

Received 20 November 2014 Accepted 10 December 2014

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; chloride ligand; pyridine ligand; chromium(III) complex; *facial* structural arrangement.

CCDC reference: 1038512 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of *fac*-trichlorido[tris(pyridin-2-yl-N)amine]chromium(III)

Yukiko Yamaguchi-Terasaki,^a Takashi Fujihara,^b* Akira Nagasawa^c and Sumio Kaizaki^d

^aToyama National College of Technology, Imizu Campus, 1-2 Ebie-neriya, Imizu city, Toyama 933-0293, Japan, ^bComprehensive Analysis Center for Science, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, ^cDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan, and ^dDepartment of Chemistry, Graduate School of Science, Osaka University, Machikaneyama-cyo 1-1, Toyonaka, Osaka, Japan. *Correspondence e-mail: fuji@chem.saitama-u.ac.jp

In the neutral complex molecule of the title compound, *fac*-[CrCl₃(tpa)] [tpa is tris(pyridin-2-yl)amine; $C_{15}H_{12}N_4$], the Cr^{III} ion is bonded to three N atoms that are constrained to a *facial* arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octahedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex molecule is located on a mirror plane. In the crystal, a combination of C-H···N and C-H···Cl hydrogen-bonding interactions connect the molecules into a three-dimensional network.

1. Chemical context

One aspect of solvatochromism is the dependence of ligandfield parameters on the solvent coordination sphere. This has been demonstrated by measuring the ligand-field absorption spectra and/or multinuclear NMR spectra for several types of Cr^{III} complexes in previous studies (Kaizaki, 1996; Kaizaki & Takemoto, 1990; Terasaki & Kaizaki, 1995; Terasaki *et al.*, 1999; Yamaguchi-Terasaki *et al.*, 2007*a,b,c*). As a part of the above-mentioned systematic investigations, we report here the crystal structure of the title compound, *fac*-[CrCl₃(tpa)], (I), where tpa is tris(pyridin-2-yl)amine.

2. Structural commentary

The molecular structure of (I) is illustrated in Fig. 1. The Cr^{III} ion is coordinated by three N atoms that are constrained to a *facial* arrangement by the tpa ligand and three chloride ligands in a slightly distorted octahedral geometry. The entire complex

research communications

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (') x, $-y + \frac{1}{2}$, z.]

molecule is located on a mirror plane. The average Cr–N bond length of 2.086 (5) Å is comparable to that in the related tpa complex cation fac-[Cr(tpa)(H₂O)₃]³⁺ [2.040 (1) Å; Terasaki *et al.*, 2004]. In addition, the average Cr–Cl bond length of the coordinating chlorine atoms being in *trans* positions to the N atoms [2.296 (4) Å] is similar to those found for other pyridine-chromium(III) complexes, such as *mer*-[CrCl₃(terpy)] [terpy is 2,2',2''-terpyridine; C₁₅H₁₁N₃; 2.292 (1) Å] (Cloete *et al.*, 2007); *mer*-[CrCl₃py₃] [py is pyridine, C₅H₅N; 2.320 (7) Å] (Howard & Hardcastle, 1985) or *mer*-[CrCl₃(Etpy)₃] [Etpy is 4-ethylpyridine, C₇H₉N₃; 2.320 (7) Å] (Modec *et al.*, 2000). All bond lengths and angles within the pyridine rings are within normal ranges. The dihedral angles between the least-squares planes of the pyridine rings are 58.33 (6) and 63.37 (8)°.

