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Overweight and obesity (OBT) is a serious health condition worldwide, and one of themajor
risk factors for cardiovascular disease (CVD), the main reason for morbidity and mortality
worldwide. OBT is the proportional increase of Adipose Tissue (AT) compared with other
tissue and fluids, associated with pathological changes in metabolism, hemodynamic
overload, cytokine secretion, systemic inflammatory profile, and cardiac metabolism. In
turn, AT is heterogeneous in location, and displays secretory capacity, lipolytic activation,
insulin sensitivity, and metabolic status, performing anatomic, metabolic, and endocrine
functions. Evidence has emerged on the bidirectional crosstalk exerted by miRNAs as
regulators between the heart and AT on metabolism and health conditions. Here, we
discuss the bidirectional endocrine role of miRNAs between heart and AT, rescuing
extracellular vesicles’ (EVs) role in cell-to-cell communication, and the most recent
results that show the potential of common therapeutic targets through the elucidation
of parallel and ⁄ or common epigenetic mechanisms.
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INTRODUCTION

MicroRNAs (miRNAs) are ~22-nt RNAs that posttranscriptionally repress translation of mRNA
targets in eukaryotic and prokaryotic lineages, and are transcripts within longer stem-loop RNA. The
latest release of miRBase v22 (https://www.mirbase.org/) contains miRNA sequences from 271
organisms: 38,589 hairpin precursors and 48,860 mature miRNAs. As an example, the human
genome contains 1,917 annotated hairpin precursors, and 2,654 mature sequences (Bartel, 2018;
Kozomara et al., 2019). The miRNAs are highly conserved between species, preferentially conserving
interactions with most human mRNAs, regulating a plethora of developmental processes and health
states at molecular, cellular, tissue, and physiological levels (Bartel, 2018). Several miRNAs have a
role in cardiovascular biology related to disease etiology and progression, revealing potential as
cardiovascular disease (CVD) biomarkers and therapeutic targets (Small and Olson, 2011).

Overweight and obesity (OBT) is a serious health condition worldwide, affecting respectively 1.9
billion and 650 million people, and consequently requiring treatment for several secondary diseases,
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like CVD, currently the main reason for morbidity and mortality
worldwide, which OBT is one of the major risk factors (Hashim,
2017). OBT consists of a body mass index (BMI) > 30 kg/m2

associated with a proportional increase of adipose tissue (AT)
compared with other tissue and fluids. This condition induces
pathological changes in metabolism, hemodynamic overload,
cytokine secretion, systemic inflammatory profile, and cardiac
metabolism. The AT depots are heterogeneous and they differ in
location, secretory capacity, lipolytic activation, insulin
sensitivity, and metabolic status, performing anatomic,
metabolic, and endocrine functions. (Christensen et al., 2020;
Zhang et al., 2020).

Recently, a body of evidence postulated that circulating
miRNAs act as endocrine factors, performing endocrine and
paracrine crosstalk between cells and tissues. Several
circulating miRNAs are implicated in physiological and
pathological processes related to metabolism (Ji and Guo,
2019). The concept of the heart as an endocrine organ arises
from the discovery of the atrial cardiomyocytes expressing
polypeptides with natriuretic properties: ANF and BNP, which
at present are biomarkers of cardiac stress (Garciá-Arias et al.,
2020). Currently, heart-enriched miRNAs are investigated as
biomarkers of cardiac diseases and cardiovascular system
(CVS) function regulators and some are known as systemic
metabolism regulators (van Rooij et al., 2007; Callis et al.,
2009; Grueter et al., 2012).

In this review, we discuss the role of miRNAs in the
bidirectional endocrine relationship between heart tissue and
AT in circulation, within extracellular vesicles (EVs) or not.
On the one hand, we summarized some miRNAs already
known to be enriched in AT and their regulatory mechanism
on cardiac function and morphology. Furthermore, we discuss
the epigenetic regulation performed by cardiac miRNAs in
crosstalk with AT, showing the latest evidence about common
regulation, parallel mechanisms, and the predictive and
therapeutic clinical potential of these tiny and powerful
molecules.

The Relationship Between Obesity,
Cardiovascular Diseases, and MiRNAs
OBT is a multi-causal metabolic disease that is associated with
hypertrophy and hyperplasia of white AT (WAT) (Rosen &
Spiegelman, 2014). Both AT hypertrophy process and
hyperplasia occur mainly due to excess food consumption
(calorie consumption) and low caloric expenditure (sedentary
lifestyle) (Heindel & Blumberg, 2019). These two processes in the
AT promote an increase in the number of immune cells in this
tissue, inducing a large production of pro-inflammatory
cytokines that are released into the circulation (Han et al.,
2020, Maurizi et al., 2018).

In addition to the inflammatory process, obesity configures an
inadequate supply of oxygen in the AT, inducing hypoxia in these
cells, activating hypoxia-inducible factor 1/(HIF-1), which leads
to apoptosis of adipose cells and also attenuates preadipocyte
differentiation, favoring the increase of the fibrotic process
(Buechler et al., 2015).

The association between inflammation and fibrosis leads to
AT dysfunction, insulin resistance, and endothelial dysfunction.
This scenario paves the way for the development of
cardiovascular and metabolic diseases, like hypertension
(Brandes, 2014; Longo et al., 2019; Battineni et al., 2021), type
2 diabetes (Avogaro, 2006), and coronary artery disease (CAD)
(Ganz & Hsue, 2013). The increase in AT cells also induces
hemodynamic overload, due to the increase of systolic volume of
the left ventricle (LV), a condition that in the long term will
promote pathological cardiac hypertrophy (CH), and systolic and
diastolic dysfunction that may go along with heart failure, which
in obese individuals is called OBT cardiomyopathy (Ren et al.,
2021).

All these pathological processes in OBT are linked to the
deregulation of signaling pathways which activates transcription
factors, regulates gene expression, and induces pathological
profiles of miRNAs. Several miRNAs have already been
described as deregulated in AT, in the differentiation of
mesenchymal stem cells to preadipocytes (Improta Caria et al.,
2018). Several dysregulated miRNAs in OBT were also associated
with the inflammatory (Arner & Kulyté, 2015) and fibrotic
processes (Caus et al., 2021). Some of these miRNAs have a
common expression pattern with other diseases, such as systemic
arterial hypertension (Improta-Caria et al., 2021) and type 2
diabetes (Improta-Caria et al., 2022).

