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Abstract: In recent years, growth hormone deficiency in children has been treated with hormone
therapy despite the possible significant side effects. Therefore, it was deemed beneficial to develop
functional foods or dietary supplements for safely improving children’s growth. Spirulina platensis is
known for its high antioxidant, anti-aging, anti-cancer, and immunity-enhancing properties, as well
as its high digestibility and high protein content, but little has been reported about its influence
on bone development in children with a normal supply of protein. In this study, we evaluated the
effects of spirulina on the bone metabolism and antioxidant profiles of three-week-old growing male
rats. The animals were divided into four groups (n = 17 per group) and were fed AIN93G diets
with 0% (control), 30% (SP30), 50% (SP50), and 70% (SP70) of casein protein replaced by spirulina,
respectively, for seven weeks. We observed that spirulina enhanced bone growth and bone strength
by stimulating parathyroid hormone and growth hormone activities, as well its increased antioxidant
activity. These results indicate that spirulina provides a suitable dietary supplement and alternative
protein source with antioxidant benefits for growth improvement in early developmental stages.

Keywords: spirulina; bone modeling; bone strength; parathyroid hormone; growth hormone;
antioxidant

1. Introduction

Bone modeling is the process by which bone is either formed on an existing bone surface by
osteoblasts without prior resorption or removed by osteoclasts (resorption modeling), and is the
dominant process during skeletal growth [1]. Bone modeling is thus essential for the proper longitudinal
growth, with cells in epiphyseal growth plates responsible for continued elongation of bones until
the body’s full size is reached [2–4]. Therefore the epiphyseal growth plate of the iliac bone is the
most useful indicator of bone growth, which is regulated by the activities of the growth hormone (GH)
secreted by the anterior pituitary gland of the brain [5,6].

Insulin-like growth factor 1 (IGF-1) is a single-chain, 70 amino acid polypeptide that is mainly
secreted by the liver and acts in an insulin-like manner. IGF-1 is also secreted by osteoblasts, and is
considered an auto- or paracrine regulator of osteoblastic cell function [7]. GH, parathyroid hormone,
and calcitriol also stimulate IGF-1 production during the growth phase [8]. Therefore, IGF-1 is
recognized as a growth factor that has an important role in the maintenance of bone mass. This action
eventually stimulates the synthesis of carbohydrates, lipids, and proteins in target tissues [9]. Although
GH directly stimulates the proliferation and differentiation of osteoblast cells, IGF-1 also increases
osteocalcin and collagen synthesis in osteoblasts, as well as differentiation of osteoblasts, thereby
increasing bone formation and inhibiting collagenase expression.
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Chronic protein deficiency has been reported to delay skeletal growth and bone maturity and
cause fatty infiltration of the liver in infants and young children, conditions that are often associated
with chronic malnutrition, a major factor affecting child morbidity and mortality in developing
countries [10,11]. It has been reported that a low-protein diet reduces tibia length and diameter, and bone
mineral content (BMC) in growing rats [12] and children [13]. Also low levels of circulating IGF-1 and
the presence of a fatty liver are conditions frequently observed in children with a protein-deficient
diet [14].

Spirulina (Spirulina platensis), a green spiral bacterium classified as a cyanobacterium, has been
recognized by international organizations such as the WHO, FAO, and UNICEF as a dietary supplement
(FAO Fisheries and Aquaculture Circular. No. 1034, Joint FAO/WHO Expert Committee on Food Additives
(JECFA), 86th meeting 2018). Spirulina contains all eight amino acids essential to humans, has a
digestibility range of 80–90%, and contains 60–70% protein on a dry weight basis, which is higher than
any other natural food [15–19]. Within its 6–9% fat content, spirulina is rich in unsaturated fatty acids
such as linoleic acid, docosahexaenoic acid, eicosapentaenoic acid, arachidonic acid, and stearidonic
acid. Moreover, spirulina contains moderate amounts of vitamin A, vitamin C, vitamin E, vitamin
B12, thiamine, nicotinamide, pyridoxine, riboflavin, and folic acid. In addition, it has many functional
bioactive ingredients, including phenolic phytochemicals, phycobiliprotein, and chlorophyll, that
have antioxidant and anti-inflammatory properties [20,21]. It has a high content of total phenolic
compounds such as catechin hydrate, epicatechin, pyrocatechol, C-phycocyanin and β-carotene,
which contribute to the major antioxidant activity of spirulina. The phenolic compounds present in
spirulina are primarily involved in the redox mechanism and function to prevent the formation of
reactive oxygen species (ROS), eventually inhibiting inflammatory responses via anti-oxidative and
anti-inflammatory mechanisms that have protective effects against various human diseases such as
mild chronic inflammatory disease [22–25].

Previous studies have shown that spirulina can be a good protein source for populations in
developing countries that are vulnerable to protein malnutrition as it can support body growth,
avoid fatty liver development associated with protein deficiency, and improve the nutritional status
of malnourished humans [26–34]. Spirulina has also been shown to prevent fatty infiltration of the
liver in diabetic rats by inhibiting adipogenesis and lipogenesis [35]. In addition, it has been shown to
lower blood cholesterol levels associated with a high-cholesterol diet in animal models and to prevent
arteriosclerosis [36,37]. However, similar or greater effects on bone growth and bone strength under
adequate nutritional conditions, such as an alternative vegetable protein source compared to an animal
protein source, have not been reported.

The height of children is rapidly becoming a social issue as there is an increase in the number of
people who are concerned about their child’s height. As a result, GH therapy is being indiscriminately
used without adequate protection against side effects [38–47]. This study investigated the beneficial
effect of using spirulina as a dietary supplement on skeletal growth and growth-related hormone levels
in growing male rats. The results indicated that a spirulina supplement can enhance bone growth and
bone strength and provide an antioxidant protective effect against tissue damage.

2. Materials and Methods

2.1. Animal Care and Diets

Three-week-old male Sprague–Dawley rats weighing approximately 50 g were used in this
study (Damulscience, Daejeon, Korea). The animals were divided into four groups by applying a
randomized design, and each group contained 17 rats (Table 1). All rats were housed in a room with
constant temperature (23 ± 1 ◦C) and relative humidity (50 ± 5%) conditions and under a 12-hour
light/dark cycle.
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Table 1. Experimental design of the study.

Experimental Group Diet Number of Mice

Control AIN93G 17
SP30 30% of AIN93G replaced by spirulina 17
SP50 50% of AIN93G replaced by spirulina 17
SP70 70% of AIN93G replaced by spirulina 17

Total 68

Freeze-dried spirulina (S. platensis) powder obtained from Dainippon Ink and Chemicals, Inc.
(Tokyo, Japan) was kindly donated by ES Biotech Co. (Cheonan, Korea) for use in this study.
The composition of the spirulina powder is summarized in Table 2. The control group was fed with a
normal AIN93G rodent diet while the other groups were fed an AIN93G diet with a portion of the diet
replaced by spirulina powder. The protein source in the control group diet was 100% casein. Portions
of the casein protein within the AIN93G diet were replaced with spirulina protein; three treatment
groups, SP30, SP50, and SP70, were fed AIN93G diets with 30%, 50%, and 70%, respectively, of the
casein replaced by spirulina. To ensure that total calorie (kcal) content and total amounts of vitamins,
minerals, fiber, carbohydrate, and protein (g) per 100 g of each diet formula were similar among the
groups, adjustments were made to the control diet (Table 3). The same amount of food was given
to each group and the animals were weighed every 2 days. The food efficiency ratio (FER) was
determined by measuring the total increment of animal weight and total diet intake and calculating
FER as FER = total weight increment (g)/total diet intake (g).

All animal experiments were approved by the Committee of Animal Care and Experiment of
Chungnam National University (Daejeon, Korea) with reference number (CNU-00036) and were carried
out in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory
Animals (NIH Publications No. 8023, revised 1978).

Table 2. Composition of freeze-dried powder of spirulina.

Composition

Macronutrients (g/100 g) Phytonutrients (mg/100 g)

Calories (kcal/100 g) 360.70 Phycocyanin 8000.00

Moisture (%/100 g) 8.70 Chlorophyll a 1300.00
Carbohydrate 17.50

Fat 4.30
Protein 63.00

Dietary fiber 6.50
Vitamins (mg/100 g) Minerals (mg/100 g)

Vitamin A 2.95 Calcium 98.80
β-Carotene 177.00 Iron 40.90
Vitamin B1 3.08 Phosphorus 859.00
Vitamin B2 3.74 Magnesium 319.00
Vitamin B6 0.83 Zinc 1.28

Vitamin B12 0.18 Copper 0.32
Vitamin E 12.70 Manganese 3.77

α-Tocopherol 12.50 Chromium 0.06
β-Tocopherol 0.50 Potassium 1560.00
Vitamin K1 1.59
Vitamin K2 0.08
Folic acid 0.08

Niacin 23.50



Nutrients 2020, 12, 1187 4 of 19

Table 3. Composition of experimental diets.

