formulas have been identified for patient
selection in clinical practice or preprocedure counseling.15

Over the past decade, machine learning (ML) has made
significant strides in medicine and ophthalmology.16

Machine learning has proven effectiveness in identifying
pathologies and physiologic features from fundus photos
and OCT,17e19 predicting treatment outcomes,20,21 and
facilitating telemedicine.22,23 These algorithms can
recognize intricate patterns and structures in medical
datasets and images, which makes them powerful tools for
classification, pattern recognition, and generation of
predictive models for use in clinical practice.24

Traditionally, the development of ML models has been
carried out by computer scientists and artificial
intelligence (AI) experts. However, the emergence of
automated machine learning (AutoML) tools has made the
technology more accessible, enabling nonexperts to
construct powerful ML models without requiring coding
or extensive engineering expertise.25e27 This accessibility
can potentially unlock numerous opportunities in the med-
ical field, in which proficiency in ML and coding is often
limited. Nevertheless, it is crucial to exercise caution in
adopting these tools because their native adoption may yield
unreliable outcomes.28

Given the limited data on the feasibility of using AutoML
for predicting procedural success, we harnessed various
AutoML platforms to predict the success rate of PR based
on a combination of clinical and demographic features.
Furthermore, we compared these platforms and bench-
marked their discriminative performance against similar
tools developed by ML experts.
Methods

Patient Population

The institutional review board approved the study protocol.
The study was conducted in accordance with the tenets of
the Declaration of Helsinki and the Health Insurance
Portability and Accountability Act. This retrospective study
included 539 eyes of 539 patients who underwent PR by
vitreoretinal (VR) fellows. A total of 483 patient records
were obtained from the database previously collected and
described by our groups,8 which included patients who
underwent PR by VR fellows at 6 training sites across the
United States (Associated Retinal Consultants (Royal Oak,
Michigan), Duke University Eye Center, New York Eye
& Ear Infirmary, University of California (UC) Davis, UC
San Diego, and Wills Eye Hospital) between 2002 and
2

2016. This database was used to train the ML algorithms.
To test the algorithms, we retrospectively collected data
on additional 56 patients who underwent PR by VR
fellows at UC Davis Eye Center between 2020 and 2022.
We excluded patients with prior history of ocular trauma
or retinal surgery and those with < 3 months of follow-up
data. A total of 10 demographic and clinical features were
recorded, including age, sex, lens status (phakic, aphakic, or
pseudophakic), macula status at the time of RRD diagnosis
(macula involving or macula sparing), size of RRD (clock
hours), number of retinal breaks, presence of inferior retinal
breaks, vitreous hemorrhage, lattice degeneration, and VR
fellow procedure experience (recorded as either < 16 or �
16 PR cases previously performed by a VR fellow). The
primary outcome of interest was single-procedure anatomic
success, defined as retinal reattachment at 3 months with no
additional procedures. All independent variables were bi-
nary except for the lens status (ternary), age, and the number
of retinal breaks (continuous), as shown in Table 1,
Tables S2 and S3.

Model Development

To generate the AutoML models, we utilized 2 commonly
used platforms, Google Cloud AutoML Vertex AI (Moun-
tain View, CA) and MATLAB Classification Learner App
(Natick, MA, version R2022b [9.13.0]). These models were
devised by medical professionals with no relevant coding
experience. An additional custom model was generated
independently by the computer scientists and compared with
the AutoML models.

We used the following evaluation metrics: sensitivity
(defined as the probability of correctly predicting a failed PR
outcome), specificity (defined as the probability of correctly
predicting a successful PR outcome), and positive predictive
value (PPV, also referred to as precision: the likelihood of a
patient predicted to have a failed PR outcome to actually
have failed the procedure). Additionally, we used area under
the receiver operating curve (AUROC) to assess the models’
overall capability to distinguish between classes and F2
scores, which is a metric that combines sensitivity and
PPV, to compare the models. We developed several models,
and the models were selected based on the greatest AUROC
and F2 scores on validation.