3. Supramolecular features

The chlorine atoms act as hydrogen-bond acceptors, forming intermolecular $C-H\cdots Cl$ hydrogen bonds with the pyridine

Table 1	
Hydrogen-bond geometry (Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7\cdots N1^{i}$	0.95	2.75	3.578 (5)	146
$C7-H7\cdots N1^{ii}$	0.95	2.75	3.578 (5)	146
C9−H9···Cl1 ⁱⁱⁱ	0.95	2.82	3.447 (4)	124
C9−H9···Cl1 ^{iv}	0.95	2.82	3.447 (4)	124
$C4{-}H4{\cdot}{\cdot}{\cdot}Cl2^v$	0.95	2.77	3.534 (4)	138

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - 1$; (ii) x, y, z - 1; (iii) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{3}{2}$; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{3}{2}$;

Hydrogen-bonding interactions in the crystal structure of (I), shown as black dashed lines. [Symmetry codes: (ii) $x, -y + \frac{1}{2}, z - 1$; (iii) x, y, z - 1; (iv) $x + \frac{1}{2}, y, -z + \frac{3}{2}$; (v) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + \frac{5}{2}$.]

rings (Fig. 2, Table 1). In addition, $C-H\cdots N$ hydrogenbonding interactions are also present, consolidating the molecules into a three-dimensional network.

Table 2Experimental details.

•	
Crystal data	
Chemical formula	$[CrCl_3(C_{15}H_{12}N_4)]$
M _r	406.64
Crystal system, space group	Orthorhombic, Pnma
Temperature (K)	150
a, b, c (Å)	15.152 (13), 13.704 (12), 8.014 (7)
$V(\text{\AA}^3)$	1664 (2)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.17
Crystal size (mm)	$0.06 \times 0.05 \times 0.04$
Data collection	
Diffractometer	Bruker APEXII CCD area
	detector
Absorption correction	Multi-scan (SADABS; Bruker,
	2014)
No. of measured, independent and	15895, 1779, 1401
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.061
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.113, 1.20
No. of reflections	1779
No. of parameters	118
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm A}^{-3})$	0.66, -0.51

Computer programs: APEX2, SAINT and XPREP (Bruker, 2014), SHELXS2014, SHELXL2014 and XCIF (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).

4. Synthesis and crystallization

fac-[CrCl₃(tpa)] was synthesized according to a previously reported procedure (Kaizaki & Legg, 1994). Green crystals of (I) suitable for X-ray analysis were obtained by slow cooling from the reaction solution. UV–vis(DMSO): $\lambda_{max}(\varepsilon) =$ 720 (16), 645 (37), 464 (59) nm (L mol⁻¹ cm⁻¹). Elemental analysis, calculated for C₁₅H₁₂C₁₃CrN₄: C, 44.31, H, 2.97, N, 13.78%; found: C, 44.29; H, 2.99; N, 13.76%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were placed in calculated positions, with C-H = 0.95 Å, and refined using a riding model, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}$.

Acknowledgements

This work was supported by the programs of the Grants-in-Aid for Scientific Research (to TF, No. 23510115) from the Japan Society for the Promotion of Science.

References

- Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cloete, N., Visser, H. G. & Roodt, A. (2007). Acta Cryst. E63, m45– m47.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Howard, S. A. & Hardcastle, K. I. (1985). J. Crystallogr. Spectrosc. Res. 15, 643–649.
- Kaizaki, S. (1996). Trends Inorg. Chem. 6, 105-136.
- Kaizaki, S. & Legg, J. I. (1994). Inorg. Chim. Acta, 218, 179-184.
- Kaizaki, S. & Takemoto, H. (1990). Inorg. Chem. 29, 4960-4964.
- Modec, B., Brenčnič, J. V. & Giester, G. (2000). J. Chem. Crystallogr. 30, 345–349.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2004). Acta Cryst. E60, m854–m856.
- Terasaki, Y., Fujihara, T., Schönherr, T. & Kaizaki, S. (1999). *Inorg. Chim. Acta*, **295**, 84–90.
- Terasaki, Y. & Kaizaki, S. (1995). J. Chem. Soc. Dalton Trans. pp. 2837–2841.
- Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007b). Eur. J. Inorg. Chem. 21, 3394–3399.
- Yamaguchi-Terasaki, Y., Fujihara, A. & Kaizaki, S. (2007c). Eur. J. Inorg. Chem. 21, 3400–3404.
- Yamaguchi-Terasaki, Y., Fujihara, T., Nagasawa, A. & Kaizaki, S. (2007a). Acta Cryst. E63, m593–m595.