Components (g/kg Diet)
Group

Control SP30 SP50 SP70

Casein 200.00 140.00 100.00 60.00
Corn starch 397.49 377.28 363.81 350.34

Dyetrose 132.00 132.00 132.00 132.00
Sucrose 100.00 100.00 100.00 100.00

Cellulose 50.00 43.81 39.68 35.56
Soybean oil 70.00 65.91 63.18 60.45

t-Butylhydroquinone 0.01 0.01 0.01 0.01
Salt mix 35.00 31.06 28.43 25.80

Vitamin mix 10.00 9.20 8.66 8.13
L-cystine 3.00 3.00 3.00 3.00

Choline bitartrate 2.50 2.50 2.50 2.50
Spirulina 0.00 95.24 158.73 222.22

TOTAL 1000.00 1000.00 1000.00 1000.00

Total energy (kcal) 3948.07 3945.63 3944.00 3942.29

Nutrition from spirulina

Energy (kcal) 0 355.24 592.06 828.81
Protein 0 60.00 100.00 139.99

Fat 0 4.10 6.83 9.56
Carbohydrate 0 16.67 27.78 38.89

Fiber 0 6.19 10.32 14.44
Total vitamin 0 0.80 1.34 1.87
Total mineral 0 3.95 6.57 9.20

2.2. Tissue Collection and Preparation

Five animals from each group were fasted overnight before sacrifice at 0, 3, and 7 weeks. Blood
samples were taken from the carotid artery and kept in a heparin-treated test tube. Plasma was
collected by centrifugation for 15 minutes at 1000 g and then stored at –70 ◦C until analysis. Liver,
heart, kidney, and adipose tissues were extracted, rinsed with 0.9% PBS, and weighed. The femur and
lumbar spine were isolated and muscles, fat, and ligaments were removed. The length of the femur
and lumbar spine were measured using a Digimatic caliper (Mitutoyo, Japan). Weight, bone strength,
and mineral content of the femur and lumbar spine were determined.

2.3. Bone Strength and Bone Mineral Content (BMC) Measurement

The breaking force of the femur and lumbar spine was measured by using a texture analyzer
(TA/XT2, Stable Micro System, England). For bone measurement, the plunger of the texture analyzer
was arranged appropriately and its placement was adjusted to the middle of the femur. The plunger
was then dropped in order to fracture the bone. The plunger drop conditions used for breaking
the femur and lumbar spine were: distance time 80%, pre-test speed 2.0 mm/s, test speed 1.0 mm/s,
and post-test speed 5.0 mm/s.

For analysis of mineral content of the bones, 0.5–1 g of femur and lumbar spine were placed in a
container and 7 mL 65% HNO3 and 1 mL 30% H2O2 were added. The calcium and magnesium were
diluted by LaCl3 and the potassium was diluted by distilled water. The mineral content in the diluted
solutions was measured by an atomic absorption spectrophotometer (ICP Microphone).

2.4. Biochemical Analysis

Several serum factors were measured by using analysis kits as follows: GH (Rat Growth Hormone
ELISA; acceptable range 50% blank/maximum binding: 3.6 ng/mL, Cayman, MI, USA); IGFBP-3
(Rat IGFBP-3 ELISA; sensitivity: 0.09 ng/mL, BioVendor, Brno, Czech); IGF-1 (Rat IGF-1 ELISA;
assay range: 10~1200 ng/mL, IDS Ltd. Bolden, UK); Osteocalcin-3 (ELISA; sensitivity: 1 ng/mL,
BTI, NM, USA); Parathyroid hormone (Intact-PTH Rat EIA; sensitivity: 1.57 pg/mL, DRG. Inc., NJ,
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USA); total cholesterol, HDL, and LDL kit (Enzyme kit; accuracy, r = 0.987, YD Diagnostics, Yongin,
Korea); alanine aminotransferase (ALT) kit (AM 101-K Kit, Asan Pharm. Co. Ltd., Hwaseong, Korea).
Calcium, phosphorus, lactate dehydrogenase (LDH), and glucose concentration in plasma were
measured by using a blood chemistry analyzer (ARCO-PC, Biotecnica Ins., Italy). The concentration of
deoxypyridinoline (DPD) in urine was analyzed by using a deoxypyridinoline assay kit, and creatinine
was analyzed by using a creatinine assay kit (QUIDEL; creatinine accuracy: r = 0.993; DPD sensitivity:
1.1 nM/L, CA, USA).

2.5. Antioxidant Enzyme Activities and Lipid Peroxide Measurement

Glutathione (GSH), 5,5’-dithio-bis-nitrobenzoic acid (DTNB), Trizma (Tris base), glutathione
reductase (GR), and oxidized glutathione (GSSG) were purchased from Sigma-Aldrich Chemical
(Sigma-Aldrich Chemical Co., St. Louis, USA). The antioxidant enzyme activities were calculated to
1 g protein content by applying the method of Bradford and using BSA as a standard. The quinone
reductase (QR), Glutathione S-transferase (GST), GR, and GSH concentrations of liver tissue were
measured by applying the following methods. The QR activity in the tissues was measured with
25 mM Tris-HCl buffer supplemented with BSA, FAD, 0.1 mM NADPH, and 10% PMS. The mixture
was measured at 600 nm with a spectrophotometer. The GST activity was determined by mixing
the tissue homogenate with 1-chloro-2,4-dinitrobezene and measuring activity at 340 nm with a
spectrophotometer. The tissue homogenate for GR activity was reacted with 26.98 mM EDTA in
0.1 M Tris-HCl buffer supplemented with 66.0 mM GSSG and 9.18 mM NADPH and measured by
determining the absorbance by spectrophotometer at 340 nm. The GSH activity was determined by
mixing the tissue homogenate with 0.1 M potassium phosphate buffer with 10 mM DTNB, and 5 mM
NADPH, equilibrated for 1 min by adding one unit of GR and measuring the absorbance at 412 nm
with a spectrophotometer. A 0.04 mM GSH was used to obtain a standard curve.

For lipid peroxide measurement, the blood and organs (liver, kidney, heart) were placed on ice,
and homogenized with 50 mM sodium phosphate buffer using a tissue homogenizer with a Teflon
pestle (Dupont, Wilmington, DE, USA). One mL of homogenate was mixed with 1 mL 8.1% SDS, 2 mL
20% acetic acid, and 1 mL 0.75% TBA and the mixture then boiled for 30 min. The absorbance of the
malondialdehyde (MDA)-TBA adduct formed in the supernatant was measured colorimetrically at
532 nm. The value of MDA was calculated from a standard curve prepared using tetramethoxypropane
(TMP) and is expressed as a thiobar–bituric acid reactive substance (TBARS) value.

2.6. Statistics

All results were expressed as mean ± SEM and analyzed one-way ANOVA or t-test using SPSS
24.0 (Statistical Package for Social Science, SPSS Inc., Chicago, IL, USA) software package program
and GraphPad Prism 8 (GraphPad Software Inc., CA, USA) software. T-test was used to compare a
treatment group with the control group. Biochemical changes between the groups within the same
week or between weeks within the same group were investigated using ANOVA analysis, with which
a post-hoc comparison was made with Least Significant Difference (LSD) and Duncan’s multiple-range
test. Statistical significance refers to results where * p < 0.05, ** p < 0.01, or *** p < 0.001 for the
comparison between the weeks within a group and # p < 0.05, ## p < 0.01, or ### p < 0.001 for the
comparison between the groups in the same week were obtained.

3. Results

3.1. Body Weight, Food Intake, Tissue Damage, and Blood Lipid Profile

The body weight, food intake, and dietary efficiency of rats fed the experimental diets for 7 weeks
were measured. Figure 1A shows that average body weight increased significantly over 7 weeks in
each group. However, there were no significant differences between the groups at 0, 3, and 7 weeks



Nutrients 2020, 12, 1187 6 of 19

(Table 4). In addition, there was no significant difference in the amount of food intake or the FER
among the groups after 3 and 7 weeks (Table 4).

Table 4. Body weight, food intake, and food efficiency ratio of the rats fed with spirulina.

Control SP30 SP50 SP70

3 weeks
Weight (g) 179.1 ± 11.0 NS 188.7 ± 2.2 180.4 ± 5.3 176.9 ± 6.1

Food intake (g/d) 24.6 ± 0.6 NS 24.6 ± 0.4 24.4 ± 0.4 24.6 ± 0.4
FER (%) 13.9 ± 0.6 NS 13.0 ± 0.3 13.6 ± 0.2 13.9 ± 0.3

7 weeks
Weight (g) 378.9 ± 12.2 NS 356.6 ± 11.8 341.8 ± 2.5 369.4 ± 13.4

Food intake (g/d) 30.0 ± 1.0 NS 28.3 ± 0.8 27.5 ± 0.6 26.7 ± 1.7
FER (%) 8.0 ± 0.3 NS 7.9 ± 0.2 8.1 ± 0.2 8.2 ± 0.3

All values are mean ± SEM. One-way ANOVA test at p < 0.05 by Duncan’s multiple-range test. NS: not significant.
g/d: gram per day, FER (food efficiency ratio).