Dataset Preparation

We prepared a total of 4 training datasets to compare the
performance of AutoML models (Fig 1). Dataset 1 comprised
of the previously collected database of 483 eyes8 (training
and validation set). The training set had 5 missing data
points for age, 1 for sex, 90 for procedure experience, 1 for
macula status, 8 for RRD size, 23 for the inferior break,
and 2 for the presence of lattice degeneration (Table 1).
There were no missing values in the test set. The PR
success-to-failure ratio was approximately 2-to-1 (68.3% to
31.7%) in the training set and 1-to-1 (46.4% to 53.6%) in the
test set. Patients’ clinical and demographic features for the
training and test sets are summarized in Table 1. In our naive
adoption of the AutoML tools, we did not perform any
preprocessing of the training set. Moreover, Google Cloud



Table 1. Clinical and Demographic Characteristics of Dataset 1

Training Set (n [ 483) Test Set (n [ 56)

PR Failure PR Success PR Failure PR Success

n ¼ 153 (31.7%) n ¼ 330 (68.3%) n ¼ 30 (53.6%) n ¼ 26 (46.4%)

Mean age (SD) 62.4 (12.1) 64.0 (10.4) 62.4 (10.3) 60.5 (8.3)
Sex
Female 48 (31.4%) 121 (36.7%) 17 (56.7%) 13 (50.0%)
Male 104 (68.0%) 209 (63.3%) 13 (43.4%) 13 (50.0%)
Missing 1 (0.6%) 0 (0%) 0 (0%) 0 (0%)

Procedure experience
< 16 cases 133 (86.9%) 231 (70.00%) 26 (86.7%) 10 (38.5%)
> 16 cases 4 (2.6%) 25 (7.6%) 4 (13.3%) 16 (61.5%)
Missing 16 (10.5%) 74 (22.4%) 0 (0%) 0 (0%)

Lens status
Aphakic 1 (0.6%) 0 (0.00%) 7 (23.3%) 3 (11.5%)
Phakic 102 (66.7%) 244 (73.9%) 13 (43.3%) 7 (26.9%)
Pseudophakic 50 (32.7%) 86 (26.1%) 10 (33.3%) 16 (61.5%)

Macula status
Detached 76 (49.7%) 112 (33.9%) 20 (66.7%) 5 (15.4%)
Attached 76 (49.7%) 218 (66.1%) 10 (33.3%) 22 (84.6%)
Missing 1 (0.6%) 0 (0%) 0 (0%) 0 (0%)

Size of RRD
< 4 clock hours 64 (41.8%) 194 (58.8%) 9 (30.0%) 23 (88.5%)
> 4 clock hours 87 (56.9%) 130 (39.4%) 21 (70.0%) 3 (11.5%)
Missing 2 (1.3%) 6 (1.8%) 0 (0%) 0 (0%)

Number of retinal breaks (SD) 1.34 (0.74) 1.35 (0.95) 1.4 (0.6) 1.1 (0.4)
Inferior break
Absent 142 (92.8%) 313 (94.9%) 25 (83.3%) 25 (96.1%)
Present 2 (1.3%) 3 (0.9%) 5 (16.7%) 1 (3.9%)
Missing 9 (5.9%) 14 (4.2%) 0 (0%) 0 (0%)

Vitreous hemorrhage
Absent 134 (87.6%) 293 (88.8%) 18 (60.0%) 26 (100%)
Present 19 (12.4%) 37 (11.2%) 12 (40.0%) 0 (0)

Lattice degeneration
Absent 117 (76.5%) 273 (82.7%) 21 (70.0%) 22 (84.6%)
Present 34 (22.2%) 57 (17.3%) 9 (30.0%) 4 (15.8%)
Missing 2 (1.3%) 0 (0.00%) 0 (0%) 0 (0%)

PR ¼ pneumatic retinopexy; RRD ¼ rhegmatogenous retinal detachment; SD ¼ standard deviation.
Comprised of 483 patients (training set), captured from Emami-Naeini et al database8 and the test set (n ¼ 56) comprised of patient records captured from
the UC Davis electronic medical records that underwent pneumatic retinopexy (PR) by procedure outcome at 3-month follow-up.

