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Background & Aims: Acetaminophen (APAP) overdose is a major cause of acute liver failure in the Western world, but its
molecular mechanisms are not fully understood. Methyltransferase-like 3 (METTL3) is a core N6-methyl-adenosine (m6A)
RNA methyltransferase that has been shown to regulate many physiological and pathological processes. This study aimed to
investigate the role of METTL3 in APAP-induced liver injury in mice.
Methods: Hepatocyte-specific Mettl3 knockout (Mettl3-HKO) mice and adenovirus-mediated gene overexpression or
knockdown were used. We assayed APAP-induced liver injury by measuring serum alanine aminotransferase/
aspartate aminotransferase activity, necrotic area, cell death, reactive oxygen species levels and activation of signalling
pathways. We also performed mechanistic studies using a variety of assays and molecular techniques.
Results: Hepatic METTL3 is downregulated in APAP-induced liver injury, and hepatocyte-specific deletion of Mettl3 accel-
erates APAP-induced liver injury, leading to increased mortality as a result of the dramatic activation of the mitogen-activated
protein kinase kinase 4 (MKK4) / c-Jun NH2-terminal kinase (JNK) signalling pathway. Inhibition of JNK by SP600125 largely
blocks APAP-induced liver injury in Mettl3-HKO mice. Hepatic deletion of Mettl3 activates the MKK4/JNK signalling pathway
by increasing the protein stability of MKK4 and JNK1/2 as a result of decreased proteasome activity. Restoration of proteasome
activity by overexpression of proteasome 20S subunit beta 4 (PSMB4) or proteasome 20S subunit beta 6 (PSMB6) leads to the
downregulation of MKK4 and JNK in Mettl3-HKO hepatocytes. Mechanistically, METTL3 interacts with RNA polymerase II and
active histone modifications such as H3K9ac, H3K27ac, and H3K36me3 to maintain the expression of proteasome-related
genes.
Conclusions: Our study demonstrated that downregulation of METTL3 promotes APAP-induced liver injury by decreasing
proteasome activity and thereby enhancing activity of the MKK4/JNK signalling pathway.
Impact and Implications: Acetaminophen (APAP) overdose is a key cause of acute liver failure in the Western world, but its
molecular mechanisms are not fully understood. We demonstrated in this study that methyltransferase-like 3 (METTL3), a
core m6A RNA methyltransferase, is downregulated in APAP-induced liver injury, which exacerbates APAP-induced liver
injury through enhancing the MKK4/JNK signalling pathway with involvement of the decreased proteasome activity.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Acetaminophen (APAP) is one of the most commonly used drugs
worldwide for the treatment of minor aches, pains, and fever.
However, APAP overdose is also the predominant cause of acute
liver failure in the Western world.1–3 The hepatotoxicity of APAP
overdose results from its reactive intermediate, N-acetyl-p-ben-
zoquinone imine (NAPQI), produced by cytochrome P-450 2E1
(CYP2E1).4,5 NAPQI depletes cellular glutathione (GSH) and then
covalently binds to intracellular and mitochondrial proteins to
form APAP adducts,4 leading to mitochondrial dysfunction,
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oxidative stress, phosphorylation, and mitochondrial trans-
location of Jun NH2-terminal kinase (JNK)6 and necrosis of he-
patocytes.7 JNK is critical for APAP-induced liver injury and cell
death,8,9 and inhibition of JNK by either a pharmacological in-
hibitor or gene knockdown protects against APAP-induced liver
injury.6 However, the activation of JNK during APAP-induced
liver injury also requires the activation of its upstream kinases
including apoptosis signal-regulating kinase 1 (ASK1),10 glycogen
synthase kinase-3 beta (GSK-3b),11 mixed-lineage kinase 3
(MLK3),12 receptor interacting protein kinase 1 (RIP1),13 RIP3,14

and mitogen-activated protein kinase kinase 4 (MKK4).15 Defi-
ciency of each of these kinases protects against APAP-induced
liver injury.10–15 In addition, several phosphatases including
mitogen-activated protein kinase phosphatase 1 (MKP1) and
protein tyrosine phosphatase 1B that counteract JNK activation
have been reported to protect against APAP-induced liver
injury.16,17 Despite numerous studies in the past four decades,
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the detailed molecular mechanisms of APAP-induced liver injury
and JNK activation remain to be elucidated.

N6-methyl-adenosine (m6A) has been shown to be a revers-
ible and dynamic mRNA modification, which is catalysed by
methyltransferase-like 3 (METTL3), METTL14, and Wilms’ tumor
1-associating protein (WTAP); recognised by YTH domain-con-
taining protein 1-2 (YTHDC1-2) in the nucleus and YTH N6-
methyladenosine RNA binding protein 1-3 (YTHDF1-3) in the
cytosol; and removed by fat mass and obesity-associated (FTO)
and AlkB homolog 5, RNA demethylase (ALKBH5).18 METTL3 and
m6A-related proteins regulate many physiological and patho-
logical processes such as circadian clock,19 DNA damage
response,20 neurogenesis,21 spermatogenesis,22,23 stem cell dif-
ferentiation,24,25 cancer,26 energy metabolism,27,28 non-alcoholic
steatohepatitis,29,30 and diabetes.31–35 However, whether
METTL3 regulates APAP-induced liver injury is largely unknown.