Since spirulina was used as a substitute protein source, levels of urinary creatinine and DPD as
kidney damage markers were examined. As shown in Figures S1A,B, both markers showed significant
dose-dependent decreases with the SP70 group having the lowest levels of both markers, suggesting
that the protein excretion effect is relieved by a spirulina-supplemented diet. Blood albumin (Figure
S1C) and blood glucose level (Figure S1D) showed no significant difference between the spirulina
substitution diets and the control diet at 7 weeks, suggesting that there were no influences on protein
homeostasis in the circulatory system or on insulin resistance.

Alanine aminotransferase (ALT) assessment for liver damage showed no significant difference
between the spirulina substitution diets and the control diet at 7 weeks (Figure S1E). Elevated lactate
dehydrogenase (LDH) can indicate tissue damage by disease or stress related to organ growth. In this
study, plasma LDH levels increased over time in all groups as expected, but compared to the other
groups, the SP70 group showed a significant LDH reduction after 7 weeks of treatment, suggesting
that spirulina supplementation might protect the body against tissue stress due to growth (Figure S1F).

Blood lipid analyses, including total cholesterol, HDL, and LDL, revealed no significant differences
between the spirulina substitution diet and the control diet (Figure S2).

In conclusion, the results suggest that spirulina has potential as a candidate protein substitute
as there were no indications of toxic effects related to kidney damage, liver damage, blood glucose
changes, or changes in lipid profiles.

3.2. Change of Organ Growth

The effect of spirulina on organ weight of the growing rats over the 7-week treatment period
was investigated. Liver (Figure 1B), kidney (Figure 1C), and heart (Figure 1D) weights increased
significantly over time in each group, as expected. At 7 weeks, there were no differences in weight gains
in the liver, kidney, and heart tissues between the control group and the SP70 group; however, the SP30
and SP50 groups showed significantly less growth than that of the control group, suggesting that 70%
of protein source replaced with spirulina might be the most effective spirulina supplementation level.

3.3. Fat Accumulation during the Growth

The effect of spirulina on the weight change of adipose tissues in the growing rats was also
examined. Adipose tissues in all groups showed significant increases during the experimental
period (p < 0.001). Interestingly, the weight gain of mesenteric fat (Figure 1E), retroperitoneal fat
(Figure 1F), epididymal fat (Figure 1G), and total fat (Figure 1H) decreased significantly in a spirulina
dose-dependent manner. In particular, the weight increase of epididymal fat was notably low in the
third measurement week. At 7 weeks, SP70 showed the lowest weight gains in all fat tissues, and the
gains were significantly lower than those in the other groups. These observations suggest that a high
level of spirulina substitution can prevent the accumulation of fat without interfering with the weight
gain of the rest of the body during growth.
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Figure 1. Effect of spirulina on the weight of body, organs, and fat tissues. Weights of (A) body,
(B) liver (g/100 g BW), (C) kidney (g/100 g BW), (D) heart (g/100 g BW), (E) mesenteric fat (g/100 g BW),
(F) retroperitoneal fat (g/100 g BW), (G) epididymal fat (g/100 g BW), and (H) total fat (g/100 g BW)
were measured in growing male rats over the 7-week course of the study. Data are mean ± SEM values.
Significant differences were determined using t-tests or one-way ANOVA with post hoc Duncan’s
multiple-range test comparisons. *** p < 0.001 between weeks within a group and # p < 0.05, ## p < 0.01,
or ### p< 0.001 between groups in the same week. Control: AIN 93G diet; SP30: 30% of protein source
replaced with spirulina; SP50: 50% of protein source replaced with spirulina; SP70: 70% of protein
source replaced with spirulina. The week of the treatment is represented by O: 0 weeks; �: 3 weeks; N:
7 weeks in each group.
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3.4. Improvement of Length and Weight of Femur and Lumbar Spine by Spirulina

Next, the lengths and weights of the femur and lumbar spine were measured. As expected,
the lengths and weights of the femur and lumbar spine increased significantly over the 7-week growth
period in each group. At 7 weeks, the femur lengths (Figure 2A) and weights (Figure 2B) of the SP50
and SP70 groups increased significantly compared to those of the control group. However, even at
3 weeks, the femurs of the SP70 group were significantly longer than those of the control group. Also,
the lumbar length (Figure 2C) and weight (Figure 2D) of the SP70 group were significantly greater than
those of the control group after both 3 weeks and 7 weeks of treatment. These results indicate that the
high spirulina content in the SP70 group significantly increased the weight and length of both femur
and lumbar spine bones consistently over a 7-week period, resulting in enhanced bone development in
growing male rats.

3.5. Enhanced Bone Strength via Higher Bone Mineral Content by Spirulina

The femur bending strengths of the rats are shown in Figure 2E. Although bone strength was
increased significantly over time in all groups, the SP-substituted groups showed significantly greater
bone strength at 7 weeks. Moreover, the increases were SP dose-dependent. The bone strength of the
SP70 group was significantly higher (5.3% higher) than that of the control group at 7 weeks (p < 0.05).
The results indicate the enhancing effect of spirulina on bone strength.

Next, the mineral content of the femur bones was measured. The Ca (Figure 2F), Mg (Figure 2G),
and P (Figure 2H) content in the femurs significantly increased during the experiment period in all
groups, as expected. However, at 7 weeks, the mineral contents of all three SP substitution groups
were significantly higher than that of the control group, and the BMCs changed in a dose-dependent
manner, suggesting a positive effect of spirulina on bone strength.

3.6. Increased plasma Growth Hormone, IGF-1, and IGFBP-3 Levels by Spirulina

Since we observed enhancement of bone growth and bone strength by spirulina treatment,
we investigated whether the growth-regulating hormonea level was influenced by spirulina (Figure 3).
Although the GH level was steady throughout the experiment in the control group, the spirulina-fed
groups showed continuous increases in GH level over the 7-week study in a dose-dependent manner
(Figure 3A). This result suggests that spirulina treatment can increase GH levels over time, potentially
allowing bones to grow continuously.

IGF-1 is an anabolic hormone with a structure similar to that of insulin and regulates the linear
and microarchitectural growth of bones, in particular in osteoblasts. Therefore, we examined the
plasma level of IGF-1 (Figure 3B). Plasma IGF-1 levels increased significantly during the experiment
period in each group, as expected. However, plasma IGF-1 levels in the spirulina-fed groups were
significantly higher than those of the control group after both 3 weeks (p < 0.001) and 7 weeks (p < 0.001)
of treatment.

Insulin-like growth factor binding protein 3 (IGFBP-3) is the main IGF transport protein in the
blood and most dependent on IGF-1. Therefore, in this study, we examined the IGFBP-3 level in plasma.
As shown in Figure 3C, IGFBP-3 levels in each of the SP groups were significantly higher than those of
the control group at 7 weeks, mirroring the IGF-1 results.

These results suggest that spirulina, especially in high amounts (SP70), enhances the release of
GH, followed by a continuing increase in the release of IGF-1, ultimately resulting in the SP-related
bone growth enhancements observed above.
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Figure 2. Effect of spirulina on bone growth, bone strength, and bone mineral content (BMC). (A) Femur
length, (B) femur weight, (C) lumbar spine length, (D) lumbar spine weight, (E) breaking force of
femur, (F) Ca content of femur, (G) Mg content of femur, and (H) phosphate content of femur were
measured in growing male rats over the 7-week course of the study. Data are mean ± SEM values.
Significant differences were determined using t-tests or one-way ANOVA with post hoc Duncan’s
multiple-range test comparisons. # p < 0.05, ## p < 0.01, or ### p < 0.001 between groups in the same
week. Control: AIN 93G diet; SP30: 30% of protein source replaced with spirulina; SP50: 50% of protein
source replaced with spirulina; SP70: 70% of protein source replaced with spirulina. The week of the
treatment is represented by O: 0 weeks; �: 3 weeks; N: 7 weeks in each group.
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Figure 3. Effect of spirulina on growth hormones and related hormones in blood. Plasma (A) Growth
hormone (GH), (B) insulin-like growth factor 1 (IGF-1), (C) insulin-like growth factor binding protein 3
(IGFBP-3), (D) osteocalcin, (E) free calcium, (F) free phosphate, and (G) parathyroid hormones (PTHs)
were measured in growing male rats over the 7-week course of study. Data are mean ± SEM values.
Significant differences were determined using t-tests or one-way ANOVA with post hoc Duncan’s
multiple-range test comparisons. * p < 0.05, ** p < 0.01 between weeks within a group and # p < 0.05,
## p < 0.01, or ### p < 0.001 between groups in the same week. Control: AIN 93G diet; SP30: 30% of
protein source replaced with spirulina; SP50: 50% of protein source replaced with spirulina; SP70: 70%
of protein source replaced with spirulina. The week of the treatment is represented by O: 0 weeks; �:
3 weeks; N: 7 weeks in each group. White bar: 0 weeks; black bar: 7 weeks.
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3.7. Increased Plasma Osteocalcin, Mineral, and Parathyroid Hormone (PTH) Levels Dose-Dependently

Osteocalcin is a noncollagenous calcium-binding protein hormone secreted by osteoblasts.
High plasma osteocalcin levels correlate relatively well with increases in bone mineral density during
bone formation, which can be used as a preliminary biomarker of bone formation. Therefore, we
examined the effect of spirulina on plasma osteocalcin (Figure 3D). While the osteocalcin level
decreased significantly in the control group over the experimental period, spirulina treatment
significantly increased the osteocalcin level over time compared to the control group (p < 0.001);
moreover, the increases were dose-dependent. These data suggest that spirulina increases the levels of
osteocalcin in plasma, resulting in enhanced bone mineral density and bone strength in growing rats,
as observed above.