Figure 1. The flowchart illustrates the dataset preparation steps. Dataset 1 comprised of the previously collected database of 483 eyes.8 Dataset 1 prime
(n ¼ 1313) was generated by triplicating Dataset 1. The pneumatic retinopexy (PR) success-to-failure ratio was approximately 2-to-1 in Datasets 1 and 1
prime. Dataset 1 was further augmented to generate Datasets 2 (n ¼ 660) and 3 (n ¼ 1313) with a 1:1 PR outcome ratio. The test set was independently
collected at the University of California, Davis (UCD) and was not included in the training phase.

Nisanova et al � AutoML Can Predict Outcomes in Pneumatic Retinopexy
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AutoML does not allow for analysis of a data set < 1000;
therefore, we generated Dataset 1 prime by triplicating
Dataset 1 (n ¼ 1449).

To address missing data and the imbalance of successful
versus failed PR cases, the computer scientists (A.Y. and
I.S) performed data imputation and augmentation. First, we
used the nearest neighbors in each class to fill in the missing
data using Jaccard similarity. Between the most similar data
points (per Jaccard similarity), we employed Euclidian
Distance to find the most similar (closest) data points.29,30

We then replaced the mode of feature values of the
missing feature to fill the candidate with similar values.
Next, we performed data augmentation using the synthetic
minority over-sampling technique for categorical values to
generate a balanced dataset (n ¼ 660) with a 1:1 success-
to-failure ratio. The resulting dataset is referred to as
Dataset 2, and the dataset breakdown is summarized in
Table S2. We then followed the same methodology to
generate an additional dataset (n ¼ 1313) with a 1:1
outcome ratio to generate enough data points (> 1000) to
meet Google Cloud AutoML’s minimum data threshold
(as opposed to Dataset 1 prime relying on simple data
replicas). This dataset was referred to as Dataset 3
(Table S3). All models were tested on the same test set
(n ¼ 56) described previously.

MATLAB Models

Two medical professionals (A.N. and P.E.N.) consulted the
publicly available tutorials for the Classifications Learner
App provided by MathWorks, MATLAB.31 We trained and
tested all 4 training datasets using all models available in the
MATLAB Classification Learner app. All datasets were
evaluated using a crossvalidation scheme with 5 folds as
part of the training step. On training and validation steps, we
chose 2 models that yielded the best average discriminant
performance as measured by the AUROC and F2 scores on
validation for further evaluation in the study, namely the
linear support vector machine (SVM) and Ensemble Random
Undersampling Boosting (RUSBoosted) tree models. We
used a linear Kernel function with an automatic kernel scale
mode and a box constraint level of 1 for the SVM model.
The Ensemble RUSBoosted model offered several options
for hyperparameter tuning. The learning rate is a hyper-
parameter that determines how aggressively the model is
changed in each training step and in response to classifica-
tion errors. We set the learning rate to 0.1, a common setting
recommended by the MATLAB tutorial.31 We further fine
tuned the number of splits and learners to improve predic-
tive power per validation results. The number of splits
specifies the number of branch points of the learning tree and
controls the depth of learning, and the number of learners
determines the count of individual models that are combined
to form an ensemble.31 We achieved optimal validation
results with 11 splits and 16 learners.

Google Cloud AutoML Vertex AI Model

We constructed a binary classification model from tabular
data through Google Cloud AutoML Vertex AI following
the available instructions.32 This model was trained using
4

Dataset 1 prime and Dataset 3, which met the requirement
of at least 1000 data entries. We uploaded the datasets
into the Google Cloud console as tabular data and chose
the classification training method with a log loss
optimization objective, suggested by the Google Cloud
AutoML tutorial for keeping the prediction probabilities as
accurate as possible. From the available options, we chose
to randomly split the training sets into 80% for training
and 20% for validation and used our test set to evaluate
the model.