Here we report that hepatic METTL3 is downregulated in
APAP-induced liver injury, which promotes APAP-induced liver
injury. Hepatocyte-specific deletion of Mettl3 exacerbates APAP-
induced liver injury, leading to increased mortality, which is
likely as a result of decreased proteasome activity and increased
protein stability of MKK4 and JNK, leading to enhanced JNK
activation. Inhibition of JNK by SP600125 completely blocks
APAP-induced liver injury in hepatocyte-specificMettl3 knockout
(Mettl3-HKO) mice. Therefore, downregulation of Mettl3 pro-
motes APAP-induced liver injury through enhancing the MKK4/
JNK signalling pathway with involvement of decreased protea-
some activity.
Materials and methods
Animal experiments
Animal experiments were carried out in strict accordance with
the Guide for the Care and Use of Laboratory Animals. Animal
experiment protocols were approved by the Institutional Animal
Care and Use Committee of Harbin Institute of Technology (HIT/
IACUC). The approval number was IACUC-2018004. Mice were
housed on a 12-h light/12-h dark cycle and fed a normal chow
diet with free access to water. For APAP-induced liver injury,
mice were fasted for 12 h and then injected with APAP (500, 600,
or 750 mg/kg body weight). Mettl3flox/flox mice, in which exon 2
and exon 3 of the Mettl3 gene were flanked by two loxp sites,
were generated using the CRISPR-Cas9 technique as previously
reported.27 Blood samples were collected from orbital sinus. The
serum alanine aminotransferase (ALT) and aspartate transferase
(AST) activities were measured using an ALT and AST reagent set,
respectively.29,36 Proteasome activity in liver samples was
measured using a Proteasome Activity Assay Kit (ab107921,
Abcam) following the instructions.

Primary hepatocyte culture, adenoviral infection, and PI
staining
Primary hepatocytes were isolated from C57BL/6 wild-type
(WT), Mettl3flox/flox, and Mettl3-HKO mice by liver perfusion
with type II collagenase (Worthington Biochem, Lakewood, NJ,
USA) and cultured at 37 �C in RPMI 1640 medium supplemented
with 3% FBS. They were infected with Ad-bGal, Ad-FLAG-PSMB4,
or Ad-FLAG-PSMB6 adenoviruses overnight. Primary hepatocytes
from C57BL/6 WT mice were infected with Ad-bGal or Ad-FLAG-
METTL3 adenoviruses overnight. Hepa1-6 cells were infected
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with Ad-Scramble, Ad-shMettl3-1, and Ad-shMettl3-2 adenovirus
for 24 h and then infected with Ad-bGal and Ad-FLAG-METTL3
adenovirus overnight. The target sequences are scramble:
UUCUCCGAACGUGUCACGUTT, shMettl3-1: GCUACCGUAUGGGA-
CAUUA, and shMettl3-2: CGGCUAAGAAGUCAAGGAA. Cells were
treated with or without APAP for 4 h. Propidium iodide (PI)
staining was used to measure cell death. Cells were incubated
with PI (3 mM) at 37 �C for 10 min.

Real-time quantitative PCR
Real-time quantitative PCR (RT-qPCR) was performed as shown
previously.37 Briefly, total RNA was extracted using the TriPure
Isolation Reagent (Roche, Mannheim, Germany), and first-strand
cDNA was synthesised using random primers and M-MLV
Reverse Transcriptase (Promega, Madison, WI, USA). RT-qPCR
was performed using a LightCycler 480 real-time PCR system
(Roche). The expression of individual genes was normalised to
the expression of 36B4. Primers for RT-qPCR are listed in
Table S1.

Translation efficiency assay
In total, 200-mg liver samples were isolated from Mettl3flox/flox and
Mettl3-HKO mice, quickly frozen, and pestled into powder in liquid
nitrogen.Then,600llpolysomelysisbuffer (20mMTris-HCl [pH7.4],
150 mM NaCl, 5 mM MgCl2, 1% Triton-100, 1 × protease inhibitor
cocktail,1mMdithiothreitol (DTT),100lg/mlcycloheximide (CHX),1
U/ll SUPERase In RNase Inhibitor [AM2694, Invitrogen]) was added.
The sample was transferred into an Eppendorf (EP) Tube
(0030108051, Eppendorf) and rotated for 10min at 4 �C. The samples
were further triturated using a 26-gauge needle 10 times and then
centrifuged at 13,000 rpm for 10 min at 4 �C. The supernatant was
transferred into new 1.5-ml EP Tubes, and the absorbance at 260 nm
was measured using NanoDrop 2000 (Thermo Fisher Scientific,
Wilmington,DE,USA).Moreover, 500ll lysate (25–30opticaldensity
(OD) at 260 nm)was carefully transferred into a sucrose gradient (15
to 55% sucrose gradient was made by The Gradient MasterTM [Bio-
comp Instruments, Fredericton, New Brunswick, Canada]) and
ultracentrifuged at 38,000 rpm for 3 h at 4 �C. Ribosome fractions
were analysed and collected using Piston Gradient FractionatorTM

(Biocomp Instruments, Fredericton, New Brunswick, Canada). Total
RNA was isolated from each fraction, and reverse transcription-
polymerase chain reaction (RT-PCR) was performed.