MicroRNAs: Brief History, Biogenesis and
Function
MiRNAs were initially discovered during analyzes of the
progression from the first larval stage (L1) to L2 of the
nematode Caenorhabditis elegans, in which the decrease in the
expression of the LIN-14 protein was essential for the
development of the worms. In addition, the downregulation of
LIN-14 occurred due to the progressive transcription of another
gene, known as LIN-4, short single strand RNAs, which were not
translated into protein and adversely transcribed two small RNAs
about 22–61 nucleotides in length, and with complementarity in
the 3′-untranslated regions (UTR) of the LIN-14 mRNA (Lee
et al., 1993). Subsequently, the hybridization in these
complementary regions was linked with a decrease in the LIN-
14 protein content, without impacting the decrease in the
expression of its transcript (Wightman et al., 1993).

Following these findings, other researchers identified another
small RNA known as let-7 that promoted the adult larval stage of
C. elegans (Reinhart et al., 2000). Interestingly, let-7 has also been
identified in humans (Pasquinelli et al., 2000), drawing the
attention of several researchers around the world. In the
following years, several research groups began to further
investigate the role of these small RNAs in different
organisms, demonstrating their biogenesis and their regulatory
function (Lee et al., 2002; Ambros, 2004; Pfeffer et al., 2005;
Roush & Slack., 2008; Morlando et al., 2008).

MiRNA biogenesis is a multi-molecular-step process that
starts in the nucleus and ends in the cytoplasm with the
synthesis of mature miRNA (Kim, 2005). The miRNAs are
processed from a precursor molecule, referred to as primary
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transcript (pri-miRNA), which is transcribed initially by the RNA
polymerase II (Lee et al., 2004; Treiber et al., 2019). This enzyme
transcribes the pri-miRNA, which contains one or more
sequences that are enveloped in a stem-loop structure. In the
nucleus, pri-miRNA receives two cleavages between the lower
and upper stems of its structure by Drosha, an RNase III-like
enzyme (Davis et al., 2010). It acts together with cofactors
including an essential subunit protein, the DiGeorge syndrome
chromosomal region 8 (DGCR8). Drosha and DGCR8 processing
steps form themicroprocessor complex tomature the pri-miRNA
into pre-miRNA (Denli et al., 2004; Wang et al., 2007). After
processing by Drosha, a long transcript is enveloped in a stem-
loop intermediate structure, an ~75 nucleotides called precursor
(pre-miRNA) (Krol et al., 2010).

The product of Drosha cleavage is exported to the cytoplasm
by Exportin 5, where the next cleavage occurs by Dicer, an RNase
III-like endonuclease (Ketting et al., 2001; Yi et al., 2003; Zeng
and Cullen, 2004; Okada et al., 2009; Fisher et al., 2011). Dicer
cleaves the pre-miRNA hairpin into a miRNA duplex about 25
nucleotides in length (Hutvágner et al., 2001). After the Dicer
process, the mature miRNA is incorporated into the RNA-
induced silencing complex (RISC), generating the (mi-RISC)
complex. This mi-RISC induces downregulation of target
genes, modulating gene expression. (Chakravarthy et al., 2010;
Horman et al., 2013). Next, the mature miRNA associated with
miRISC binds to the 3′-UTR of the target mRNA causing
degradation, deadenylation, or inhibition of translation of this
gene. Impressively, a single miRNA can have multiple mRNA
targets, inducing epigenetic regulation of gene expression at the
post-transcriptional level and modulation of several signaling
pathways (Samanta et al., 2016; Bartel, 2018).

Adipose Tissue Diversity of Depots and
Function
AT is a crucial organ in human anatomy as it plays a key role in
regulating body energy and glucose homeostasis. It has effects on
physiology and pathophysiology by displaying relevant tasks in
lipid handling, energy storage compartment, insulation barrier,
and secretion of endocrine mediators such as adipokines or
lipokines (Vegiopoulos et al., 2017). Finally, AT is considered
a highly active metabolic and endocrine organ (Kershaw and
Flier, 2004).

AT is composed of several cells and components, including
adipocytes (the most common cell type), lymphocytes,
macrophages, fibroblasts, endothelial cells, and extracellular
matrix (Corrêa et al., 2019). Morphologically, some types of
AT have been identified in humans, namely white, brown, and
beige or “brite” (brown-in-white). This classification is based on
the colorful diversity and predominant presence of adipocytes: in
WAT, there is a significant presence of white adipocytes; in
brown AT (BAT), brown adipocytes are mainly present.
Considering the plasticity of AT and its ability to proliferate,
differentiate, and transdifferentiate, the third type of adipocyte,
beige (BeAT) results from white adipocytes that have acquired
phenotypic brown features in response to different stimuli, in a
process called “browning” (Pilkington et al., 2021).

The WAT can also be classified by location, as subcutaneous
(under the skin) and visceral/omental (intra-abdominally,
adjacent to internal organs). In addition, WAT is confined to
defined depots in healthy individuals but in certain conditions
like OBT and lipodystrophy, WAT mass can ectopically increase
in areas such as the visceral cavity, including intrahepatic fat,
epicardial fat (EAT) in the pericardium, perivascular fat (PVAT)
surrounding major blood vessels, and visceral fat (VAT), which
comprises mesenteric fat, omental fat, and retroperitoneal fat
(Chait and den Hartigh, 2020).

AT types can be found in specific anatomical sites throughout
the body and each one has displayed distinct characteristics and
functions: whereas WAT adipocytes are associated with storage
and release of energy during fasting periods (Torres et al., 2015),
BAT adipocytes have thermogenic properties, burning glucose
and lipids to maintain thermal homeostasis during periods of low
temperature and hibernation (Rosen and Spiegelman, 2014).
Despite similarities to brown adipocytes, BeAT adipocytes can
undergo a thermogenic or storage phenotype depending on
environmental conditions (Zoico et al., 2019).

As an endocrine organ, AT responds to physiological cues or
metabolic stress, releasing endocrine factors that regulate energy
expenditure, appetite control, glucose homeostasis, insulin
sensitivity, inflammation, and tissue repair. WAT and
thermogenic BAT and BeAT also secrete endocrine molecules,
such as adipokines, lipokines, miRNAs, and other
noncoding RNAs.