Custom Model Development

To compare and validate the automated models’ perfor-
mance, custom models were generated by computer scien-
tists. We evaluated multiple classification techniques,
including RandomForestClassifier, Gaussian Naive Bayes,
KNeighborsClassifier, Gaussian Processes Classifier, Ada-
BoostClassifier, and the support vector classification (SVC).
The support vector classification method with Radial Basis
Function kernel and tuned gamma yielded the best results.
In Python, we implemented a 2-step method using support
vector classification, which is a binary type of SVM
commonly used for classification tasks. We employed the
Radial Basis Function kernel with parameters such as
gamma (the kernel parameter) and C (the regularization
parameter). Additionally, we utilized random state for
reproducibility. By specifying a fixed random state, the
random process within each model runs from the same
starting point. This allows to replicate the results precisely
when training the model using the same dataset and
hyperparameters. Furthermore, we optimized hyper-
parameter tuning using BayesSearchCV and GridSearchCV,
2 techniques commonly employed in machine learning.
GridSearchCV conducts a brute-force search by exploring
all possible combinations of hyperparameter values.
BayesSearchCV utilizes a probabilistic model to predict the
model’s performance and intelligently selects promising
hyperparameter values based on past evaluations. Hereafter,
the model developed by ML experts is referred to as the
custom model. This model was trained with all 4 datasets
and tested using the test set.

Results

Patient Population

Our cohort included a total of 539 eyes of 539 patients
(Table 1), 183 of whom had a failed single-procedure PR
outcome (34.0%) among both the training and test sets. Out
of these 183 patients, 159 (86.9%) underwent the procedure
by VR fellows who had previously performed < 16 PR
procedures, 60 (32.8%) were pseudophakic, 96 (52.5%) had
a macula-involving RD, 108 (59.0%) had an RD size > 4
clock hours, 7 (3.8%) had an inferior retinal break, and 31
(16.9%) had a vitreous hemorrhage. The PR failure rate was
31.7% in the training set and 53.6% in the test set. The
overall single-procedure success rate at the 3-month mark
was 66.0%, with a 68.3% and 46.4% success rate in the
training and test sets, respectively.
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AutoML Model Performance

The performance of all models is summarized in Table 4
(validation) and 5 (test phase). Based on the performance
metrics of AutoML models, the Ensemble model
(MATLAB) demonstrated the best test performance when
trained using Dataset 2 with the test accuracy of 82.1%
(AUROC: 0.89; F2 score: 0.74; and PPV: 0.90). The sensi-
tivity and specificity were 0.86 and 0.77, respectively. In
other words, the model correctly predicted 86% of patients
with a failed outcome (true-positive rate) while misclassify-
ing the remaining 14% to have a successful outcome (false-
negative rate). Comparatively, the model correctly predicted
a successful outcome in 77% of the patients (true negative
rate) and miscategorized the remaining 23% of cases as
failure (false-positive rate). Performance metrics on test phase
were lower when the model was trained on Dataset 1 (F2
score: 0.72; AUROC: 0.91), 1 prime (F2 score: 0.74,
AUROC: 0.89), or 3 (F2 score: 0.72; AUROC: 0.85).

The linear SVM model had a low accuracy (53.6%) when
trained using either Dataset 1 (AUROC ¼ 0.87) or Dataset 1
prime (AUROC ¼ 0.62). The use of preprocessed datasets
improved the discriminative model’s performance, with an
improved accuracy of 80.4% (AUROC ¼ 0.87) when
trained with Datasets 2 and 3. Additionally, a substantial
improvement in sensitivity and PPV was observed, with
sensitivity increasing from 0.17 (SVM, Datasets 1 and 1
prime) to 0.63 (SVM, Datasets 2 and 3) and PPV increasing
from 0.83 (SVM, Datasets 1 and 1 prime) to 1.00 (SVM,
Datasets 2 and 3).

The Google Cloud AutoML model showed similar test
accuracy when trained using Dataset 1 prime (57.1%) and
Dataset 3 (60.7%) and identical specificity (0.81). Training
with a preprocessed and augmented dataset led to im-
provements in AUROC from 0.62 in Dataset 1 prime to 0.70
in Dataset 3, sensitivity (from 0.37 to 0.43), PPV (from 0.69
to 0.72), and F2 score (from 0.40 to 0.47).