Next, we examined the effect of spirulina on blood mineral concentrations in growing rats.
The spirulina-fed groups had significantly higher levels of free calcium concentrations (p < 0.01)
compared to the control group (Figure 3E). The increases were dose-dependent.The serum phosphorus
(P) level decreased over 7 weeks in the control group, but the spirulina-fed groups showed continuous
increases in P level dose-dependently (Figure 3F).

Parathyroid hormones (PTHs) regulate the plasma calcium level through its effects on bone,
kidney, and intestine [48]. Therefore, we examined PTH levels to determine whether spirulina affects
calcium level via PTH activities. Interestingly, plasma PTH level only increased significantly in the
SP50 and SP70 groups over the course of the study; there was no significant increase in PTH level in
either the control or SP30 groups (Figure 3G). Overall, these data suggest that higher doses of spirulina
can increase the PTH level, which is associated with an increase in the free calcium available for bone
mineralization in plasma.

3.8. Increased Antioxidant Enzyme Activities and Reduced Lipid Peroxidation by Spirulina

Figure 4 shows the effect of spirulina on antioxidant enzyme activities in growing rat tissues.
While quinone reductase (QR) and glutathione (GSH) levels in the liver did not change significantly
over time in the control group, the SP50 and SP70 groups showed significant increases in QR and
GSH over time (Figure 4A,B). Then, we looked at the plasma GSH level to determine whether it
reflected the level of GSH released from the liver. As shown in Figure 4C, there was no statistically
significant change in plasma GSH level over the 7 weeks in each group. However, at 7 weeks there
were significantly higher GSH levels in the spirulina-fed groups, especially in the SP70 group, than in
the control group.

Glutathione S-transferase (GST) (Figure 4D) and glutathione reductase (GR) (Figure 4E) levels
in the liver also increased over time even in the control group, but at 7 weeks the GST levels in the
spirulina-fed groups were significantly higher, in a dose-dependent manner, than that in the control
group, thus indicating that spirulina enhances antioxidant activities in the liver and plasma.

TBARSs are formed as a by-product of lipid peroxidation. Therefore, lipid peroxidation was
examined by measuring TBARS levels in various tissues of the growing rats. TBARS in the liver
decreased significantly over the experimental periods (Figure 4F). However, at both 3 and 7 weeks,
TBARS levels in the spirulina-fed groups decreased significantly in a dose-dependent manner from
that of the control group. The TBARS levels in heart, kidney, and plasma showed the same patterns as
those of TBARS levels in the liver (Figure 4G–I) at 7 weeks.

Overall, these data suggest that a higher content of spirulina is more effective in enhancing
antioxidant activities and inhibiting lipid peroxidation in various tissues.
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Figure 4. Effect of spirulina on antioxidant activities and lipid peroxidation. (A) quinone reductase
(QR) in liver, (B) glutathione (GSH) in liver, (C) GSH in plasma, (D) glutathione S-transferase (GST) in
liver, (E) glutathione reductase (GR) in liver, (F) thiobar–bituric acid reactive substance (TBARS) in
liver, (G) TBARS in heart, (H) TBARS in kidney, and (I) TBARS in plasma were measured in growing
male rats fed with control, SP30, SP50, and SP70 diet over the 7-week course of the study. Data are
mean ± SEM values. Significant differences were determined using one-way ANOVA with post hoc
Duncan’s multiple-range test comparisons. # p < 0.05, ## p < 0.01, or ### p < 0.001 between groups in
the same week. Control: AIN 93G diet; SP30: 30% of protein source replaced with spirulina; SP50:
50% of protein source replaced with spirulina; SP70: 70% of protein source replaced with spirulina.
The week of the treatment is represented by O: 0 weeks; �: 3 weeks; N: 7 weeks in each group. White
bar: 0 weeks; black bar: 7 weeks.

4. Discussion

Spirulina has been well considered an excellent protein source for malnourished children since
it contains all eight essential amino acids and is composed of 60–70% protein (based on dry weight).
However, no studies so far have reported on the effect of spirulina as a protein substitute on growth
under normal dietary conditions. Therefore, we hypothesized that spirulina, a plant-origin protein,
could be a functional substitution for animal protein, in our case, casein protein.

Our results show, for the first time, that spirulina was able to enhance bone growth, bone strength,
BMC, and antioxidant activities by regulating GH, IGF-1, osteocalcin, and PTH in normal nutritional
conditions; moreover, the higher the spirulina content, the greater the positive effect. These results
indicate that, compared to the control and low concentration of spirulina substitution, a 50% or 70%
spirulina protein substitution may provide more favorable effects on osteogenesis.

In addition, the blood lipid profile, liver function, and kidney function were not affected by the
spirulina diet. Interestingly, lactate dehydrogenase (LDH) levels in the blood, a marker of tissue
damage, were significantly lower in the SP70 group than in the other SP and control groups, suggesting
that a high dietary content of spirulina might protect the body from tissue damage.

The hormonal changes observed in our model confirmed that IGF-1 is a key endocrine factor
involved in bone growth modulation that can be altered by nutritional challenge. However,



Nutrients 2020, 12, 1187 14 of 19

these hormonal alterations did not fully explain how spirulina supplementation could enhance
the biomechanical properties of bones and should be studied further.

Surprisingly, there was less accumulation of epididymal, retroperitoneal, and mesenteric fat in
rats fed a spirulina-supplemented diet than in those fed the control diet, suggesting that spirulina
could inhibit fat accumulation without interfering with normal body and organ growth.

It was shown that a low protein diet decreases the expression of the Sirt1 gene, followed by reduced
PPARα signaling, resulting in fatty liver [49]. Also, a recent study demonstrated that liver-specific
disruption in GH signaling leads to a fatty liver [50]. Another study showed that spirulina could
prevent the negative effects associated with reduced circulating IGF-1 levels and high hepatic fat
content in a protein deficiency model [51] as well as animal models of diabetes and non-alcoholic
steatohepatitis [32].

Another player in the hormonal regulation caused by spirulina would be osteocalcin. Osteocalcin,
also stimulates pancreatic -cells to release more insulin, increasing insulin sensitivity [52–56]. Our data
show that while osteocalcin levels decreased significantly in the control group over the experimental
period, spirulina treatment significantly increased osteocalcin levels over time (p < 0.001); moreover,
the increases were dose-dependent. Also, blood glucose levels in our study decreased dose-dependently
by spirulina, but not significantly. Therefore, our data might help explain the mechanism through
which spirulina prevents the development of hepatic GH resistance, followed by the reduction of fatty
infiltration into the liver via regulating osteocalcin and growth hormones.

We also examined whether spirulina can protect the growing body from tissue damage caused by
oxidation. The antioxidant enzyme activities of the liver, the Glutathione (GSH), glutathione reductase
(GR), Glutathione S-transferase (GST), and quinone reductase (QR) activities were observed to be
positively dependent on the amount of spirulina supplementation. Although plasma GSH did not
show a marked increase with spirulina treatment, GSH levels in the liver were significantly increased
by spirulina feeding in a dose-dependent manner. Moreover, lipid peroxidation in the liver, plasma,
kidney, and heart tissues was significantly lower in spirulina-fed groups than in the control group at
7 weeks of treatment.

It was reported that spirulina exhibits antioxidant properties due to containing various phenolic
compounds [57]. Although an analysis study revealed that the distributions of the total phenolic
compounds varied between commercial products [23], it was claimed that chlorogenic acid, synaptic
acid, salicylic acid, trans-cinnamic acid, and caffeic acid were commonly present in spirulina [58].
The antioxidant compounds in spirulina, such as phycobilins and phycocyanins, also inhibit the activities
of catalytic enzymes, such as lipoxygenase and cyclooxygenase, or enhance the activity of enzymes,
such as glutathione peroxidase, catalase, and superoxide dismutase [59,60]. These polyphenols were
reported to have anti-inflammatory, antiviral, antioxidant, antithrombotic, vasodilatory, antidiabetic,
neuroprotective, hepatoprotective, and anticarcinogenic properties [21,22,24,28,29,32,35–37,59–63].
However, the metabolic pathways for the formation of phenolic compounds in spirulina and their
importance are still unknown [64].