Recent findings emphasize the endocrine role of white versus
thermogenic adipocytes in conditions of cardiac health and
disease (Scheja and Heeren, 2019). Furthermore, AT secretes
molecules, directly or via extracellular vesicles (EVs) (including
exosomes and nano-sized vesicles generated from late
endosomes), containing proteins, lipids, and nucleic acids,
such as miRNAs which recently have been investigated as
epigenetic mediators of endocrine and paracrine effect between
AT and other tissues, like the cardiac (Hartwig et al., 2019; Zhang
Y. et al., 2019).

Exosomes and Circulating MiRNAs as
Epigenetic Mediators in the Cardiovascular
System and Adipose Tissue Crosstalk
The last decade increased understanding of the adipocytes’ role in
health and disease. There is growing evidence implicating
extracellular vesicles miRNAs (EVs-miRNAs) and circulating
miRNAs mediating intercellular and inter-organ
communication. These miRNAs are classified as extracellular
miRNAs, since they are detected in an extracellular
environment, as biological fluids and cell culture media.

EVs are systemic messengers that can deliver signaling
molecules. Exosomes, microvesicles, and apoptotic bodies are
the most important EVs and have distinct biogenesis pathways
sizes and types (Mathieu et al., 2019). Adipocytes are a major
source of EVs-containing miRNA in circulation. An increasing
number of studies have shown that EVs and their cargo play
important roles in cellular crosstalk between cells and tissues, and
therefore can regulate disease and health conditions.
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Nevertheless, the detailed mechanisms in these complex fields are
far from being completely elucidated, comprising the interaction
between the biogenesis of miRNAs and the biogenesis and
maturation of EVs in several tissues and cells related to CVD
and AT (Turchinovich et al., 2012; Kranendonk et al., 2014; Fang
et al., 2016; Sluijter et al., 2018).

The accurate characterization of EVs is limited by the
technical difficulty in isolating and characterizing pure tissue-
specific populations and their subtypes since the current methods
are mainly based on the co-isolation of EVs of distinct subcellular
origins. Many studies use ‘exosome’ referring to a mixture of
small EVs of both exosomal and nonexosomal nature, due to poor
specificity of the physical processes for isolation and purification
of EVs. Thus, unless the EVs’ origin has been clearly stated, it may
be preferable to use the generic term ‘small EVs’ instead of
‘exosomes’, which range 10–200 nm in diameter (Mathieu
et al., 2019). Given the complexity of processes and technical
limitations to investigating exosomal miRNAs, it is a promising
and challenging field to elucidate tissue crosstalk, including AT
and CVD. Furthermore, there is a recent and growing body of
evidence that miRNAs content in AT exosomes plays key roles in
cardiovascular processes, clinically reinforcing obesity as a CVD
risk factor. Similarly, there are established cardiac-enriched
miRNAs that can regulate AT depots via systemic metabolism
and other biological processes, which will be addressed in the
last topic.

The Endocrine Function of Adipose
Tissue-Enriched MiRNAs on the
Cardiovascular System
In OBT, AT increases the size and number of adipocytes, storing
more triglycerides. Additionally, AT synthesizes and releases
hormones called “adipokines”, like leptin and adiponectin, and
other factors which affect biological pathways, at autocrine,
paracrine, and endocrine levels, including the regulation of
whole-body energy homeostasis (Patel et al., 2017). In this
condition, AT can become unhealthy as adipocytes lose their
ability to store triglycerides adequately, have impaired energy
expenditure, and become insulin resistant. Consequently, fatty
acids are released into the circulation and accumulate in other
organs, causing cellular stress, disturbed metabolism, and altered
secretion of endocrine factors, regarded as a hallmark of chronic
metabolic and CVD (Reilly, 2017; Scheja and Heeren, 2019).

The evidence postulates that AT-derived circulating miRNAs
are currently described as a new form of adipokines (Thomou
et al., 2017). Circulating (or extracellular) miRNAs are freely and/
or carried within exosomes, lipoproteins, and blood cells, from
cells that express them to cells that receive them (Sohel, 2016).
Recent evidence shows that AT is the main source of all
circulating exosomal miRNAs, in humans and mice. Knockout
Dicer-deficient (ADicerKO) mice present lipodystrophic
phenotype and AT-deficient miRNA processing, decreasing
AT-derived miRNA expression. Similarly, lipodystrophy
decreases the levels of circulating exosomal miRNAs compared
to healthy people. Among 653 miRNAs in serum EVs, 419
decreased in fat-specific DicerKO mice, 88% by more than

four-fold. (Thomou et al., 2017). In summary, 216 miRNAs
decreased in patients with lipodystrophy compared to healthy
people and 30 common miRNAs decreased between ADicerKO
and patients, which shows that AT releases numerous miRNAs
via exosomes that may be involved in cell-to-cell epigenetic
regulation and the regulation between health and CVD
(Thomou et al., 2017). Inversely, transplantation of wild-type
mice-derived WAT and BAT into ADicerKO mice restored
exosomal miRNAs and improved glucose tolerance, showing
evidence that AT-miRNAs are also crucial for regulating
energy metabolism, and their expression is associated with a
proper function of AT (Thomou et al., 2017). The transplantation
with BAT and WAT into ADicerKO mice restored miR-325 and
miR-743b (predicted to target UCP-1) and miR-98 (predicted to
target PGC1α) for BAT and miR-99 for BAT and WAT,
suggesting that AT-secreted miRNAs may have both paracrine
and endocrine actions. In addition, pediatric obesity presents an
increase in 16 circulating miRNAs previously associated with
nonalcoholic fatty liver disease, reinforcing that free and
exosomal miRNAs are released from AT cells to influence
several tissues and biological processes, including
cardiovascular health regulation (Thompson et al., 2017).