Chromatin immunoprecipitation assays
The livers were fixed by liver perfusion with 1% para-
formaldehyde. The nuclei were isolated from livers and sub-
jected to sonication (M220 Focused-ultrasonicator, Covaris,
Massachusetts, USA) to break genomic DNA into 500- to 1,000-
bp fragments using a chromatin shearing kit (520127 truChIP
Chromatin Shearing Kit, Covaris). The samples were immuno-
precipitated with anti-RNA polymerase II (Rpb1 CTD, 2629, Cell
Signaling Technology). DNA was extracted and used for quanti-
tative PCR analysis. Primers for quantitative PCR are listed in
Table S1.

Immunoprecipitation and immunoblotting
Cells or tissues were homogenised in an L-RIPA lysis buffer
(50 mM Tris, pH 7.5, 1% Nonidet P-40, 150 mM NaCl, 2 mM EGTA,
1 mM Na3VO4, 100 mM NaF, 10 mM Na4P2O7, 1 mM phenyl-
methylsulfonyl fluoride). Proteins were separated by SDS-PAGE,
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immunoblotted with the indicated antibodies, and visualised
using enhanced chemiluminescence. Antibodies were as follows:
FLAG (F1804, Sigma), JNK1 (A0288, Abclonal), JNK2 (A1251,
Abclonal), JNK (9252, Cell Signaling Technology), p-JNK (9251,
Cell Signaling Technology), p-MKK4 (9156, Cell Signaling Tech-
nology), MKK4 (9152, Cell Signaling Technology), METTL3
(96391, Cell Signaling Technology), PSMB4 (11029-1-AP, Pro-
teintech), PSMB6 (11684-2-AP, Proteintech), CYP2E1 (19937-1-
AP, Proteintech), Tubulin (sc5286, Santa Cruz), AIF (17984-1-AP,
Proteintech), EndoG (22148-1-AP, Proteintech), and cytochrome
c (Cytc) (ab13575, Abcam).

RNA sequencing
RNA sequencing (RNA-seq) was performed as described previ-
ously.27,30,37,38 RNA-seq data that support the findings of this
study have been deposited in Gene Expression Omnibus (GEO)
under accession code GSE214371.

Liver ROS assays
Liver reactive oxygen species (ROS) assays have been described
previously.36 In brief, liver samples were homogenised in a L-
RIPA buffer. Liver extracts were incubated with dichloro-
fluorescein diacetate fluorescent (5 lM) probes (D6883, Sigma-
Aldrich) at 37 �C for 1 h. Fluorescence was measured and nor-
malised to tissue weight.

Statistical analysis
Data are presented as means ± SEM. Differences between two
groups were analysed using Student’s t tests. Differences be-
tween three groups were analysed using one-factor ANOVA and
the least significance difference t test. In all analyses, p <0.05 was
considered statistically significant (*p <0.05; **p <0.01).

Results
METTL3 is downregulated in APAP-induced liver injury mice
To determine whether METTL3 is associated with APAP-induced
liver injury, C57BL/6 WT mice fasted overnight were treated with
500 mg/kg of APAP by i.p. injection, and the expression of
METTL3 was measured by immunoblotting. METTL3 protein
levels were markedly decreased in the livers of APAP-treated WT
mice (Fig. 1A). METTL3 protein levels were also reduced in mouse
primary hepatocytes by APAP in a dose-dependent manner
(Fig. 1B). These data suggest that METTL3 is associated with
APAP-induced liver injury, and downregulation of METTL3 may
promote APAP-induced liver injury.

Hepatic deletion of Mettl3 exacerbates APAP-induced liver
injury
We then investigated the functional role of METTL3 in APAP-
induced liver injury. We generated Mettl3-HKO mice by
crossing Mettl3flox/flox with Alb-Cre mice as shown previously.29

Mettl3flox/flox and Mettl3-HKO mice were administered an equal
amount of APAP to induce liver injury. Hepatocyte-specific
deletion of Mettl3 exacerbated APAP-induced liver injury, as
revealed by a marked increase in serum ALT/AST levels and
hepatocyte loss in response to 500 mg/kg APAP treatment for
24 h (Fig. 1C and D). We noticed that Mettl3-HKO mice showed
slight liver injury (higher basal serum ALT levels) before APAP
treatment, which may promote APAP-induced liver injury. To
determine whether 50% deletion of Mettl3 in hepatocytes also
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exacerbates APAP-induced liver injury, heterozygous mice
without liver injury and their control mice were injected with
the same amount of APAP (600 mg/kg). As shown in Fig. 1E,
50% deletion of Mettl3 in hepatocytes also exacerbates APAP-
induced liver injury, as revealed by higher serum ALT levels
after APAP treatment. Necrotic areas in the liver sections of
Mettl3-HKO mice were significantly increased at 6 and 24 h
after APAP injection (Fig. 1F and G). Furthermore, hepatic
deletion of Mettl3 also accelerated the acute liver
injury induced by the high dose of APAP (750 mg/kg) and
caused more mice to die (Fig. 1H). These results suggest a
critical role for METTL3 in APAP-induced liver injury and he-
patocyte death.