Another beneficial component of spirulina is γ-linolenic acid. It was discovered that the amounts
of γ-linolenic acid ranged from 0.16 g/100 g to 1.24 g/100 g and accounted for an average of 14% of the
total polyunsaturated fatty acids in spirulina [65]. Many in vitro studies confirmed that γ-linolenic acid
can be used to effectively lower cholesterol and treat atopic eczema, breast cancer, and premenstrual
disorder [66–68].

In humans, longitudinal growth occurs until the epiphyseal plate becomes ossified in the late
teens and early twenties [69]. However, rat skeleton is considered fully mature only after the age of
10 months. At the age of 10 months, peak bone mass is achieved, and the total longitudinal bone
growth stops. Bone growth in the proximal tibia and distal tibia epiphysis stops at the age of 15
and 3 months, respectively, whereas lumbar vertebrae continues to grow for up to 21 months [14].
However, similar to the human skeleton, the rat skeleton shows a gradual transition from modeling
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to remodeling that is related to age progression and cessation of longitudinal bone growth in both
cancellous and cortical bone [70–74].

The Food and Drug Administration requires that novel therapies in bone research must be tested
both in rodents (preferably rats) and in a large animal model [75,76]. The reason for using a second
species in preclinical skeletal research is the lack of the Haversian system in rodents. A potential
drawback of our study to be implicated into the human is the lack of Haversian remodeling in the rat
skeleton. Therefore, this difference might affect our finding when applied to the clinical setting.

For the first time, our results showed that growing rats fed a 70%/30% spirulina/casein protein diet
instead of a 100% casein protein diet enhanced bone development, antioxidant activities, and minimal
fat accumulation in adipose tissues without toxicity, suggesting that substitution of an animal protein
source with a plant protein source such as spirulina can be beneficial. It implies that long-term dietary
supplementation with spirulina from infancy to early childhood might help promote growth and
lengthen the growth period.

Recently, it was found that human gut bacteria can synthesize proteinogenic amino acids and
produce a range of metabolites via protein fermentation, some known to exert beneficial or harmful
physiological effects on the host [77–83]. It is still in an early stage whether the type and amount of
dietary protein consumed affect the diversity and composition of the intestinal microbiota, and the
luminal environment of the intestinal epithelium and peripheral tissues on the host health. However,
major progress is expected in the near future. Therefore, it would be interesting to know how spirulina
supplementation affects gut microbiome profiles and what beneficial metabolites from spirulina protein
could be produced, and whether, ultimately, these improve gut health as well as systemic immunity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/4/1187/s1,
Figure S1: Effect of spirulina on kidney function, liver function, or blood glucose level; Figure S2: Effect of spirulina
on blood lipid profile.

Author Contributions: Conceptualization, J.A.C., S.Y.B., S.H.C., and M.R.K.; methodology, S.Y.B., S.H.C.; software,
S.Y.B.; writing—original draft preparation, J.A.C., S.Y.B., S.H.C., and M.R.K.; writing—review and editing, J.A.C.,
S.Y.B., M.R.K.; project administration, S.H.C.; funding acquisition, J.A.C., M.R.K. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A3B03027867: M.R.K.;
NRF-2019R1A2B5B01070133: J.A.C.) and Chungnam National University Research grant (J.A.C.).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barak, M.M. Bone modeling or bone remodeling: That is the question. Am. J. Phys. Anthropol. 2019.
[CrossRef] [PubMed]

2. Boivin, G.; Meunie, P.J. Changes in bone remodeling rate influence the degree of mineralization of bone
which is a determinant of bone strength: Therapeutic implications. Adv. Exp. Med. Biol. 2001, 496, 123–127.
[CrossRef] [PubMed]

3. Boivin, G.; Meunier, P.J. Changes in bone remodeling rate influence the degree of mineralization of bone.
Connect. Tissue Res. 2002, 43, 535–537. [CrossRef] [PubMed]

4. Bagi, C.M.; Berryman, E.; Moalli, M.R. Comparative bone anatomy of commonly used laboratory animals:
Implications for drug discovery. Comp. Med. 2011, 61, 76–85. [PubMed]

5. Oberbauer, A.M.; Peng, R. Growth hormone and IGF-I stimulate cell function in distinct zones of the rat
epiphyseal growth plate. Connect. Tissue Res. 1995, 31, 189–195. [CrossRef]

6. Medill, N.J.; Praul, C.A.; Ford, B.C.; Leach, R.M. Parathyroid hormone-related peptide expression in the
epiphyseal growth plate of the juvenile chicken: Evidence for the origin of the parathyroid hormone-related
peptide found in the epiphyseal growth plate. J. Cell. Biochem. 2001, 80, 504–511. [CrossRef]

7. Canalis, E. Growth factor control of bone mass. J. Cell. Biochem. 2009, 108, 769–777. [CrossRef]

http://www.mdpi.com/2072-6643/12/4/1187/s1
http://dx.doi.org/10.1002/ajpa.23966
http://www.ncbi.nlm.nih.gov/pubmed/31710704
http://dx.doi.org/10.1007/978-1-4615-0651-5_13
http://www.ncbi.nlm.nih.gov/pubmed/11783614
http://dx.doi.org/10.1080/03008200290000934
http://www.ncbi.nlm.nih.gov/pubmed/12489211
http://www.ncbi.nlm.nih.gov/pubmed/21819685
http://dx.doi.org/10.3109/03008209509010810
http://dx.doi.org/10.1002/1097-4644(20010315)80:4&lt;504::AID-JCB1004&gt;3.0.CO;2-R
http://dx.doi.org/10.1002/jcb.22322


Nutrients 2020, 12, 1187 16 of 19

8. Yuan, R.; Tsaih, S.W.; Petkova, S.B.; De Evsikova, C.M.; Xing, S.; Marion, M.A.; Bogue, M.A.; Mills, K.D.;
Peters, L.L.; Bult, C.J.; et al. Aging in inbred strains of mice: Study design and interim report on median
lifespans and circulating IGF1 levels. Aging Cell 2009, 8, 277–287. [CrossRef]

9. Denley, A.; Cosgrove, L.J.; Booker, G.W.; Wallace, J.C.; Forbes, B.E. Molecular interactions of the IGF system.
Cytokine Growth Factor Rev. 2005, 16, 421–439. [CrossRef]

10. Bennis-Taleb, N.; Remacle, C.; Hoet, J.J.; Reusens, B. A low-protein isocaloric diet during gestation affects
brain development and alters permanently cerebral cortex blood vessels in rat offspring. J. Nutr. 1999, 129,
1613–1619. [CrossRef]

11. Reichling, T.D.; German, R.Z. Bones, muscles and visceral organs of protein-malnourished rats (Rattus
norvegicus) grow more slowly but for longer durations to reach normal final size. J. Nutr. 2000, 130,
2326–2332. [CrossRef] [PubMed]

12. Fournier, C.; Rizzoli, R.; Ammann, P. Low calcium-phosphate intakes modulate the low-protein diet-related
effect on peak bone mass acquisition: A hormonal and bone strength determinants study in female growing
rats. Endocrinology 2014, 155, 4305–4315. [CrossRef] [PubMed]

13. Chevalley, T.; Bonjour, J.P.; Ferrari, S.; Rizzoli, R. High-protein intake enhances the positive impact of physical
activity on BMC in prepubertal boys. J. Bone Miner. Res. 2008, 23, 131–142. [CrossRef] [PubMed]

14. Frenk, S.; Gomez, F.; Ramos-Galvan, R.; Cravioto, J. Fatty liver in children; kwashiorkor. Am. J. Clin. Nutr.
1958, 6, 298–309. [CrossRef]

15. Omstedt, P.T.; von der Decken, A.; Hedenskog, G.; Mogren, H. Nutritive value of processed Saccharomyces
cerevisiae, Scenedesmus obliquus and Spirulina platensis as measured by protein synthesis in vitro in rat
skeletal muscle. J. Sci. Food Agric. 1973, 24, 1103–1113. [CrossRef]

16. Al'bitskaia, O.N.; Zaitseva, G.N.; Rogozhin, S.V.; Pakhomova, M.V.; Oshanina, N.P. [Comparative evaluation
of methods for isolating total protein from the biomass of Spirulina platensis]. Prikladnaia Biokhimiia I
Mikrobiologiia 1979, 15, 612–617.