MEG-3 is a long-noncoding RNA involved in the imprinting
of maternal genes that sponges miR-325. Hypoxia-reperfusion in
H9c2 cardiomyoblast cells increases MEG-3, decreases miR-325,
and increases the protein content of target TRPV4. TRPV4 is a
Calmodulin-dependent Ca2+ channel that regulates Ca2+

concentration in excitable cells and, concomitantly in
adipocytes, regulates the expression of chemokines and
cytokines related to pro-inflammatory pathways. This entire
process denotes not only miRNAs crosstalking but also that it
could protect or enhance the response to ischemic injury (Zhou
et al., 2021). Furthermore, Hsa-miR-325 is elevated in normal
pregnancies and decreases in preeclampsia patients, being
implicated in preeclampsia etiology (Lázár et al., 2012). In
ApoE−/− mouse with atherosclerosis, miR-325 increases in
arterial tissues of atherosclerotic mice, and miR-325 inhibition
reduces the contents of total cholesterol, triglyceride, low-density
lipoprotein, and CRP, IL-6, IL-1β and TNF-ɑ levels in mouse
serum. In vitromiR-325 inhibition decreased the lipid content in
RAW264.7 macrophage cells via KDM1A to reduce SREBF1
expression and activated the PPARγ-LXR-ABCA1 pathway.
KDM is a demethylase that regulates lipogenic genes (Pu
et al., 2021). LXRs are expressed in the murine heart in the
basal state and are activated by myocardial infarction, also
associated with an intracardiac accumulation of lipid droplets
and protection against myocardial ischemia-reperfusion injury
(Lei et al., 2013). PPARγ is a nuclear receptor that stimulates lipid
and glucose utilization by increasing mitochondrial function and
fatty acid desaturation pathways, being crucial for cardiac
function and metabolism (Montaigne et al., 2012). PPARγ also
is a regulator of AT signaling and plays a crucial role in insulin
sensitivity, making it an important therapeutic target. Moreover,
PPARγ activation increases cardiac hypertrophy and oxidative
stress in mice. Cocultures of adipocytes and cardiomyocytes
showed that stimulation of PPARγ signaling in adipocytes
increased miR-200a expression and secretion. Delivery of
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miR-200a in adipocyte-derived exosomes to cardiomyocytes
inhibits TSC1 and activates the mTOR pathway, leading to
CH. Inhibition of miR-200a abrogated the CH, clarifying that
the miRNA cargo in EVs can change cardiac phenotypes and
showing evidence of endocrine crosstalk between heart and AT
performed by EVs (Fang et al., 2016).

In a single study using a rat model in a time course in
transverse constriction of the Aorta, cardiac miR-743b acutely
increased over 2-fold after 5 days compared with 10, 15, and
20 days of pressure overload. The increase was associated with
pathological remodeling and CH; however, additional
investigation is needed to assess if EVs circulating AT miR-
743b has some additive effect on the cardiac remodeling
phenotype (Feng et al., 2014).

In a murine model for cardiac allograft transplantation, miR-
98 plays a role in regulating interleukin (IL)-10 expression in
B cells (B10 cell) after heart transplantation. The miR-98
inhibition, cortisol inhibition, and transfer with B10 cells
enhanced the survival rate and time of transplanted mice
(Song et al., 2017). In the first atlas of miRNA profile using
internal mammary artery from 192 CAD disease patients, miR-98
was significantly correlated with acute myocardial infarction
occurrence, suggesting that this AT-enriched miRNA is also
related to the regulation of cardiac function (Neiburga et al.,
2021). In addition, miR-98 in human fibroblasts inhibits TGF-β1-
induced differentiation and collagen production of cardiac
fibroblasts targeting TGFβR1, performing a role in the fibrotic
phenotype, present in all cardiac diseases (Cheng et al., 2017).
Finally, miR-98 is downregulated in myocardial infarct injury
(MII) and neonate primary culture of cardiomyocytes in response
to H2O2 stress. Additionally, miR-98 overexpression protected
cardiomyocytes against apoptosis by its target Fas, inhibiting the
Caspase-3 apoptotic pathway (Sun et al., 2017).

Adipocytes-enriched miRNAs play an essential role in
regulating gene expression and cell-to-cell communication,
through mRNA downregulation, therefore interfering in a
multitude of biological processes (Eichhorn et al., 2014; Heyn
et al., 2020). OBT changes drastically the profile of the AT-
enriched miRNAs, influencing circulating and exosomal miRNAs
content. Consequently, aberrant intra- and extracellular miRNAs
profiles can induce crosstalk between AT, liver, skeletal muscle,
and other organs, which impacts the development of different
cancers and metabolic CVD (Muralimanoharan et al., 2015; Sala
et al., 2021). There is evidence that OBT and weight loss alter the
profile of circulating miRNAs in humans and mice, affecting
pathways associated with body mass index (BMI), and others
such as percent fat mass, waist-to-height ratio, and plasma
adipokine levels. The compared whole profile of circulating
miRNAs pre- and post-surgery weight loss in 6 morbidly
obese patients showed that the most relevant circulating
miRNAs differences were the increased expression of miR-
142-3p, miR-140-5p, and miR-222 and the decreased
circulating concentrations of miR-221, miR-15a, miR-520c-3p,
miR-423-5p, and miR-130b (Ortega et al., 2013; Lörchner et al.,
2021). Additionally, the plasma concentrations of all were
associated with BMI and most of them with fat mass and
waist circumference. Interestingly, the 2 major targets for the

in silico intersection between miR-142-3p and miR-140-5p
(LIFR) and between miR-15a and miR-520c-3p (VEGFA) were
significantly associated with the circulating values of their specific
transcriptional regulators. The plasma content of LIFR (a
cardioprotective IL-6 receptor), was negatively correlated with
the circulating concentrations of miR-142-3p, and miR-140-5p,
whereas miR-15a and miR-520c-3p were negatively correlated to
circulating VEGFA (Ortega et al., 2013; Lörchner et al., 2021).
There are several AT-enriched and OBT-related miRNAs with
concomitant roles in heart phenotypes. The large-scale mapping
of the epigenetic regulations between heart and AT at the
systemic level may shed light on corrective post-translational
multi-gene therapies.

Another study elucidates the metabolic influence in
endocrine crosstalk of miRNAs performed between AT and
CVS and delineates a molecular mechanism by which
dysfunctional adipocytes could exacerbate myocardial
infarct injury (MII) via EVs-miRNAs. The transplantation
of diabetic epididymal fat or intramyocardial or systemic
administration of diabetic adipocyte EVs in MII mice
exacerbated the injury in nondiabetic mice. Inversely, the
injection of an EVs’ biogenesis inhibitor abrogated the
additional deleterious effect and improved cardiac function
post-MI, increasing dP/dt (max) compared with MII vehicle
mice. MiR-130b-3p was implicated in the mechanism due to
an increase in diabetic patients’ plasma and mice diabetic
adipocyte, serum, and EVs. In addition, mimic for miR-
130b-3p increased and miR-130b-3p inhibitor decreased
MII injury, via direct targets such as AMPKα1/α2, BIRC6,
and UCP3, showing a direct mechanistic relationship between
miRNAs, AT, and cardiac injury (Gan et al., 2020).