Hepatic deletion of Mettl3 increases MKK4/JNK signalling
pathway
Next, we asked whether deletion of Mettl3 changed the APAP
metabolism. The hepatotoxicity of APAP overdose results from
its reactive intermediate (NAPQI), which is generated by
CYP2E1.4,5 As shown in Fig. 2A, we observed similar levels of
CYP2E1 expression in the livers of Mettl3flox/flox and Mettl3-HKO
mice treated with or without APAP. NAPQI depletes cellular
GSH. We then measured the hepatic GSH levels before and
after APAP treatment. As shown in Fig. 2B, the hepatic GSH
levels were higher in the livers of Mettl3-HKO mice before
APAP treatment, which is likely owing to changed expression of
GSH metabolism-related genes (Fig. 2C). RNA-seq analysis
showed that GSH formation-related genes were upregulated
and GSH degradation-related genes were downregulated in
Mettl3-HKO livers (Fig. 2C). However, APAP treatment depleted
the cellular GSH to similar levels at 3 and 6 h after APAP
treatment in Mettl3flox/flox and Mettl3-HKO mice (Fig. 2B). After
APAP treatment for 24 h, Mettl3-HKO mice showed higher
levels of cellular GSH (Fig. 2B), indicating that deletion of
Mettl3 increases cellular GSH levels, which is less likely to
contribute to more severe APAP-induced liver injury in Mettl3-
HKO mice.

Next, we asked whether mitochondrial dysfunction and
oxidative stress contributed to more severe APAP-liver injury in
Mettl3-HKO mice. Mitochondrial injury (release of mitochondrial
proteins) and ROS levels were measured. As shown in Fig. 2D, the
release of mitochondrial proteins such as AIF, EndoG, and Cytc
did not change in APAP-treated Mettl3-HKO livers compared
with that in APAP-treated Mettl3flox/flox livers. We also did not
observe any difference in liver ROS levels between APAP-treated
Mettl3-HKO and Mettl3flox/flox mice (Fig. 2E). These data indicate
that mitochondrial dysfunction and oxidative stress are less
likely to contribute to more severe APAP-induced liver injury in
Mettl3-HKO mice.

The MKK4/JNK signalling pathway plays a key role in APAP-
induced liver injury.15 To determine whether METTL3 defi-
ciency influences JNK signalling, we used immunoblotting to
determine the activation of MKK4 and JNK at 6 h after APAP
treatment in the livers from Mettl3flox/flox and Mettl3-HKO mice.
As shown in Fig. 2F, p-MKK4 and p-JNK protein levels were
significantly increased in the livers of Mettl3-HKO mice under
both basal and APAP-treated conditions, and the MKK4 and JNK
protein levels were also elevated, which indicates that activation
of the MKK4 and JNK signalling pathway leads to enhanced
APAP-induced liver injury in Mettl3-HKO mice. We also checked
p-p38, p38, p-extracellular-signal-regulated kinase (ERK), and
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Fig. 1. Hepatic deletion of Mettl3 exacerbates APAP-induced liver injury. (A) Eight-week-old C57BL/6 WT mice fasted overnight were treated with 500 mg/kg
of APAP by i.p. injection, and METTL3 protein levels were measured by immunoblotting (n = 3 independent mice for each group, p = 0.004, Student’s t tests). (B)
Primary hepatocytes were isolated from C57BL/6 WT mice and then treated with APAP at different doses (0, 5, and 20 mM) for another 4 h. METTL3 protein levels
were measured by immunoblotting (n = 3 independent cell samples for each group; 5 vs. 0 mM: p = 0.0041; 20 vs. 0 mM: p = 0.0003; Student’s t tests). (C and D)
Mettl3flox/flox andMettl3-HKOmice were administered an equal amount of APAP (500 mg/kg). Mice were sacrificed at different time points (0, 6, 12, and 24 h) after
APAP injection. Serum ALT and AST levels were measured (n = 7–8 mice for each group; ALT: 0 h, p <0.0001; 6 h, p <0.0001; 12 h, p <0.0001; 24 h, p = 0.0043. AST:
0 h, p = 0.0633; 6 h, p = 0.0093; 12 h, p = 0.0128; 24 h, p = 0.0003; Student’s t tests). (E) Mettl3 heterozygous (Mettl3flox/+ Alb-Cre+/-) mice and their control mice
administered an equal amount of APAP (600 mg/kg). Serum ALT levels were measured at different time points (0, 6, 12, and 24 h) after APAP injection (n = 5 mice
for each group; 0 h, p = 0.6191; 6 h, p = 0.0441; 12 h, p = 0.0452; 24 h, p = 0.0443; Student’s t tests). (F and G) Necrotic areas were measured by H&E staining and
quantified by ImageJ in Mettl3flox/flox and Mettl3-HKO livers (n = 5 mice for each group; 6 h, p = 0.0086; 24 h, p = 0.0006; Student’s t tests). (H) Mettl3flox/flox and
Mettl3-HKOmice were administered an equal amount of APAP (750 mg/kg). Mouse survival curve was measured (n = 11 mice for each group, p = 0.0089; Student’s
t tests). Differences between two groups were analysed using Student’s t tests. *p <0.05. **p <0.01. Data represent the mean ± SEM. ALT, alanine aminotransferase;
APAP, acetaminophen; AST, aspartate transferase; Mettl3-HKO, hepatocyte-specific Mettl3 knockout; METTL3, methyltransferase-like 3; WT, wild-type.
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ERK levels. As shown in Fig. S1, p-p38 and p38 levels were
similar, whereas both p-ERK and ERK levels were significantly
increased in Mettl3-HKO livers, indicating that METTL3 regulates
both JNK and ERK signalling pathways.
JHEP Reports 2023
JNK inhibitor blocks APAP-induced liver injury in Mettl3-HKO
mice
JNKplays anessential role inAPAP-induced liver injury, andhigher
activation of the JNK signalling pathway was also observed in
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Mettl3-HKOmice. Next, we asked whether inhibition of JNK could
block APAP-induced liver injury inMettl3-HKOmice.Mettl3flox/flox