Custom Model Performance

Training the custom model with Datasets 1 and 1 prime
yielded identical results on test accuracy (83.9%), AUROC
(0.85), F2 scores (0.79), as well as PPV (0.75), sensitivity
(0.96), and specificity (0.96) (Table 5). Similarly, data
preprocessing and augmentation improved the model
performance. When trained with Dataset 2, the model’s
accuracy increased to 85.7%, AUROC increased to 0.86,
PPV increased to 0.78, and the resulting F2 score
increased to 0.92. The custom model exhibited the best
performance upon training with Dataset 3, resulting in the
test accuracy of 87.5%, with an AUROC of 0.88, PPV of
0.81, sensitivity and specificity of 0.96, and F2 score of
0.93.

Discussion

Developing and implementing models to reliably predict the
success of various procedures greatly enhances our ability to
identify ideal candidates for delivering personalized care
and optimizing the success rate of the procedures while
reducing costs33 and complications.34 In the present study,
we utilized electronic medical records data to generate ML
algorithms for predicting the outcomes of a commonly
performed retinal procedure. Moreover, we successfully
used the available AutoML platforms, implemented by
health care professionals without previous coding
experience. Although these platforms have previously
been used for the classification of images and disease
outcomes24e26,35 their use in electronic medical records
data and ophthalmology has been limited. Our results
indicate that AutoML is a powerful tool that can be
reliably used by medical professionals with no coding
background, especially when some rather basic
prerequisites related to data balancing, imputation,
augmentation, and proper use of evaluation metrics are
satisfied.

In this study, we used a multicenter database that had
been previously collected from multiple practitioners to train
and validate our models. It is important to note that this
database was inherently different from our test data, which
was independently collected at UC Davis. To ensure
external validation, no part of the test set was included in the
training phase.36 Although this approach introduces
heterogeneity in the analysis, evaluating the model with
diverse data help mitigate the risk of overfitting, addresses
potential differences among data collectors, and enhances
the generalizability of our ML schemes to a broader
patient population.37e41

As evident from the results on the test phase (Table 5),
our models performed well in classifying new test cases
despite the heterogeneity between the training and test
datasets. The improved performance further confirms
higher quality, generalizability, and real-world applica-
bility of our models. It is worth noting that when homoge-
nous test and training data is used to develop models, the
applicability of these models in real-world scenarios can be
limited.42 Therefore, our approach of using diverse datasets
contributes to the robustness and practicality of our ML
models.

The training dataset was imbalanced, with a success rate
of 68.3%. Additionally, several variables, including the
vitreoretinal fellow’s procedure experience were missing.
Imbalanced datasets can introduce bias, limit generaliz-
ability for minority classes,43 and compromise the
replicability and validity of the findings.44 To address
these issues, we employed imputation and augmentation
techniques.43,45 Computer scientists chose a two-step
method that incorporated a high similarity threshold based
on 2 widely-used similarity measures.29,30 It is important to
note that only the training data underwent augmentation and
imputation preprocessing, whereas the test data maintained a
higher quality with no missing values. This explains the
reason cross-validation performance was lower compared
to the test results. In such instances, it is beneficial to
employ a crossvalidation scheme instead of a fixed training-
validation split. The latter is susceptible to bias resulting
from the specific partition of the data. In contrast,
crossvalidation randomly divides the data into multiple
train-validation splits and averages the performance across
all of them. This approach helps mitigate the issue of
5



Table 4. Performance Metrics of the Automated Machine Learning Compared to Custom Models on the Validation Phase

ML Platform Model Type

Dataset Characteristics Discriminative Model Test Performance

Dataset # n
Outcome
Ratio F2 Score AUROC Accuracy (%) PPV Sensitivity Specificity

MATLAB
Classification
Learner App

Linear Superior
Vector Machine
(SVM)