Considering the established EAT and PAT bidirectional effects
on cardiovascular health via the production and secretion of
adipokines (Patel et al., 2017), and AT circulating miRNAs
emerging as multilevel epigenetic regulators with functional
and structural roles in CVS, additional investigation into the
miRNAs crosstalk between AT and CV tissue is crucial and has
clear clinical potential as therapeutic targets and biomarkers for
the assessment of metabolic disorders and obesity-related
diseases. In this way, the next topics will show and discuss the
bidirectional relationship between AT and CVS miRNAs,
rescuing the functional evidence on this issue in an
extracellular environment.

Epicardial and Pericardial Adipose Tissue
MiRNAs
Epicardial and Pericardial AT (EAT and PAT, respectively) are
anatomically and biochemically distinct and have different
cellular origins. EAT lies between the outer wall of the
myocardium and the visceral layer of the pericardium, while
PAT lies between the visceral and parietal pericardium. Since no
fascia separates the tissues, EAT is in direct contact and
communication with the myocardium, in the atrioventricular
and interventricular grooves, and alongside the coronary arteries
of the human heart. PAT splits to form the parietal pericardium
and the outer thoracic wall. EAT differentiates from
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splanchnopleuric mesoderm, whereas PAT arises from the
primitive thoracic mesenchyme (Iacobellis, 2009; Zhang et al.,
2020).

Translational studies are also interesting approaches to
overcome challenges and current limitations to evidence EVs’
crosstalk between AT and CVS among species. Microscopic
analyses show inflammatory, fibrotic, and apoptotic
phenotypes in fresh and cultured EAT tissues from CVD and
Atrial Fibrillation (AF) patients. AF-EVs presented a high
expression of profibrotic (miR-146b) and low expression of
antifibrotic miRNAs respectively (miR-133a, miR-29a).
Concomitantly, EVs harvested from AF-EAT patients
exacerbated fibrotic phenotype in rats and changed
electrophysiological properties facilitating arrhythmias in
cardiomyocyte-hiPSC culture, reinforcing the evidence of the
paracrine and endocrine effect of AT miRNAs in cardiac cells
predisposing to the disease, i.e., showing the crosstalk between
EAT and heart phenotypes via miRNAs as endocrine effectors
(Shaihov-Teper et al., 2021). The role of miR-29a, -133a and
-133b, and -146 on cardiac fibrosis, function, and remodeling is
well established and does not require additional comments (Carè
et al., 2007; Van Rooij et al., 2008; Li et al., 2012; Feng et al., 2017).

In humans, the evidence that the EAT is an active
endocrine organ is robust. EAT is metabolically active and a
source of several adipokines, potential interactions through
paracrine or autocrine mechanisms between epicardial fat and
the myocardium regulating between healthy and disease state.
The PAT as a source of adipokines is still partially unknown,
being more related to atherosclerosis and CAD. However, it is
possible that PAT interacts paracrinally with the pericardium
tissue and EAT. EAT is very metabolically active, therefore,
lipolysis and fatty acid synthesis are greater in EAT compared
to visceral fat, and PAT, and EAT adipocytes are smaller than
other AT cells (Christensen et al., 2020).

Considering that PAT has more potential to release
inflammatory cytokines than subcutaneous fat, it is interesting
to investigate its interaction with EAT to explain gene etiology
and CAD regulation (Ding et al., 2008; Iacobellis, 2009; Hassan
et al., 2020; Zhang et al., 2020). An increased EAT thickness has
become a new risk factor for CAD. A study already aimed at
identifying the miRNA profile role of EAT dysfunction as a CAD
marker. EAT miRNA array profiles from 150 CAD sudden
cardiac death victims and 84 non-CAD-sudden death controls
were prospectively enrolled at autopsy and showed the following
EAT miRNA profile candidates for dysregulation: miR-34a-3p,
miR-34a-5p, miR-124-3p, miR-125a-5p, miR-628-5p, miR-1303,
miR-4286 related to atherosclerosis and plaque destabilization
pathways. MiR-34a-3p and miR-34a-5p were higher in CAD,
were positively correlated with age, and were validated as
biomarkers of CAD, independently of thickness and plaque
formation (Marí-Alexandre et al., 2019).

MiR-34a is regarded as an effector for endocrine AT-CVS
crosstalk. The evidence shows it as reinforcing loss of function in
CVS by several pathways. MiR-34 levels are relatively low in the
CVS, but recently they have been reported to be increased in
cardiovascular disorders. MiR-34a is a predictive biomarker in
mice after myocardial infarct injury (MII) and presents low

expression in healthy hearts (Li et al., 2015; Qipshidze Kelm
et al., 2018). The inhibition miR-34 family has been investigated
as therapeutic for CVD by regulating apoptosis, telomere waste,
DNA damage (targeting PNUTS), inflammatory response (KLF4,
SEMA4b, BCL6), inotropic and excitability (Vinculin), and
cardiac fibrosis (ALDH2) (Bernardo et al., 2012; Boon et al.,
2013; Li et al., 2015; Qipshidze Kelm et al., 2018). In mice, they
have the same seed sequence, suggesting their common target
mRNAs. In human beings, miR-34a and miR-34c have the same
seed sequence, and miR-34b has three short nucleotide sequences
identical to miR-34a and miR-34c, showing that the target
mRNAs may change between species and miRNAs (Li et al.,
2015). The circulating miR-34a expression in AT progressively
enhances with the development of diet-induced OBT. Inversely,
adipocyte-specific miR-34a-KO mice are resistant to OBT-
induced glucose intolerance, insulin resistance, and systemic
inflammation, related to a significant shift in the polarization
of adipose-resident macrophages from pro-inflammatory M1 to
anti-inflammatory M2 phenotype (Pan et al., 2019). Finally, miR-
34a can inhibit fat browning by suppressing the browning
activators FGF2 and SIRT1 in mice, showing a dual role as a
therapeutic target for CVD and OBT (Fu et al., 2014).