and Mettl3-HKO mice were pretreated with a JNK inhibitor
(SP600125) or vehicle and then treated with APAP (500mg/kg) to
induce liver injury. As expected, Mettl3-HKO mice showed more
severe liver injury, as revealed by amarked increase in serumALT/
AST levels andmore necrotic areas in response to APAP treatment
for 24 h (Fig. 3A–C). However, SP600125 completely inhibited
APAP-induced liver injury in Mettl3-HKO mice (Fig. 3A–C), which
was most likely owing to the complete blockage of APAP-induced
phosphorylation of JNK (Fig. 3D). These data indicate that down-
regulationofMETTL3aggravatesAPAP-induced liver injurymainly
through activation of JNK.

Hepatic deficiency of Mettl3 increases protein stability of
MKK4/JNK
Next, we tried to answer how hepatic deficiency of Mettl3
causes the activation of MKK4/JNK. The protein levels of MKK4
and JNK1/2 were increased in the livers and isolated hepato-
cytes from Mettl3-HKO mice (Fig. 4A and B), whereas their
mRNA levels were not increased (Fig. 4C), which indicates that
hepatic deficiency of Mettl3 increases translational efficiency or
protein stability. We then measured the translational efficiency
JHEP Reports 2023
in Mettl3flox/flox and Mettl3-HKO mice by performing sucrose
gradient centrifugation to resolve polysome fractions of Mettl3-
HKO and Mettl3flox/flox livers and using RT-PCR to measure the
distribution of endogenous Mkk4, Jnk1, and Jnk2 mRNA levels in
different ribosome fractions. As shown in Fig. 4D, the relative
distribution of mRNAs of Mkk4 and Jnk1/2 in polysome frac-
tions was not changed in Mettl3-HKO mice, indicating that
hepatic deletion of Mettl3 does not affect the translational ef-
ficiency of Mkk4 and Jnk1/2 mRNA. We also measured the
protein stability of MKK4 and JNK1/2. As shown in Fig. 4E, the
protein stability was dramatically increased in isolated hepa-
tocytes from Mettl3-HKO mice, whereas the mRNA levels of
Mkk4 and Jnk1/2 were unchanged or decreased before or after
cycloheximide treatment (Fig. S2). These data demonstrate that
hepatic deficiency of Mettl3 increases protein stability of MKK4
and JNK1/2.