Dataset 1 483 2:1 0.01 0.53 68.3 1.00 0.01 1.00
Dataset 1 prime 1449 2:1 0.02 0.60 68.5 0.67 0.01 1.00
Dataset 2 660 1:1 0.60 0.66 61.4 0.62 0.59 0.63
Dataset 3 1313 1:1 0.58 0.64 60.9 0.61 0.58 0.64

Ensemble Random
Undersampling
Boosting
(RUSBoosted)

Dataset 1 483 2:1 0.52 0.56 52.6 0.35 0.59 0.50
Dataset 1 prime 1449 2:1 0.60 0.67 60.3 0.42 0.67 0.57
Dataset 2 660 1:1 0.72 0.65 62.4 0.60 0.76 0.48
Dataset 3 1313 1:1 0.62 0.66 61.2 0.61 0.62 0.61

Python Support Vector
Classification
(SVC)

Dataset 1 483 2:1 0.71 0.61 59.6 0.76 0.57 0.43
Dataset 1 prime 1449 2:1 0.71 0.61 59.6 0.76 0.57 0.43
Dataset 2 660 1:1 0.61 0.62 61.5 0.64 0.54 0.60
Dataset 3 1313 1:1 0.66 0.66 66.3 0.66 0.68 0.66

AUROC ¼ area under the receiver operating characteristic curve; ML ¼ machine learning; PPV ¼ positive predictive value.
This table does not include validation results for the Google AutoML models as the software generates an output for performance metrics for the test phase
only.
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overfitting and provides a more accurate assessment of the
model’s true performance on unseen data.46

The multi-institute dataset imbalance used in the training
phase prompted us to adopt 2 key metrics, namely the
AUROC and F2 scores on validation, for model selection
rather than relying solely on validation accuracy. According
to Ling et al,47 AUROC serves as a superior measure for
comparing classification models. Accuracy, on the other
hand, is influenced by the distribution of samples in each
class, making it unsuitable for unbalanced data and could
potentially lead to inappropriate model selection. Another
metric for comparing classification models is the F
score.48 We specifically focused on the F2 score, because
it places greater emphasis on sensitivity rather than PPV,
prioritizing the reduction of false-negatives over false-pos-
itives. This prioritization aligns with our research objectives
because correctly predicting an unsuccessful procedure
Table 5. Performance Metrics of the Automated Machine L

ML Platform Model Type

Dataset Characteristics

Dataset # n
Ou
R

MATLAB
Classification
Learner App

Linear Superior
Vector Machine
(SVM)

Dataset 1 483 2
Dataset 1 prime 1449 2
Dataset 2 660 1
Dataset 3 1313 1

Ensemble Random
Undersampling
Boosting
(RUSBoosted)

Dataset 1 483 2
Dataset 1 prime 1449 2
Dataset 2 660 1
Dataset 3 1313 1

Google Cloud
AutoML Vertex AI

Log Loss Optimization Dataset 1 prime 1449 2
Dataset 3 1313 1

Python Support Vector
Classification
(SVC)

Dataset 1 483 2
Dataset 1 prime 1449 2
Dataset 2 660 1
Dataset 3 1313 1

AUROC ¼ area under the receiver operating characteristic curve; ML ¼ mach
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outcome holds more significance in medical applications
than predicting successful ones.

MATLAB Models

The performance of the SVM model on the test data
exhibited variability based on the dataset it was trained on.
Specifically, we observed that with the unbalanced Dataset
1, the SVM model had a relatively high AUROC while
exhibiting low test accuracy. In this scenario, the high
AUROC and near-perfect specificity resulted from the
model predominantly classifying cases as successful. It
misclassified most of the failed PR cases, leading to a true
positive rate of only 17%. However, data preprocessing led
to a significant improvement in the test accuracy, compa-
rable to the Ensemble models, and superior specificity and
PPV. In a study conducted by Antaki et al25 using a SVM
earning Compared to Custom Models on the Test Phase