17. Volkmann, H.; Imianovsky, U.; Oliveira, J.L.; Sant’anna, E.S. Cultivation of Arthrospira (spirulina) platensis
in desalinator wastewater and salinated synthetic medium: Protein content and amino-acid profile. Braz. J.
Microbiol. 2008, 39, 98–101. [CrossRef]

18. Senachak, J.; Cheevadhanarak, S.; Hongsthong, A. SpirPro: A Spirulina proteome database and web-based
tools for the analysis of protein-protein interactions at the metabolic level in Spirulina (Arthrospira) platensis
C1. BMC Bioinform. 2015, 16, 233. [CrossRef]

19. Maranesi, M.; Barzanti, V.; Carenini, G.; Gentili, P. Nutritional studies on Spirulina maxima. Acta Vitaminol.
Enzymol. 1984, 6, 295–304.

20. Padyana, A.K.; Bhat, V.B.; Madyastha, K.M.; Rajashankar, K.R.; Ramakumar, S. Crystal structure of a
light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun. 2001, 282,
893–898. [CrossRef]

21. Sun, J.Y.; Hou, Y.J.; Fu, X.Y.; Fu, X.T.; Ma, J.K.; Yang, M.F.; Sun, B.L.; Fan, C.D.; Oh, J. Selenium-Containing
Protein From Selenium-Enriched Spirulina platensis Attenuates Cisplatin-Induced Apoptosis in MC3T3-E1
Mouse Preosteoblast by Inhibiting Mitochondrial Dysfunction and ROS-Mediated Oxidative Damage.
Front. Physiol. 2018, 9, 1907. [CrossRef] [PubMed]

22. Zhao, B.; Cui, Y.; Fan, X.; Qi, P.; Liu, C.; Zhou, X.; Zhang, X. Anti-obesity effects of Spirulina platensis
protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS ONE 2019, 14, e0218543.
[CrossRef] [PubMed]

23. Al-Dhabi, N.A.; Valan Arasu, M. Quantification of Phytochemicals from Commercial Spirulina Products and
Their Antioxidant Activities. Evid. Based Complement. Altern. Med. 2016, 2016, 7631864. [CrossRef] [PubMed]

24. Pinero Estrada, J.E.; Bermejo Bescos, P.; Villar del Fresno, A.M. Antioxidant activity of different fractions of
Spirulina platensis protean extract. Farmaco 2001, 56, 497–500. [CrossRef]

25. Park, H.J.; Lee, Y.J.; Ryu, H.K.; Kim, M.H.; Chung, H.W.; Kim, W.Y. A randomized double-blind,
placebo-controlled study to establish the effects of spirulina in elderly Koreans. Ann. Nutr. Metab.
2008, 52, 322–328. [CrossRef]

26. Simpore, J.; Kabore, F.; Zongo, F.; Dansou, D.; Bere, A.; Pignatelli, S.; Biondi, D.M.; Ruberto, G.; Musumeci, S.
Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutr. J. 2006, 5, 3.
[CrossRef]

http://dx.doi.org/10.1111/j.1474-9726.2009.00478.x
http://dx.doi.org/10.1016/j.cytogfr.2005.04.004
http://dx.doi.org/10.1093/jn/129.8.1613
http://dx.doi.org/10.1093/jn/130.9.2326
http://www.ncbi.nlm.nih.gov/pubmed/10958831
http://dx.doi.org/10.1210/en.2014-1308
http://www.ncbi.nlm.nih.gov/pubmed/25147979
http://dx.doi.org/10.1359/jbmr.070907
http://www.ncbi.nlm.nih.gov/pubmed/17892378
http://dx.doi.org/10.1093/ajcn/6.3.298
http://dx.doi.org/10.1002/jsfa.2740240913
http://dx.doi.org/10.1590/S1517-83822008000100022
http://dx.doi.org/10.1186/s12859-015-0676-z
http://dx.doi.org/10.1006/bbrc.2001.4663
http://dx.doi.org/10.3389/fphys.2018.01907
http://www.ncbi.nlm.nih.gov/pubmed/30687122
http://dx.doi.org/10.1371/journal.pone.0218543
http://www.ncbi.nlm.nih.gov/pubmed/31220177
http://dx.doi.org/10.1155/2016/7631864
http://www.ncbi.nlm.nih.gov/pubmed/26933442
http://dx.doi.org/10.1016/S0014-827X(01)01084-9
http://dx.doi.org/10.1159/000151486
http://dx.doi.org/10.1186/1475-2891-5-3


Nutrients 2020, 12, 1187 17 of 19

27. Tranquille, N.; Emeis, J.J.; de Chambure, D.; Binot, R.; Tamponnet, C. Spirulina acceptability trials in rats.
A study for the “MELISSA” life-support system. Adv. Space Res. 1994, 14, 167–170. [CrossRef]

28. Salazar, M.; Chamorro, G.A.; Salazar, S.; Steele, C.E. Effect of Spirulina maxima consumption on reproduction
and peri- and postnatal development in rats. Food Chem. Toxicol. 1996, 34, 353–359. [CrossRef]

29. Voltarelli, F.A.; de Mello, M.A. Spirulina enhanced the skeletal muscle protein in growing rats. Eur. J. Nutr.
2008, 47, 393–400. [CrossRef]

30. Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential application of microalga Spirulina platensis as a
protein source. J. Sci. Food Agric. 2017, 97, 724–732. [CrossRef]

31. Azabji-Kenfack, M.; Dikosso, S.E.; Loni, E.G.; Onana, E.A.; Sobngwi, E.; Gbaguidi, E.; Kana, A.L.;
Nguefack-Tsague, G.; Von der Weid, D.; Njoya, O.; et al. Potential of Spirulina Platensis as a Nutritional
Supplement in Malnourished HIV-Infected Adults in Sub-Saharan Africa: A Randomised, Single-Blind
Study. Nutr. Metab. Insights 2011, 4, 29–37. [CrossRef] [PubMed]

32. Moura, L.P.; Puga, G.M.; Beck, W.R.; Teixeira, I.P.; Ghezzi, A.C.; Silva, G.A.; Mello, M.A. Exercise and
spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis.
2011, 10, 77. [CrossRef] [PubMed]

33. Laib, A.; Barou, O.; Vico, L.; Lafage-Proust, M.H.; Alexandre, C.; Rugsegger, P. 3D micro-computed
tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation
osteoporosis. Med. Biol. Eng. Comput. 2000, 38, 326–332. [CrossRef] [PubMed]

34. Jiang, S.D.; Shen, C.; Jiang, L.S.; Dai, L.Y. Differences of bone mass and bone structure in osteopenic rat models
caused by spinal cord injury and ovariectomy. Osteoporos. Int. 2007, 18, 743–750. [CrossRef] [PubMed]

35. Fournier, C.; Rizzoli, R.; Bouzakri, K.; Ammann, P. Selective protein depletion impairs bone growth and
causes liver fatty infiltration in female rats: Prevention by Spirulina alga. Osteoporos. Int. 2016, 27, 3365–3376.
[CrossRef]

36. Cheong, S.H.; Kim, M.Y.; Sok, D.E.; Hwang, S.Y.; Kim, J.H.; Kim, H.R.; Lee, J.H.; Kim, Y.B.; Kim, M.R.
Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet.
J. Nutr. Sci. Vitaminol. (Tokyo) 2010, 56, 34–40. [CrossRef]

37. Kim, M.Y.; Cheong, S.H.; Lee, J.H.; Kim, M.J.; Sok, D.E.; Kim, M.R. Spirulina improves antioxidant status by
reducing oxidative stress in rabbits fed a high-cholesterol diet. J. Med. Food 2010, 13, 420–426. [CrossRef]

38. Nyberg, F.; Burman, P. Growth hormone and its receptors in the central nervous system–location and
functional significance. Horm. Res. Paediatr. 1996, 45, 18–22. [CrossRef]

39. Forshee, B.A. The aging brain: Is function dependent on growth hormone/insulin-like growth factor-1
signaling? Age 2006, 28, 173–180. [CrossRef]

40. Laron, Z. Childhood-onset growth hormone deficiency, cognitive function and brain N-acetylaspartate.
Psychoneuroendocrinology 2006, 31, 680. [CrossRef]

41. Lazurova, I.; Pura, M.; Wagnerova, H.; Tajtakova, M.; Sedlakova, M.; Tomas, L.; Payer, J.; Hruzikova, P.;
Vanuga, P.; Podoba, J.; et al. Effect of growth hormone replacement therapy on plasma brain natriuretic
peptide concentration, cardiac morphology and function in adults with growth hormone deficiency. Exp. Clin.
Endocrinol. Diabetes 2010, 118, 172–176. [CrossRef] [PubMed]

42. Nashiro, K.; Guevara-Aguirre, J.; Braskie, M.N.; Hafzalla, G.W.; Velasco, R.; Balasubramanian, P.; Wei, M.;
Thompson, P.M.; Mather, M.; Nelson, M.D.; et al. Brain Structure and Function Associated with Younger
Adults in Growth Hormone Receptor-Deficient Humans. J. Neurosci. 2017, 37, 1696–1707. [CrossRef]
[PubMed]