Hepatic deficiency of Mettl3 decreases proteasome activity,
which contributes to the increased protein stability of MKK4
and JNK
To determine how hepatic deficiency of Mettl3 increases protein
stability of MKK4 and JNK1/2, we performed RNA-seq analysis.
Consistent with previous RNA-seq data,29 Kyoto Encyclopedia of
5vol. 5 j 100766
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Fig. 3. JNK inhibitor blocks APAP-induced liver injury inMettl3-HKOmice.Mettl3flox/flox andMettl3-HKO mice were pretreated with or without a JNK inhibitor
(SP600125, 20 mg/kg) for 2 h and then treated with APAP (500 mg/kg) to induce liver injury. (A and B) Serum was collected at different time points (0, 6, 12, and
24 h) after APAP injection. Serum ALT and AST levels were measured (n = 5–8 mice for each group; for serum ALT,Mettl3-HKO vs.Mettl3flox/flox: 0 h, p = 0.0139; 6 h,
p <0.0001; 12 h, p <0.0001; 24 h, p = 0.0009;Mettl3-HKO + SP600125 vs.Mettl3flox/flox + SP600125: 0 h, p = 0.0468; 6h, p = 0.1155; 12 h, p = 0.1617; 24 h, p = 0.0904;
for serum AST, Mettl3-HKO vs. Mettl3flox/flox: 0 h, p = 0.8265; 6 h, p = 0.0051; 12 h, p = 0.0211; 24 h, p = 0.0051; Mettl3-HKO + SP600125 vs. Mettl3flox/flox +
SP600125: 0 h, p = 0.0568; 6 h, p = 0.7937; 12 h, p = 0.1017; 24 h, p = 0.0801; Student’s t tests). (C) Necrotic areas in the livers ofMettl3flox/flox and Mettl3-HKO mice
injected with APAP for 6 h were measured by H&E staining and quantified by ImageJ (n = 5 mice for each group; APAP, p = 0.0038; APAP + SP600125, p = 0.0626;
Student’s t tests). (D) p-JNK, JNK, METTL3, and Tubulin protein levels in the livers of Mettl3flox/flox and Mettl3-HKO mice injected with APAP for 6 h were measured
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Genes and Genomes (KEGG) pathway analysis showed that the
downregulated genes were associated with steroid hormone
biosynthesis, peroxisome, chemical carcinogenesis, proteasome,
and oxidative phosphorylation (Fig. 5A), whereas the upregu-
lated genes were associated with cell adhesion molecules,
Staphylococcus aureus infection, viral protein interaction with
cytokine and cytokine receptor, and chemokine signalling
pathway (Fig. S3). We noticed that 23 proteasome-associated
genes were downregulated (Fig. 5A and B), which was further
confirmed by RT-qPCR (Fig. S4). Proteasome activity was
decreased (Fig. 5C), and proteasome 20S subunit beta 4 (PSMB4)/
PSMB6 (key components of proteasome) protein levels were
significantly reduced in the livers of Mettl3-HKO mice (Fig. 5D).
However, inhibition of proteasome by MG132 did not change the
GSH levels in primary hepatocytes (Fig. S5), indicating that
decreased proteasome activity is less likely to contribute to the
increased GSH levels in Mettl3-HKO livers. Interestingly, APAP-
induced liver injury also showed decreased proteasome activity
and protein levels of PSMB4 and PSMB6 (Fig. S6A and B). These
data indicate that decreased proteasome activity may lead to
increased stability of MKK4 and JNK1/2.

Next, we asked whether restoration of proteasome activity
by overexpression of PSMB4 and PSMB6 could reverse the
higher protein levels of MKK4 and JNK. Adenovirus-mediated
JHEP Reports 2023
overexpression of PSMB4 or PSMB6 decreased the higher pro-
tein levels of MKK4 and JNK in primary hepatocytes isolated
from Mettl3-HKO mice (Fig. 5E and F). These data indicate that
hepatic deficiency of Mettl3 decreases proteasome activity,
which contributes to the increased protein stability of MKK4
and JNK.

METTL3 decreases MKK4 and JNK protein levels by
upregulating PSMB4 and PSMB6, which protects hepatocytes
from APAP-induced hepatocyte death
To determine whether METTL3 negatively regulates MKK4/JNK
protein levels by upregulating PSMB4 and PSMB6, which pro-
tects hepatocytes from APAP-induced hepatocyte death, we
performed cell culture experiments. As shown in Fig. 6A and B,
overexpression of METTL3 in both primary hepatocytes and
Hepa1-6 cells decreased MKK4 and JNK protein levels but
increased PSMB4 and PSMB6 protein levels. Overexpression of
METTL3 in Hepa1-6 also protected hepatocytes from APAP-
induced cell death (Fig. 6C). Conversely, knockdown of Mettl3
by infecting with Ad-shMettl3-1 and Ad-shMettl3-2, respectively,
increased MKK4 and JNK protein levels but decreased PSMB4
and PSMB6 protein levels (Fig. 6D). METTL3 overexpression
could reverse their expression in Mettl3 knockdown Hepa1-6
cells (Fig. 6D). Knockdown of Mettl3 promoted APAP-induced
6vol. 5 j 100766
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0.4060; 60s, p = 0.2259; 80s, p = 0.1228; polysome: p = 0.3317; p = 0.5025; p = 0.3025; p = 0.0604; Jnk2: 40s, p = 0.4041; 60s, p = 0.5367; 80s, p = 0.6924; polysome:
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analysed using Student’s t tests. *p <0.05. **p <0.01. Data represent the mean ± SEM. CHX, cycloheximide; Mettl3-HKO, hepatocyte-specific Mettl3 knockout;
METTL3, methyltransferase-like 3; RT-PCR, reverse transcription-polymerase chain reaction; RT-qPCR, real-time quantitative PCR.
cell death in Hepa1-6 cells, whereas overexpression of METTL3
reversed APAP-induced cell death in Mettl3 knockdown Hepa1-6
cells (Fig. 6E). These data indicate that METTL3 negatively reg-
ulates MKK4/JNK protein levels by upregulating PSMB4 and
PSMB6, which protects hepatocytes from APAP-induced hepa-
tocyte death.
JHEP Reports 2023
METTL3 interacts with RNA polymerase II and active histone
modifications such as H3K9ac, H3K27ac, and H3K36me3,
which is required for maintaining the expression of
proteasome-related genes
METTL3 is a key m6A RNA methyltransferase. We then analysed
our previous methylated RNA immunoprecipitation-sequencing
7vol. 5 j 100766
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analysis was performed in the livers of Mettl3flox/flox and Mettl3-HKO mice at 8 weeks old (n = 3 for each group). KEGG pathway analysis of the downregulated
genes in Mettl3-HKO mice (A). A heatmap of downregulated proteasome-related genes is shown (B). (C and D) Proteasome activity (n = 8 mice for each group, p =
0084; Student’s t tests) and PSMB4/6 protein levels (n = 4 mice for each group; PSMB4, p = 0.0002; PSMB6, p = 0.0009; Student’s t tests) were measured in the
livers ofMettl3flox/flox and Mettl3-HKO mice. (E and F) Primary hepatocytes were isolated fromMettl3-HKO andMettl3flox/flox mice and then infected with Ad-bGal,
Ad-FLAG-PSMB4, and Ad-FLAG-PSMB6 adenovirus. MKK4, JNK, FLAG, METTL3, and Tubulin protein levels were measured by immunoblotting and quantified by
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KEGG, Kyoto Encyclopedia of Genes and Genomes; Mettl3-HKO, hepatocyte-specific Mettl3 knockout; METTL3, methyltransferase-like 3; RNA-seq, RNA
sequencing.
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(MeRIP-seq) data collected from livers of Mettl3flox/flox and
Mettl3-HKO mice and found that the m6A peaks of some tran-
scripts encoding proteasome components including Psmb4 and
Psmb6 transcripts were decreased. Next, we tested whether
mRNA stability and translational efficiency of Psmb4 and Psmb6
were decreased in Mettl3-HKO mice. As shown in Fig. 7A and B,
neither mRNA stability nor translational efficiency of Psmb4 and
Psmb6 was changed in Mettl3-HKO mice. METTL3 has also been
JHEP Reports 2023
shown to regulate gene transcription.29 We analysed our previ-
ous assay for transposase-accessible chromatin with sequencing
(ATAC-seq) data collected from livers of Mettl3flox/flox and Mettl3-
HKO mice and found that 14 proteasome-related genes showed
downregulated peaks. Combined analysis of the ATAC-seq and
RNA-seq data showed that five proteasome-related genes,
namely, Psma6, Psmb3, Psmb4, Psmb6, and Gm13835, were
downregulated in Mettl3-HKO mice (Fig. 7C). These data indicate
8vol. 5 j 100766
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Mettl3-HKO, hepatocyte-specific Mettl3 knockout; METTL3, methyltransferase-like 3; PI, propidium iodide; WT, wild-type.
that hepatic deletion of Mettl3 reduces transcription of these
genes.