Discriminative Model Test Performance

tcome
atio F2 Score AUROC Accuracy (%) PPV Sensitivity Specificity

:1 0.20 0.81 53.6 0.83 0.17 0.96
:1 0.20 0.62 53.6 0.83 0.17 0.96
:1 0.68 0.87 80.4 1.00 0.63 1.00
:1 0.68 0.87 80.4 1.00 0.63 1.00
:1 0.71 0.91 80.4 0.95 0.67 0.96
:1 0.74 0.89 82.1 0.95 0.70 0.96
:1 0.85 0.90 82.1 0.81 0.86 0.77
:1 0.72 0.85 75.0 0.81 0.70 0.81
:1 0.40 0.62 57.1 0.69 0.37 0.81
:1 0.47 0.70 60.7 0.72 0.43 0.81
:1 0.79 0.85 83.9 0.75 0.96 0.96
:1 0.79 0.85 83.9 0.75 0.96 0.96
:1 0.92 0.86 85.7 0.78 0.96 0.95
:1 0.93 0.88 87.5 0.81 0.96 0.96

ine learning; PPV ¼ positive predictive value.



Nisanova et al � AutoML Can Predict Outcomes in Pneumatic Retinopexy
model to predict the development of postoperative
proliferative vitreoretinopathy, a similar distribution of
specificity versus sensitivity and AUROC was observed
following data preprocessing.

The Ensemble RUSboosted tree model exhibited com-
parable performance to the custom model when trained on
Datasets 1 and 2. However, when the larger augmented
dataset (Dataset 3) was used, it did not enhance the model’s
performance. In fact, the test accuracy and sensitivity
decreased. This outcome was somewhat expected since 63%
of the Dataset 3 consisted of synthetic data. Previous
research by Seiffert et al49 showed the RUSBoosted tree is
highly sensitive to data distribution. Although
augmentation and imputation can potentially address
issues such as data scarcity and class imbalance and
improve training performance, relying too heavily on data
synthesis and oversampling can introduce misleading
patterns and result in overfitting.50 The decrease in the
performance may also be attributed to the random
sampling nature of RUSBoosted, especially when working
with a dataset that has been tripled without proper random
shuffling. This is in contrast to the SMOTEBoost method
employed here for data augmentation. Certain
classification methods demonstrate greater robustness and
can benefit from larger training samples, as observed in
the performance improvement of our custom model
trained on Dataset 3.

Overall, the Ensemble RUSBoosted model exhibited
similar test performance across all 4 datasets (Table 5).This can
be attributed to the model’s inherent adoption of random
undersampling, where the number of samples from the least
represented class in the training data is used as the basic unit
for sampling. Consequently, this approach demonstrates
lower sensitivity to data imbalance.49 On the other hand, the
SVM model does not share this characteristic, as evidenced
by its low performance when trained on the imbalanced
datasets. Additionally, the Ensemble RUSboosted tree
appears to be more adept at balancing sensitivity and
specificity. Conversely, when properly trained, the SVM
model demonstrates nearly perfect specificity, making it a
reliable model51 to identify PR candidates who are most
likely to experience successful outcomes.7
Google Cloud AutoML Models

We evaluated the Google AutoML model using 2 datasets.
Dataset 1 prime which is a tripled version of Dataset 1. In
comparison to the MATLAB models, Google AutoML was
found to be inferior to the Ensemble tree model but com-
parable to the SVM during the test phase when trained with
raw data. Training the Google AutoML model with Dataset
3 led to a slight improvement in the test accuracy, AUROC,
and sensitivity. However, the overall performance metrics
remained lower than those achieved by the MATLAB or
custom models.

Google AutoML’s classification of tabular data has not
been previously applied in ophthalmology. Although pre-
vious studies have shown high performance in the
classification of retinal pathology26 and cataract surgery
phases24 using platforms like Google AutoML Vision and
Video Classification, our study showed that its application
for tabular data may not be suitable and result in subpar
performance. The model evidently lacks automated
augmentation, imputation capabilities, and effective
sampling strategies to handle imbalance data. Moreover,
the absence of hyperparameter tuning options significantly
impacts model performance. These limitations restrict
medical professionals from optimizing the models, which
may account for the stark differences in performance
compared to the custom or MATLAB models.
Additionally, the software does not provide performance
metrics for the validation phase, rendering it impossible to
select the optimal model from the outset. Consequently,
naive applications of this software could lead to erroneous
interpretation of results and should be avoided.