supporting information

Acta Cryst. (2015). E71, 73-75 [doi:10.1107/S2056989014027066]

Crystal structure of *fac*-trichlorido[tris(pyridin-2-yl-N)amine]chromium(III)

Yukiko Yamaguchi-Terasaki, Takashi Fujihara, Akira Nagasawa and Sumio Kaizaki

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* and *XPREP* (Bruker, 2014); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *XCIF* (Sheldrick, 2008).

fac-trichlorido[tris(pyridin-2-yl-N)amine]chromium(III)

Crystal data	
$[CrCl_3(C_{15}H_{12}N_4)]$ M = 406.64	$D_{\rm x} = 1.623 \text{ Mg m}^{-3}$
$M_r = 400.04$	No Ka radiation, $\lambda = 0.71073$ A
$a = 15, 152, (12), \lambda$	$Q = 2.7, 26, 4^{\circ}$
a = 13.132 (13) A b = 13.704 (12) Å	0 - 2.7 - 20.4 $u = 1.17 \text{ mm}^{-1}$
v = 15.704 (12) A	$\mu = 1.1 / 11111$ T = 150 V
C = 0.014 (7) A $V = 1664 (2) \text{ Å}^3$	I = 150 K
$V = 1004 (2) A^{2}$	$0.06 \times 0.05 \times 0.04 \text{ mm}$
Z = 4 E(000) = 820	$0.06 \times 0.03 \times 0.04$ mm
F(000) = 820	
Data collection	
Bruker APEXII CCD area-detector	$T_{\min} = ?, T_{\max} = ?$
diffractometer	15895 measured reflections
Radiation source: Bruker TXS fine-focus	1779 independent reflections
rotating anode	1401 reflections with $I > 2\sigma(I)$
Bruker Helios multilayer confocal mirror	$R_{\rm int} = 0.061$
monochromator	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Detector resolution: 8.333 pixels mm ⁻¹	$h = -18 \rightarrow 18$
φ and ω scans	$k = -17 \rightarrow 17$
Absorption correction: multi-scan	$l = -10 \rightarrow 10$
(SADABS; Bruker, 2014)	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0593P)^2 + 0.050P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.66 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.51 \text{ e} \text{ Å}^{-3}$

 $wR(F^2) = 0.113$

1779 reflections

118 parameters 0 restraints

S = 1.20

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 0.0000 (0.0001) x + 13.7040 (0.0118) y - 0.0000 (0.0000) z = 3.4260 (0.0030)

* 0.0000 (0.0000) N2 * 0.0000 (0.0000) C6 * 0.0000 (0.0000) C7 * 0.0000 (0.0000) C8 * 0.0000 (0.0000) C9 * 0.0000 (0.0000) C10

Rms deviation of fitted atoms = 0.0000 - 0.2014 (0.0170) x - 7.1958 (0.0145) y + 6.8195 (0.0076) z = 4.9979 (0.0213)

Angle to previous plane (with approximate esd) = 58.326 (0.080)

* -0.0024 (0.0017) N1_\$6 * -0.0057 (0.0019) C1_\$6 * 0.0081 (0.0020) C2_\$6 * -0.0029 (0.0020) C3_\$6 * -0.0049 (0.0019) C4 \$6 * 0.0078 (0.0018) C5 \$6

Rms deviation of fitted atoms = 0.0057

0.2014 (0.0171) x + 7.1958 (0.0145) y + 6.8195 (0.0076) z = 8.8847 (0.0184)

Angle to previous plane (with approximate esd) = 63.371 (0.081)