It has been shown that METTL14/METTL3 regulates gene
expression by binding to RNA polymerase II and H3K36me3.39 In
primary hepatocytes, we observed that METTL3 also interacted
with RNA polymerase II (Rpb1 CTD) and active histone modifi-
cations such as H3K9ac, H3K27ac, and H3K36me3 (Fig. 7D).
Chromatin immunoprecipitation assay showed that the binding
of RNA polymerase II (Rpb1 CTD) with genes of Psma6, Psmb3,
Psmb4, and Psmb6 was decreased in the livers of Mettl3-HKO
mice, whereas the binding of RNA polymerase II (Rpb1 CTD)
with genes of Actb did not change (Fig. 7E). These data indicate
that METTL3 is required for maintaining expression of protea-
some components by binding to RNA polymerase II and active
histone modifications such as H3K9ac, H3K27ac, and
H3K36me3.
JHEP Reports 2023
Discussion
APAP overdose is a major cause of acute liver failure in Western
countries. Early GSH depletion and JNK activation contribute to
APAP-induced liver failure.7,8 Whether this processing is regu-
lated by RNA modification-related enzymes is not known. In this
study, we demonstrated for the first time that APAP overdose
causes downregulation of METTL3 (a key enzyme for m6A mRNA
modification), which in turn exacerbates APAP-induced hepato-
toxicity by enhancing the JNK signalling pathway. Hepatic defi-
ciency of Mettl3 accelerates APAP-induced hepatotoxicity,
leading to increased mortality. Mechanistically, Mettl3 deficiency
decreases gene transcription and m6A mRNA modification of
several components of proteasome, leading to decreased activity
of proteasome and then increased protein stability of MKK4/JNK.

In APAP-induced liver injury, the metabolism of APAP to the
reactive metabolite NAPQI by CYP2E1 represents the initial step
9vol. 5 j 100766
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Research article
of liver injury, and the initial GSH depletion reflects the amount
of excessive NAPQI generated in the liver. Hepatic deletion of
Mettl3 does not affect either expression of CYP2E1 or the initial
depletion of GSH levels during APAP-induced liver injury, which
suggests that hepatocyte METTL3 is dispensable for APAP
metabolism. However, Mettl3-HKO mice show higher basal he-
patic GSH levels and faster recovery of hepatic GSH levels at later
time points during APAP-induced liver injury, which indicates
that METTL3 negatively regulates hepatic GSH levels and higher
GSH levels in Mettl3-HKO mice are unlikely to contribute to se-
vere APAP-induced liver injury in Mettl3-HKO mice. Although
proteasome activity is decreased in Mettl3-HKO livers, inhibition
of proteasome activity does not increase GSH levels. METTL3
JHEP Reports 2023
regulates hepatic GSH levels likely because of changed expres-
sion of GSH metabolism-related genes. Mitochondrial dysfunc-
tion and oxidative stress in the liver are similar between Mettl3-
HKO and Mettl3flox/flox mice after APAP treatment, indicating that
they are less likely to contribute to more severe APAP-induced
liver injury in Mettl3-HKO mice.