MiR-99 family comprises miR-99a, miR-99b and miR-100.
They show very similar sequences and identical seeds. MiR-100
has one different nucleotide compared to miR-99a, and four
compared to miR-99b. MiR-99a, in turn, differs from four
nucleotides compared to miR-99b. This family, in addition to
being enriched in AT, also concomitantly shows a regulatory role
between physiological and pathological CH, with apoptosis and
growth processes in both in vitro and in vivo settings. (Ramasamy
et al., 2015, 2018). Swimming exercise training showed a miRNA
profile by RNAseq in which miR-99b and miR-100 were
downregulated (Ramasamy et al., 2015). In addition,
physiological and pathological CH was induced in H9c2 cells
by treatment with α2-macroglobulin and Isoproterenol,
respectively. The miR-99b and miR-100 were downregulated
in physiological CH and upregulated in pathological CH
targeting AKT-1. Upstream, EGR-1 superexpression binds to
the promoter and induces miR-99b and miR-100 expression,
and downstream, AKT-1 silencing replicates the effect of
overexpression of miR-99, showing the mechanism by which
this regulation occurs through this AT-enriched family of
miRNAs (Ramasamy et al., 2018).

Therefore, a clipping was performed here to demonstrate the
potentiality of the crosstalk between AT and heart via miRNAs.
There is a vast field to be clarified in this sense, with very
comprehensive clinical perspectives regarding therapies and
detection methods. In the next topic, we will discuss the other
side of bidirectional crosstalk from the heart to AT.

Cardiac Enriched MicroRNAs: The Heart as
an Endocrine Organ
The evidence of the heart as an endocrine organ emerged from
studies that showed that the atrial cardiomyocytes in the
mammalian heart could perform roles similar to endocrine
cells, by the expression of ANF, BNP, and CNP in circulation.
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These molecules, known as natriuretic peptides, displayed
paracrine functions related to blood volume regulation, cardiac
output, and serum concentrations of sodium and total body
water. These studies were the guideline for identifying new
molecules linked to the contractile function of the heart
(Garciá-Arias et al., 2020).

The first evidence of a miRNA as a regulator of systemic
metabolism related to the endocrine role of the heart emerged by
miR-208a, which pharmacologic inhibition by injections induced
resistance to obesity in animals fed with a high-fat diet (Grueter
et al., 2012). MiR-208a is cardiac-specific and is encoded by the α-
myosin heavy chain (MHC) gene. This miRNA up-regulates β-
MHC by directly targeting PURβ and SOX-6 together with miR-
208b and miR-499, also called myomiRs, which share a similar
seed sequence. β-MHC has an ATPase activity slower than α-
MHC and is a pathological CH and cardiac stress marker (Van
Rooij et al., 2007; van Rooij et al., 2009). Therefore, miR-208a is
considered an epigenetic biomarker of myocardial stress, having a
high predictive potential in several pathological conditions (Callis
et al., 2009; Ji et al., 2009; Boštjančič et al., 2010; Satoh et al., 2010).
Grueter et al. (2012) by several mechanism studies, including
transgenic mice models, showed that MED13 is a target of miR-
208, which triggers systemic and cardiac metabolic actions of
miR-208a, and indirectly regulates β-MHC expression. In
addition, cardiac-specific gain and loss of function of MED13
in mice established a crucial role in the governance of whole
metabolism and the control of energy expenditure pathways by
regulating the action of nuclear receptors. Cardiomyocyte-
specific overexpression of MED13 in mice conferred a lean
phenotype by enhancing metabolism in white AT and the
liver, and O2 consumption, without increasing food
consumption. The epigenetic mechanism of systemic
metabolism regulation via miR-208 is not yet fully elucidated.
However, miR-208a increases in several cardiovascular diseases,
including heart failure. Considering the systemic, cardiac, and
metabolic changes arising from severe cardiac diseases, there is

evidence of a systemic-metabolic down-regulation of
transcription role performed by nuclear receptors on metabolic
genes profile and a possible relationship with mitochondrial
dysfunction (Gan et al., 2013). Additionally, there is a glimpse
of miR-208a inhibition in a clinical perspective for OBT and CVD
by metabolic gene expression, considering that the challenge to
therapies towards miRNAs lies in controlling the expression in an
acceptable physiological range, beyond improved
oligonucleotides, deliveries, and vectors.

Other noncardiac-specific myomiRs that are highly expressed
and involved in AT regulation are miR-1, and miR-133, miR-378.
In addition, there are others that present lower baseline
expression, such as miR-208a, and for which the studies show
involvement in metabolism in disease, such as miR-21, and the
miR-34 andmiR-30 families, which may play a reinforcing role in
regulating phenotypes.

MiR-133 was first characterized in mice. Its homologs were
identified in several other species, including the human genome
in which miR-133 genes comprise miR-133a-1, miR-133a-2, and
miR-133b located on chromosomes 18, 20, and 6. Importantly,
miR-133a-1 and miR-133a2 have identical nucleotide sequences,
whereas miR-133b differs in the last 2 nucleotides at the 3′-
terminus. MiR-133a-1, miR-133a-2, and miR-133b are
bicistronically transcribed with miR-1-2, miR-1-1, or miR-206,
with low genomic distances between the miRNA coding regions.
Cardiac miR-133 has a crucial role in cardiac remodeling in
response to several stresses (Matkovich et al., 2013). The
decreased expression of miR-133 is correlated with the
increased severity of HF and a high NT-proBNP concentration
(Danowski et al., 2013). In animal models, miR-133 also regulates
cardiac fibrosis, electrical activities apoptosis, and gene
reprogramming by targeting a plethora of targets (Li et al.,
2018). Outside CVS, miR-133 controls BAT fate determination
in skeletal muscle satellite cells (SMSC) targeting the PRDM16
gene, regulating the choice between myogenic and brown adipose
determination. Since brown adipocytes derive from myogenic

FIGURE 1 | Representative Scheme of miRNAs secreted by AT and heart with their respective biological processes involved in bidirectional crosstalk between
tissues. Parts of the figure were drawn using pictures from Servier Medical Art (https://smart.servier.com/). Servier Medical Art by Servier is licensed under a Creative
Commons Attribution 3.0 Unported License.
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progenitors during embryonic development, PRDM16, highly
expressed in WAT and myogenic cells, performs the role of a
crucial regulator in BAT adipogenesis. Thus, miR-133 also
becomes an important therapeutic target to treat obesity, in
addition to cardiovascular function (Yin et al., 2013). As the
miR-133 family is highly expressed in muscle tissues and
decreases both CH and skeletal muscle hypertrophy, and this
miRNA regulates the differentiation and proliferation by cell
cycle targets and transcription factors, this family is an interesting

target for whole approaches for CVD, metabolic disease and
obesity.