* -0.0024 (0.0017) N1 * -0.0057 (0.0019) C1 * 0.0081 (0.0020) C2 * -0.0029 (0.0020) C3 * -0.0049 (0.0019) C4 * 0.0078 (0.0018) C5

Rms deviation of fitted atoms = 0.0057

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	1	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1 (0.89047 (17)	0.06834 (18)	1.2036 (3)	0.0287 (6)
H1 (0.8290	0.0568	1.2158	0.034*
C2 (0.94935 (19)	0.0033 (2)	1.2726 (4)	0.0336 (7)
H2 (0.9287	-0.0516	1.3336	0.040*
C3	1.0382 (2)	0.0186 (2)	1.2521 (4)	0.0355 (7)
H3	1.0796	-0.0262	1.2972	0.043*
C4 1	1.06674 (17)	0.0997 (2)	1.1654 (4)	0.0309 (6)
H4	1.1279	0.1117	1.1495	0.037*
C5	1.00429 (16)	0.16273 (18)	1.1026 (3)	0.0224 (6)
C10	1.0039 (2)	0.2500	0.8449 (5)	0.0239 (8)
C6 (0.8905 (3)	0.2500	0.6541 (5)	0.0328 (9)
Н6 (0.8292	0.2500	0.6295	0.039*
C7 (0.9499 (3)	0.2500	0.5256 (5)	0.0378 (10)
H7 (0.9295	0.2500	0.4136	0.045*
C8 1	1.0383 (3)	0.2500	0.5577 (5)	0.0358 (10)
H8	1.0797	0.2500	0.4688	0.043*
C9 1	1.0667 (2)	0.2500	0.7224 (5)	0.0293 (9)
H9	1.1277	0.2500	0.7490	0.035*
Cl1 (0.75326 (4)	0.37578 (5)	0.89695 (10)	0.0388 (2)
C12 (0.75220 (6)	0.2500	1.26071 (14)	0.0379 (3)
Cr1 (0.83104 (4)	0.2500	1.01679 (7)	0.0239 (2)
N1 (0.91747 (13)	0.14774 (15)	1.1195 (3)	0.0225 (5)
N2 (0.91684 (19)	0.2500	0.8144 (4)	0.0256 (7)
N3 1	1.03099 (19)	0.2500	1.0163 (4)	0.0227 (7)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0299 (13)	0.0202 (13)	0.0360 (16)	-0.0023 (11)	0.0030 (12)	0.0013 (12)
C2	0.0433 (16)	0.0167 (13)	0.0407 (17)	0.0001 (12)	0.0019 (13)	0.0046 (12)
C3	0.0413 (16)	0.0190 (14)	0.0462 (18)	0.0045 (12)	-0.0051 (13)	0.0039 (13)
C4	0.0268 (13)	0.0264 (14)	0.0394 (16)	0.0011 (11)	-0.0038 (12)	-0.0018 (13)
C5	0.0259 (13)	0.0145 (13)	0.0267 (14)	0.0022 (10)	-0.0001 (10)	-0.0007 (10)
C10	0.0296 (19)	0.0151 (17)	0.027 (2)	0.000	0.0023 (16)	0.000
C6	0.039 (2)	0.024 (2)	0.035 (2)	0.000	-0.0078 (19)	0.000
C7	0.061 (3)	0.027 (2)	0.026 (2)	0.000	0.000 (2)	0.000
C8	0.052 (3)	0.022 (2)	0.034 (2)	0.000	0.015 (2)	0.000
C9	0.034 (2)	0.0163 (18)	0.038 (2)	0.000	0.0086 (18)	0.000
Cl1	0.0309 (4)	0.0240 (4)	0.0615 (5)	0.0046 (3)	-0.0127 (3)	0.0036 (3)
Cl2	0.0295 (5)	0.0309 (6)	0.0534 (7)	0.000	0.0160 (4)	0.000
Cr1	0.0191 (3)	0.0170 (3)	0.0356 (4)	0.000	-0.0005 (2)	0.000
N1	0.0240 (11)	0.0161 (10)	0.0276 (12)	-0.0001 (8)	0.0011 (9)	-0.0018 (9)
N2	0.0288 (16)	0.0196 (16)	0.0285 (17)	0.000	-0.0012 (13)	0.000
N3	0.0225 (15)	0.0162 (15)	0.0295 (17)	0.000	0.0011 (12)	0.000