Custom Model

The custom model outperformed both the MATLAB and
Google AutoML models. The results clearly show that
training the model with preprocessed data resulted in
improved performance during the test phase, achieving the
highest overall AUROC and F2 scores. This underscores the
importance of data preprocessing, particularly for datasets
with missing values and imbalanced classes. The perfor-
mance improvement attributed to data preprocessing further
confirms the reliability and effectiveness of the custom
model, indicating that it does not suffer from overfitting.
Moreover, the superior performance of the custom model
can be attributed, in part, to its flexibility and access to a
broader range of additional underlying functionality.

User Experience: MATLAB versus Google Cloud
AutoML

Both platforms offer user-friendly interfaces, clear in-
structions, and automatically generate model statistics.
However, the Google Cloud platform appears to be easier to
use, particularly when it comes to generating predictions for
future patients or cases. Once the model is trained and
tested, users can easily create an interactive model on the
Google Cloud platform, allowing them to predict procedure
outcomes for individual patients by inputting the necessary
clinical and demographic features. In contrast, generating
predictions in MATLAB would require clinicians to create a
separate test dataset file and execute the algorithm in the
Classification Learner application. Furthermore, the Google
Cloud platform allows for the potential of making single-
case prediction models publicly available on the cloud,
enabling other physicians to conveniently assess patients’
procedure outcomes in real time. In terms of associated
costs, MATLAB seems to be the more cost-efficient option
with a 1-time finite price for software license. In contrast,
Google AutoML charges per hour of model training,
potentially requiring more extensive funds depending on the
complexity of the models. MATLAB also provides a built-
in toolbox that requires minimal programming knowledge to
7
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fine-tune models and better handle unbalanced datasets,
which is not available in Google AutoML. Additionally, the
MATLAB Classification Learner App does not have a
minimum data threshold, allowing models to be trained with
datasets of virtually any size, whereas Google Cloud
AutoML does not support smaller datasets, requiring a
minimum of 1000 data points.

Strengths and Limitations

In this study, we primarily focused on evaluating MATLAB
and Google Cloud AutoML models; however, it is important
to note that there are other AutoML tools available, such as
Weka, RapidMiner, and Orange, which can also benefit non-
ML experts. While our test dataset had high quality with no
missing values, our training set suffered from a high rate of
missing values and data imbalance, which prompted us to
adopt imputation and augmentation techniques to address
these issues. Although model performance trained on imbal-
anced Dataset 1 was comparable in some metrics to models
trained on preprocessedDatasets 2 and 3 (Table 5), addition of
synthetic data could have introduced bias and affected model
performance. Limiting missing values in the training set and
obtaining a larger, balanced dataset can potentially enhance
the performance of the algorithms and limit the risk of
introducing additional bias.
8

Our study has several strengths that contribute to its
scientific value. To our knowledge, this is the first study to
evaluate ML algorithms for predicting PR outcomes. We
benefited from a relatively large sample size, encompass-
ing a diverse range of patients from multiple institutions
across the United States. Furthermore, to assess the reli-
ability of AutoML tools, we conducted a comparative
analysis between models developed by researchers without
relevant experience using only publicly available tutorials
and models designed by ML experts. We also evaluated
various models using MATLAB and Google Cloud
AutoML tools with both raw and preprocessed datasets,
providing insights into best practices for clinicians using
these tools independently or in collaboration with com-
puter science experts.

In conclusion, our study demonstrates the feasibility of
using AutoML models by clinicians for predicting proced-
ure outcomes based on patient demographic and clinical
characteristics. Our findings underscore the importance of
simple data preprocessing techniques, proper data segmen-
tation, and cross-validation techniques when using these
tools. In more complex cases, consulting with ML experts
may be beneficial in identifying appropriate preprocessing
steps, model selection, and hyperparameter tuning
strategies.
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