The miR-378 family also is highly expressed in heart and has
11 members (miR-378a-3p/b/c/d/e/f/g/h/i/j and miR-422a).
Although they are encoded by different genomic loci, they
share identical seed sequences, and the family is conserved
between humans and rodents. MiR-378 family targets 4
mRNAs of the MAPK pathway: MAPK1, IGF1, and GRB2
displaying epigenetic regulation of CH in cardiomyocytes.

TABLE 1 | miRNAs secreted by adipose tissue and heart and targets potentially involved in bidirectional crosstalk.

Adipose tissue-enriched miRNAs with cardiovascular functions

miR Target Model References

miR-325
miR-743b

UCP-1 TRPV4 Mice Thomou et al. (2017)
Rat Feng et al. (2014)
cells Cheng et al. (2017)

Zhou et al. (2021)
miR-98 PGC1α TGFβR1 Mice cells Cheng et al. (2017)

Song, et al. (2017)
Neiburga et al. (2021)
Sun et al. (2017)

miR-142-3p LIFR VEGFA Humans Lörchner et al. (2021)
miR-140-5p
miR-222
miR-221
miR-15a Ortega et al. (2013)
miR-520c-3p
miR-423-5p
miR-130b
miR-200a TSC1 Cells Fang et al. (2016)
miR-130b-3p AMPLα1/α2BIRC6 UCP3 Mice Gan et al. (2013)

Epicardial and Pericardial Adipose
Tissue miRNAS
miR Target Model References
miR-133a Human explants Shaihov-Teper et al. (2021)
miR-133b
miR 29a
miR-34a-3p PNUTSKLF4 SEM4b BCL6 ALD2 Humans mice Mari-Alexandre et al. (2019)

Bernardo et al. (2012)
Boon et al. (2013)
Li et al. (2015) Qipshidze
Kelm et al. (2018)

miR-34a-5p
miR-124-3p
miR-125a-5p
miR-658-5p
miR-1303
miR-4286
miR-99a AKT-1 rat cells Ramasamy et al., 2015, 2018
miR-99b
miR-100

Cardoac-enriched miRNAs
miR Target Model References
miR-208a PURβ Mice Van Rooij et al. (2007)
miR-208b SOX-6 Van Rooij et al. (2009)
miR-499 MED13 Grueter et al. (2012)
miR-1 PRCM16 cells Yin et al. (2013)
miR-133
miR-378 MAPK1 Cells Fisher et al. (2011)

IGF1
GRB2
KRS1

miR-21 PTEN Cells Cheng and Zhang, (2010a)
PDCD4
SPRY2

miR-30 RUNX2 Cells Zaragosi et al. (2011)
RIP140 Hu et al. (2015)
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Concomitantly, the metabolic regulation is mediated by PGC1α
and KSR1, being ERRα-dependent and MAPK-independent,
suggesting that common molecular regulatory points intersect
CH and metabolism (Fisher et al., 2011). Plus, the PGC-1β gene
encodes miR-378-3p and miR-378-5p, with the latter being
responsible for counterbalancing its metabolic actions.
Knockout mice for miR-378-3p and miR-378-5p, like miR-
208a, are resistant to high-fat diet-induced obesity and exhibit
a higher oxidative capacity for fatty acid metabolism in insulin-
target tissues. This role seems to be performed bymultiple targets,
pointing out carnitine O-acetyltransferase (CRAT) and MED13,
both increased in the livers of miR-378-3p/378-5p KO mice
(Carrer et al., 2012).

MiR-21 is highly expressed in CVS. It is encoded by the VMP1
gene in chromosome 17 and is highly conserved between
vertebrates. MiR-21, different from other tissue-specific
miRNAs, is expressed in several mammal organ systems: heart,
spleen, the small intestine, and colon, and many functional studies
have identified miR-21 as an oncomiR. In the CVS, it is associated
with the regulation of proliferative vascular disease, atherosclerosis,
coronary heart disease, post angioplasty restenosis, and
transplantation arteriopathy by targeting PTEN and PDCD4,
and CH by targeting SPRY2 (Cheng and Zhang, 2010a). In this
regard, some authors already showed that miR-21 inhibition in
mouse hearts reduced cardiomyocyte size and the heart weight
under CH conditions, and that pathological CH was induced by
miR-21 by stimulating MAPK signaling in cardiac fibroblasts
(Thum et al., 2008). If, on the one hand, miR-21 inhibition is
therapeutic for cardiomyocytes, the same does not happen to
adipocytes. An in vitro study shows that overexpression of miR-
21 in glucose-insulin overloaded cells significantly increased
insulin-induced glucose uptake and decreased PTEN protein
expression, improving the metabolic phenotype of adipose cells,
and the underlying mechanisms of versatile miRNA-21 in both
tissues and their communication by circulation need further
investigation (Cheng and Zhang, 2010b).

Finally, another cardiac-enriched family also implicated in the
regulation of AT is the miR-30. This family is involved in
ventricular CH by several mechanisms: autophagy, apoptosis,
oxidative stress, and inflammation, associated with ischemic
heart disease, hypertension, diabetic cardiomyopathy, and
antineoplastic drug cardiotoxicity. The miR-30 family
expression decreases in CH and myocardial ischemia/
reperfusion, being permissive to a variety of targets to perform
roles in the disease and also compensatory effects (Zhang X. et al.,
2019). Beyond the role in CVS, the miR-30 family plays a role in
AT regulating adipocyte differentiation, since its expression
increases in the differentiation of human AT-derived stem
cells into adipocytes. The inhibition of miR-30a and miR-30d
in human multipotent adipose-derived stem cells reduced
lipogenesis, and inversely, the overexpression of miR-30a and
miR-30d family members promoted lipogenesis by targeting the
transcription factor RUNX2 (Zaragosi et al., 2011). The miR-30b
and -30c also increase thermogenic gene expression in primary
adipocytes during adipocyte differentiation, cold exposure, or by
the β-adrenergic receptor. Furthermore, the knockdown of miR-
30 family members (including miR-30b and miR-30c), inhibited

the expression of uncoupling protein 1 (UCP1) and cell death-
inducing DFFA-like effector a (CIDEA) in brown adipocytes, by
directly targeting RIP140, a nuclear receptor that acts as a co-
regulator of lipid and glucose metabolism, showing a clear role in
regulating BAT function (Hu et al., 2015). In summary, the miR-
30 family performs a role in adipogenesis and regulates BAT
function, showing that it may be another potential therapeutic
target for regulating and clarifying lipid metabolism.