43. van Dam, P.S.; de Winter, C.F.; de Vries, R.; van der Grond, J.; Drent, M.L.; Lijffijt, M.; Kenemans, J.L.;
Aleman, A.; de Haan, E.H.; Koppeschaar, H.P. Childhood-onset growth hormone deficiency, cognitive
function and brain N-acetylaspartate. Psychoneuroendocrinology 2005, 30, 357–363. [CrossRef] [PubMed]

44. Webb, E.A.; O’Reilly, M.A.; Clayden, J.D.; Seunarine, K.K.; Chong, W.K.; Dale, N.; Salt, A.; Clark, C.A.;
Dattani, M.T. Effect of growth hormone deficiency on brain structure, motor function and cognition. Brain
2012, 135, 216–227. [CrossRef]

45. Zhang, H.; Han, M.; Zhang, X.; Sun, X.; Ling, F. The effect and mechanism of growth hormone replacement
on cognitive function in rats with traumatic brain injury. PLoS ONE 2014, 9, e108518. [CrossRef]

46. Baumann, G. Genetic characterization of growth hormone deficiency and resistance: Implications for
treatment with recombinant growth hormone. Am. J. Pharmacogenomics 2002, 2, 93–111. [CrossRef]

http://dx.doi.org/10.1016/0273-1177(94)90293-3
http://dx.doi.org/10.1016/0278-6915(96)00000-2
http://dx.doi.org/10.1007/s00394-008-0740-9
http://dx.doi.org/10.1002/jsfa.7987
http://dx.doi.org/10.4137/NMI.S5862
http://www.ncbi.nlm.nih.gov/pubmed/23946659
http://dx.doi.org/10.1186/1476-511X-10-77
http://www.ncbi.nlm.nih.gov/pubmed/21569626
http://dx.doi.org/10.1007/BF02347054
http://www.ncbi.nlm.nih.gov/pubmed/10912350
http://dx.doi.org/10.1007/s00198-006-0299-3
http://www.ncbi.nlm.nih.gov/pubmed/17216554
http://dx.doi.org/10.1007/s00198-016-3666-8
http://dx.doi.org/10.3177/jnsv.56.34
http://dx.doi.org/10.1089/jmf.2009.1215
http://dx.doi.org/10.1159/000184753
http://dx.doi.org/10.1007/s11357-006-9005-9
http://dx.doi.org/10.1016/j.psyneuen.2005.12.004
http://dx.doi.org/10.1055/s-0029-1220688
http://www.ncbi.nlm.nih.gov/pubmed/19618345
http://dx.doi.org/10.1523/JNEUROSCI.1929-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/28073935
http://dx.doi.org/10.1016/j.psyneuen.2004.10.002
http://www.ncbi.nlm.nih.gov/pubmed/15694115
http://dx.doi.org/10.1093/brain/awr305
http://dx.doi.org/10.1371/journal.pone.0108518
http://dx.doi.org/10.2165/00129785-200202020-00003


Nutrients 2020, 12, 1187 18 of 19

47. Juul, A.; Kastrup, K.W.; Pedersen, S.A.; Skakkebaek, N.E. Growth hormone (GH) provocative retesting of
108 young adults with childhood-onset GH deficiency and the diagnostic value of insulin-like growth factor
I (IGF-I) and IGF-binding protein-3. J. Clin. Endocrinol. Metab. 1997, 82, 1195–1201. [CrossRef]

48. Coetzee, M.; Kruger, M.C. Osteoprotegerin-receptor activator of nuclear factor-kappaB ligand ratio: A new
approach to osteoporosis treatment? South. Med. J. 2004, 97, 506–511. [CrossRef]

49. Xu, F.; Gao, Z.; Zhang, J.; Rivera, C.A.; Yin, J.; Weng, J.; Ye, J. Lack of SIRT1 (Mammalian Sirtuin 1) activity
leads to liver steatosis in the SIRT1+/- mice: A role of lipid mobilization and inflammation. Endocrinology
2010, 151, 2504–2514. [CrossRef]

50. Barclay, J.L.; Nelson, C.N.; Ishikawa, M.; Murray, L.A.; Kerr, L.M.; McPhee, T.R.; Powell, E.E.; Waters, M.J.
GH-dependent STAT5 signaling plays an important role in hepatic lipid metabolism. Endocrinology 2011, 152,
181–192. [CrossRef]

51. Bao, Y.; Ma, X.; Yang, R.; Wang, F.; Hao, Y.; Dou, J.; He, H.; Jia, W. Inverse relationship between serum
osteocalcin levels and visceral fat area in Chinese men. J. Clin. Endocrinol. Metab. 2013, 98, 345–351.
[CrossRef] [PubMed]

52. Addai, D.; Zarkos, J.; Tolekova, A. The bone hormones and their potential effects on glucose and energy
metabolism. Endocr. Regul. 2019, 53, 268–273. [CrossRef]

53. Bae, S.J.; Choe, J.W.; Chung, Y.E.; Kim, B.J.; Lee, S.H.; Kim, H.Y.; Koh, J.M.; Kim, H.K.; Kim, G.S. The association
between serum osteocalcin levels and metabolic syndrome in Koreans. Osteoporos. Int. 2011, 22, 2837–2846.
[CrossRef] [PubMed]

54. Buday, B.; Kulcsar, E.; Literati Nagy, B.; Horvath, T.; Vitai, M.; Vecsei, I.; Bezzegh, K.; Kiss, J.; Peterfai, E.;
Koltay, L.; et al. [The role of osteocalcin in the connection of bone and glucose metabolism in humans].
Orv. Hetil. 2008, 149, 2453–2461. [CrossRef] [PubMed]

55. Chen, L.; Li, Q.; Yang, Z.; Ye, Z.; Huang, Y.; He, M.; Wen, J.; Wang, X.; Lu, B.; Hu, J.; et al. Osteocalcin,
glucose metabolism, lipid profile and chronic low-grade inflammation in middle-aged and elderly Chinese.
Diabet. Med. 2013, 30, 309–317. [CrossRef] [PubMed]

56. Guedes, J.A.C.; Esteves, J.V.; Morais, M.R.; Zorn, T.M.; Furuya, D.T. Osteocalcin improves insulin resistance
and inflammation in obese mice: Participation of white adipose tissue and bone. Bone 2018, 115, 68–82.
[CrossRef]

57. Wu, L.C.; Ho, J.A.; Shieh, M.C.; Lu, I.W. Antioxidant and antiproliferative activities of Spirulina and Chlorella
water extracts. J. Agric. Food Chem. 2005, 53, 4207–4212. [CrossRef]

58. Miranda, M.S.; Cintra, R.G.; Barros, S.B.; Mancini Filho, J. Antioxidant activity of the microalga Spirulina
maxima. Braz. J. Med. Biol. Res. 1998, 31, 1075–1079. [CrossRef]

59. Bhat, V.B.; Madyastha, K.M. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina
platensis: Protection against oxidative damage to DNA. Biochem. Biophys. Res. Commun. 2001, 285, 262–266.
[CrossRef]

60. Chaiklahan, R.; Chirasuwan, N.; Triratana, P.; Loha, V.; Tia, S.; Bunnag, B. Polysaccharide extraction from
Spirulina sp. and its antioxidant capacity. Int. J. Biol. Macromol. 2013, 58, 73–78. [CrossRef]

61. Koh, E.J.; Kim, K.J.; Song, J.H.; Choi, J.; Lee, H.Y.; Kang, D.H.; Heo, H.J.; Lee, B.Y. Spirulina maxima Extract
Ameliorates Learning and Memory Impairments via Inhibiting GSK-3beta Phosphorylation Induced by
Intracerebroventricular Injection of Amyloid-beta 1-42 in Mice. Int. J. Mol. Sci. 2017, 18, 2401. [CrossRef]

62. Khan, M.; Shobha, J.C.; Mohan, I.K.; Naidu, M.U.; Sundaram, C.; Singh, S.; Kuppusamy, P.; Kutala, V.K.
Protective effect of Spirulina against doxorubicin-induced cardiotoxicity. Phytother. Res. 2005, 19, 1030–1037.
[CrossRef] [PubMed]

63. Khan, M.; Shobha, J.C.; Mohan, I.K.; Rao Naidu, M.U.; Prayag, A.; Kutala, V.K. Spirulina attenuates
cyclosporine-induced nephrotoxicity in rats. J. Appl. Toxicol. 2006, 26, 444–451. [CrossRef] [PubMed]

64. Colla, L.M.; Oliveira Reinehr, C.; Reichert, C.; Costa, J.A. Production of biomass and nutraceutical compounds
by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 2007, 98,
1489–1493. [CrossRef] [PubMed]

65. Reddy, D.R.; Prassad, V.S.; Das, U.N. Intratumoural injection of gamma leinolenic acid in malignant gliomas.
J. Clin. Neurosci. 1998, 5, 36–39. [CrossRef]