The activation of the JNK signalling pathway is a key medi-
ator of the pathophysiology of APAP-induced liver injury in
both mice and humans. Mettl3-HKO mice display enhanced
activation and expression of MKK4 and JNK in their livers before
and after APAP treatment, which leads to much more severe
APAP-induced liver injury. Interestingly, inhibition of JNK by its
specific inhibitor (SP600125) completely blocks APAP-induced
10vol. 5 j 100766



liver injury in Mettl3-HKO mice. These results indicate that
hepatic deficiency of Mettl3 leads to more severe APAP-induced
liver injury as a result of enhanced activation and expression of
MKK4 and JNK.

Our focus was on the question of how METTL3 deficiency in
hepatocytes causes the activation and expression of MKK4 and
JNK. MKK4 and JNK1/2 protein but not mRNA levels are
increased, which is because of increased protein stability but not
translational efficiency. RNA-seq and RT-qPCR identify many
downregulated genes (including Psmb4 and Psmb6) associated
with proteasome in Mettl3-HKO mice. Consistently, proteasome
activity is decreased in Mettl3-HKO mice. Restoration of protea-
some activity by overexpression of PSMB4 or PSMB6 in Mettl3-
HKO hepatocytes decreases MKK4 and JNK1/2 protein levels.
Interestingly, proteasome activity and the PSMB4/PSMB6 protein
levels are also significantly decreased in APAP-induced liver
injury. These results indicate that downregulation of proteasome
activity and PSMB4/PSMB6 protein levels in APAP-induced liver
injury is likely attributable to decreased METTL3 expression,
which further contributes to the increased protein stability and
activation of MKK4 and JNK. In addition to MKK4 and JNK, p-ERK
and ERK levels are also upregulated in Mettl3-HKO livers, while
p-p38 and p38 levels remain unchanged. These results indicate
that METTL3 regulates both the MKK4/JNK and ERK signalling
pathways. Whether they share the same molecular mechanisms
needs further study.

METTL3 directly regulates APAP-induced hepatocyte death.
Overexpression of METTL3 decreases MKK4 and JNK protein
levels by upregulating PSMB4 and PSMB6, which protects he-
patocytes from APAP-induced hepatocyte death. Conversely,
knockdown of Mettl3 increases MKK4 and JNK protein levels by
downregulating PSMB4 and PSMB6 protein levels, which pro-
motes APAP-induced hepatocyte death. Overexpression of
METTL3 reverses APAP-induced cell death in Mettl3 knockdown
Hepa1-6 cells. These results indicate that METTL3 negatively
regulates MKK4 and JNK protein levels by upregulating PSMB4
JHEP Reports 2023
and PSMB6, which protects hepatocytes from APAP-induced
hepatocyte death.

METTL3 is considered a key RNA methyltransferase that ca-
talyses m6A mRNA modification and regulates most of the RNA
processing steps.40 Hepatocyte-specific deletion of Mettl3 largely
changes the gene expression profile.29 Some of the changes
depend on m6A modification, whereas other changes rely on
chromatin accessibility independent of m6A modification.29

Although genes with downregulated m6A peaks include Psmb4
and Psmb6, the mRNA stability and translational efficiency of
Psmb4 and Psmb6 do not change. Instead, the chromatin accessi-
bility is decreased in the promoters of Psmb4 and Psmb6. Consis-
tently, the binding of RNA polymerase II with genes of Psmb4 and
Psmb6 is decreased in the livers of Mettl3-HKO mice. Mechanis-
tically, METTL3 interacts with RNA polymerase II and active his-
tone modifications such as H3K9ac, H3K27ac, and H3K36me3. It
also has been shown that METTL14 regulates gene expression by
binding to RNA polymerase II and H3K36me3.39 We and others
have also shown that METTL3 and WTAP can bind to gene pro-
moters and regulate gene transcription through different mecha-
nisms.29,30,41 These results indicate that METTL3 is required for
maintaining expression of proteasome components (such as
PSMB4 and PSMB6) by binding to RNA polymerase II and active
histone modifications such as H3K9ac, H3K27ac, and H3K36me3.

In conclusion, we have shown that hepatic METTL3 is
downregulated in APAP-induced liver injury, which promotes
APAP-induced liver injury. Hepatocyte-specific deletion of Mettl3
promotes APAP-induced liver injury, leading to increased mor-
tality, which is most likely as a result of decreased proteasome
activity and increased protein stability of MKK4 and JNK, leading
to enhanced JNK activation. Inhibition of JNK by SP600125
completely blocks APAP-induced liver injury in Mettl3-HKO
mice. Therefore, downregulation of Mettl3 exacerbates APAP-
induced liver injury through enhancing the MKK4/JNK signal-
ling pathway with involvement of the decreased proteasome
activity.
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