CONCLUSION

We elucidated some regulatory miRNAs and their endocrine
roles by bidirectionally acting on the CV system and AT to
regulate metabolism and several biological processes between
phenotypes in health and disease (Figure 1; Table 1). The
epigenetic relationship between tissues and the whole role
performed by miRNAs and other regulatory RNAs remains
a very complex field with several gaps to be investigated. It is
worth mentioning that this bidirectional relationship is carried
out through the circulation, and it is likely that the miRNAs
that are part of crosstalk come not only from the AT and the
heart and their cells but also from other tissues such as skeletal
muscle, liver and the neuroendocrine axis. In addition, free or
within EVs, miRNAs are not the only molecules involved in
crosstalk, and genes, proteins, and other effector molecules can
be carried, such as myokines and adipokines. Thus, the
crosstalk is multilevel and involves not only the heart and
AT, but is systemic. We discussed an interesting molecular
basis that could partially explain the intricate, frequent and
worldwide relationship between obesity and CVD. It remains
unclear if the cardiac miRNAs are released within EVs, and
publications regarding the role of EVs in these miRNAs
mechanisms are emerging. These issues are of great interest,
both mechanistically in a basic science view as in a clinical
perspective, since CVD also may induce metabolic and
morphological changes, and inversely, metabolic and
morphological changes may induce CVD.

Mapping common, antagonistic, and⁄or parallel regulatory
targets in the health status of different organisms by epigenetic
mechanisms is also highly dependent on biotechnology,
bioinformatics, confirmatory approaches from the bench, and
effective gain and loss of function protocols. Translational
approaches from the bench to clinical confirmation are also
crucial to show how mechanisms can interact or be changed
in different complexity grades. We are moving towards a science
where all the knowledge produced in these inter areas converge,
thus generating increasingly accurate and individualized
approaches for treatment, prevention, and detection of
diseases that globally affect humanity.
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GLOSSARY

ABCA1, ATP-binding cassette transporter A

ADicerKO, Knockout Dicer-deficient

AF, Atrial Fibrillation

Akt, Protein kinase B (PKB)

ALDH2, Aldehyde dehydrogenase

AMPK, AMP-activated protein kinase (α1 and α2 subunit)

ANF, Atrial natriuretic factor

ApoE-/-, Apolipoprotein E knockout mice

AT, AT

BAT, Brown AT

BCL6, B-cell lymphoma 6

BeAT, Beige AT

BIRC, Baculoviral IAP Repeat Containing 6

BMI-, Body mass index

BNP, Brain natriuretic peptide

CAD, Coronary vascular disease

CH-, Cardiac hypertrophy

CNP, Cardiac natriuretic peptides

CRP-, C-Reactive Protein

CVD, Cardiovascular disease

CVS, cardiovascular system

CIDEA, Cell Death Inducing DFFA Like Effector A

CRAT, Carnitine O-acetyltransferase

EAT, Epicardial AT; epicardial fat

EGR-1, Early growth response protein 1

ERR-α, Estrogen-related receptor α

EVs, Extracellular vesicles

Fas, Fas ligand protein

FGF21, Fibroblast Growth Factor

FLT, Follistatin

GDF-15, Growth differentiation factor-15

GRB2, Growth factor receptor-bound protein

HF, Heart failure

Hif1α, Hypoxia-inducible factor 1-alpha

hiPSC, Human induced pluripotent stem cells

IGF1, Insulin Growth Factor 1

IGFR1, Insulin-like growth factor receptor

IHF, Intrahepatic fat

IL-6, Interleukin 6

IL-10, Interleukin 10

IL-1β, Interleukin-1 beta

KDM1A, Lysine-specific histone demethylase 1A (LSD1)

KLF4, Krüppel-like factor 4

KRS1 Kinase suppressor of ras 1

KO, Knockout

LIFR, Leukemia inhibitory factor receptor

LV, left ventricle

LXR, The liver X receptor

MAPK, Mitogen-Activated Protein Kinases

MEG3, Maternally Expressed Gene 3

MED13, Mediator of RNA polymerase II transcription subunit 13

MHC, myosin heavy chain

MII, Myocardial infarct injury

miRNAs, microRNAs

mRNA, messenger RNA

mTOR, Mammalian target of rapamycin

OBT, Obesity

PAT, Pericardial AT

PDCD4, Programmed cell death 4

PGC1α, Peroxisome proliferator-activated receptor gamma coactivator 1α

PI3Ks, Phosphoinositide-3 kinases

PNUTS, Protein phosphatase 1 binding protein

PPARγ, Peroxisome proliferator-activated receptor gamma

PRDM16, PR/SET Domain 16

PTEN, Phosphatase and tensin homolog

PURβ, Transcriptional activator protein Pur-beta

PVAT, Perivascular AT; perivascular fat

RIP140, Receptor-interacting protein 140

RNA, ribonucleic acid

RUNX, Runt-related transcription factor X

SEMA4b, Semaphorin 4B

SIRT1, Sirtuin 1

SMSC, Skeletal muscle satellite cells

SMSC, skeletal muscle satellite cells

SOX-6, SRY-Box Transcription Factor 6

SPRY-2, Sprouty homolog 2

SREBF1, Sterol response element-binding factor-1

TGFβ, Transforming growth factor beta

TGFβR1, Transforming growth factor beta receptor

TNFα, Tumor Necrosis Factor α

TRPV4, Potential cation channel subfamily V member 4

TSC1, Tuberous Sclerosis Complex 1

WAT, White AT

UCP-1, Uncoupling protein-1

UCP-3, Uncoupling protein-3
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3’-UTR, 3’ untranslated region

VAT, Visceral AT; visceral fat

VGFA, Vascular endothelial growth factor A

VMP1, Vacuole Membrane Protein 1
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