66. Jenkins, A.P.; Thompson, R.P. Trophic effect of Efamol on the rat small-intestinal mucosa. Clin. Sci. (Lond.)
1989, 77, 555–559. [CrossRef]

http://dx.doi.org/10.1210/jcem.82.4.3892
http://dx.doi.org/10.1097/00007611-200405000-00018
http://dx.doi.org/10.1210/en.2009-1013
http://dx.doi.org/10.1210/en.2010-0537
http://dx.doi.org/10.1210/jc.2012-2906
http://www.ncbi.nlm.nih.gov/pubmed/23162093
http://dx.doi.org/10.2478/enr-2019-0027
http://dx.doi.org/10.1007/s00198-010-1504-y
http://www.ncbi.nlm.nih.gov/pubmed/21153019
http://dx.doi.org/10.1556/OH.2008.28518
http://www.ncbi.nlm.nih.gov/pubmed/19087913
http://dx.doi.org/10.1111/j.1464-5491.2012.03769.x
http://www.ncbi.nlm.nih.gov/pubmed/22913521
http://dx.doi.org/10.1016/j.bone.2017.11.020
http://dx.doi.org/10.1021/jf0479517
http://dx.doi.org/10.1590/S0100-879X1998000800007
http://dx.doi.org/10.1006/bbrc.2001.5195
http://dx.doi.org/10.1016/j.ijbiomac.2013.03.046
http://dx.doi.org/10.3390/ijms18112401
http://dx.doi.org/10.1002/ptr.1783
http://www.ncbi.nlm.nih.gov/pubmed/16372368
http://dx.doi.org/10.1002/jat.1159
http://www.ncbi.nlm.nih.gov/pubmed/16858688
http://dx.doi.org/10.1016/j.biortech.2005.09.030
http://www.ncbi.nlm.nih.gov/pubmed/17070035
http://dx.doi.org/10.1016/S0967-5868(98)90199-0
http://dx.doi.org/10.1042/cs0770555


Nutrients 2020, 12, 1187 19 of 19

67. Uccella, R.; Contini, A.; Sartorio, M. [Action of evening primrose oil on cardiovascular risk factors in
insulin-dependent diabetics]. La Clinica Terapeutica 1989, 129, 381–388.

68. Ishikawa, T.; Fujiyama, Y.; Igarashi, O.; Morino, M.; Tada, N.; Kagami, A.; Sakamoto, T.; Nagano, M.;
Nakamura, H. Effects of gammalinolenic acid on plasma lipoproteins and apolipoproteins. Atherosclerosis
1989, 75, 95–104. [CrossRef]

69. Maggioli, C.; Stagi, S. Bone modeling, remodeling, and skeletal health in children and adolescents: Mineral
accrual, assessment and treatment. Ann. Pediatr. Endocrinol. Metab. 2017, 22, 1–5. [CrossRef]

70. Buck, D.W., 2nd; Dumanian, G.A. Bone biology and physiology: Part II. Clinical correlates. Plast. Reconstr.
Surg. 2012, 129, 950e–956e. [CrossRef]

71. Buck, D.W., 2nd; Dumanian, G.A. Bone biology and physiology: Part I. The fundamentals. Plast. Reconstr.
Surg. 2012, 129, 1314–1320. [CrossRef] [PubMed]

72. Spangler, J.G. Bone biology and physiology: Implications for novel osteoblastic osteosarcoma treatments?
Med. Hypotheses 2008, 70, 281–286. [CrossRef] [PubMed]

73. Iwaniec, U.T.; Yuan, D.; Power, R.A.; Wronski, T.J. Strain-dependent variations in the response of cancellous
bone to ovariectomy in mice. J. Bone Miner. Res. 2006, 21, 1068–1074. [CrossRef] [PubMed]

74. Turner, C.H. Bone strength: Current concepts. Ann. N. Y. Acad. Sci. 2006, 1068, 429–446. [CrossRef]
75. Thompson, D.D.; Simmons, H.A.; Pirie, C.M.; Ke, H.Z. FDA Guidelines and animal models for osteoporosis.

Bone 1995, 17, 125S–133S. [CrossRef]
76. Bagi, C.M.; Wilkie, D.; Georgelos, K.; Williams, D.; Bertolini, D. Morphological and structural characteristics

of the proximal femur in human and rat. Bone 1997, 21, 261–267. [CrossRef]
77. Beaumont, M.; Portune, K.J.; Steuer, N.; Lan, A.; Cerrudo, V.; Audebert, M.; Dumont, F.; Mancano, G.;

Khodorova, N.; Andriamihaja, M.; et al. Quantity and source of dietary protein influence metabolite
production by gut microbiota and rectal mucosa gene expression: A randomized, parallel, double-blind trial
in overweight humans. Am. J. Clin. Nutr. 2017, 106, 1005–1019. [CrossRef]

78. Wang, Z.; Bergeron, N.; Levison, B.S.; Li, X.S.; Chiu, S.; Jia, X.; Koeth, R.A.; Li, L.; Wu, Y.; Tang, W.H.W.; et al.
Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism
and renal excretion in healthy men and women. Eur. Heart J. 2019, 40, 583–594. [CrossRef]

79. Pi, Y.; Gao, K.; Peng, Y.; Mu, C.L.; Zhu, W.Y. Antibiotic-induced alterations of the gut microbiota and microbial
fermentation in protein parallel the changes in host nitrogen metabolism of growing pigs. Animal 2019, 13,
262–272. [CrossRef]

80. Mafra, D.; Barros, A.F.; Fouque, D. Dietary protein metabolism by gut microbiota and its consequences for
chronic kidney disease patients. Future Microbiol. 2013, 8, 1317–1323. [CrossRef]

81. Nakatani, A.; Li, X.; Miyamoto, J.; Igarashi, M.; Watanabe, H.; Sutou, A.; Watanabe, K.; Motoyama, T.;
Tachibana, N.; Kohno, M.; et al. Dietary mung bean protein reduces high-fat diet-induced weight gain
by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochem. Biophys. Res.
Commun. 2018, 501, 955–961. [CrossRef] [PubMed]

82. Liu, C.W.; Chi, L.; Tu, P.; Xue, J.; Ru, H.; Lu, K. Quantitative proteomics reveals systematic dysregulations of
liver protein metabolism in sucralose-treated mice. J. Proteom. 2019, 196, 1–10. [CrossRef] [PubMed]

83. Hua, P.; Xiong, Y.; Yu, Z.; Liu, B.; Zhao, L. Effect of Chlorella Pyrenoidosa Protein Hydrolysate-Calcium
Chelate on Calcium Absorption Metabolism and Gut Microbiota Composition in Low-Calcium Diet-Fed
Rats. Mar. Drugs 2019, 17, 348. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0021-9150(89)90165-2
http://dx.doi.org/10.6065/apem.2017.22.1.1
http://dx.doi.org/10.1097/PRS.0b013e31824ec354
http://dx.doi.org/10.1097/PRS.0b013e31824eca94
http://www.ncbi.nlm.nih.gov/pubmed/22634648
http://dx.doi.org/10.1016/j.mehy.2007.06.013
http://www.ncbi.nlm.nih.gov/pubmed/17683874
http://dx.doi.org/10.1359/jbmr.060402
http://www.ncbi.nlm.nih.gov/pubmed/16813527
http://dx.doi.org/10.1196/annals.1346.039
http://dx.doi.org/10.1016/8756-3282(95)00285-L
http://dx.doi.org/10.1016/S8756-3282(97)00121-X
http://dx.doi.org/10.3945/ajcn.117.158816
http://dx.doi.org/10.1093/eurheartj/ehy799
http://dx.doi.org/10.1017/S1751731118001416
http://dx.doi.org/10.2217/fmb.13.103
http://dx.doi.org/10.1016/j.bbrc.2018.05.090
http://www.ncbi.nlm.nih.gov/pubmed/29777704
http://dx.doi.org/10.1016/j.jprot.2019.01.011
http://www.ncbi.nlm.nih.gov/pubmed/30660768
http://dx.doi.org/10.3390/md17060348
http://www.ncbi.nlm.nih.gov/pubmed/31212630
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Animal Care and Diets 
	Tissue Collection and Preparation 
	Bone Strength and Bone Mineral Content (BMC) Measurement 
	Biochemical Analysis 
	Antioxidant Enzyme Activities and Lipid Peroxide Measurement 
	Statistics 

	Results 
	Body Weight, Food Intake, Tissue Damage, and Blood Lipid Profile 
	Change of Organ Growth 
	Fat Accumulation during the Growth 
	Improvement of Length and Weight of Femur and Lumbar Spine by Spirulina 
	Enhanced Bone Strength via Higher Bone Mineral Content by Spirulina 
	Increased plasma Growth Hormone, IGF-1, and IGFBP-3 Levels by Spirulina 
	Increased Plasma Osteocalcin, Mineral, and Parathyroid Hormone (PTH) Levels Dose-Dependently 
	Increased Antioxidant Enzyme Activities and Reduced Lipid Peroxidation by Spirulina 

	Discussion 
	References