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.344 (3)	С6—С7	1.367 (6)
C1—C2	1.377 (4)	С6—Н6	0.9500
C1—H1	0.9500	C7—C8	1.363 (7)
С2—С3	1.372 (4)	С7—Н7	0.9500
С2—Н2	0.9500	C8—C9	1.388 (6)
C3—C4	1.380 (4)	C8—H8	0.9500
С3—Н3	0.9500	С9—Н9	0.9500
C4—C5	1.376 (4)	Cl1—Cr1	2.2983 (15)
C4—H4	0.9500	Cl2—Cr1	2.2909 (19)
C5—N1	1.338 (3)	Cr1—N2	2.079 (3)
C5—N3	1.440 (3)	Cr1—N1 ⁱ	2.087 (2)
C10—N2	1.342 (4)	Cr1—N1	2.087 (2)
С10—С9	1.366 (5)	Cr1—Cl1 ⁱ	2.2983 (15)
C10—N3	1.434 (5)	N3—C5 ⁱ	1.440 (3)
C6—N2	1.345 (5)		
N1—C1—C2	121.9 (3)	C10—C9—C8	117.9 (4)
N1—C1—H1	119.1	С10—С9—Н9	121.1
C2—C1—H1	119.1	С8—С9—Н9	121.1
C3—C2—C1	119.2 (3)	N2—Cr1—N1 ⁱ	85.14 (10)
С3—С2—Н2	120.4	N2—Cr1—N1	85.14 (10)
C1—C2—H2	120.4	N1 ⁱ —Cr1—N1	84.35 (13)
C2—C3—C4	119.4 (3)	N2—Cr1—Cl2	172.72 (9)
С2—С3—Н3	120.3	N1 ⁱ —Cr1—Cl2	89.46 (8)
С4—С3—Н3	120.3	N1—Cr1—Cl2	89.46 (8)
C5—C4—C3	118.3 (3)	N2—Cr1—Cl1 ⁱ	89.69 (8)

С5—С4—Н4	120.9	N1 ⁱ —Cr1—Cl1 ⁱ	171.91 (6)
C3—C4—H4	120.9	N1-Cr1-Cl1 ⁱ	89.03 (8)
N1-C5-C4	122.9 (2)	Cl2—Cr1—Cl1 ⁱ	95.12 (5)
N1—C5—N3	116.9 (2)	N2—Cr1—Cl1	89.69 (8)
C4—C5—N3	120.2 (2)	N1 ⁱ —Cr1—Cl1	89.03 (8)
N2—C10—C9	123.6 (4)	N1—Cr1—Cl1	171.91 (6)
N2-C10-N3	117.1 (3)	Cl2—Cr1—Cl1	95.12 (5)
C9—C10—N3	119.3 (3)	Cl1 ⁱ —Cr1—Cl1	97.18 (7)
N2—C6—C7	121.6 (4)	C5—N1—C1	118.3 (2)
N2—C6—H6	119.2	C5—N1—Cr1	118.28 (17)
С7—С6—Н6	119.2	C1—N1—Cr1	123.39 (18)
C8—C7—C6	120.3 (4)	C10—N2—C6	117.7 (3)
С8—С7—Н7	119.8	C10—N2—Cr1	118.2 (2)
С6—С7—Н7	119.8	C6—N2—Cr1	124.0 (3)
C7—C8—C9	118.9 (4)	C10—N3—C5	112.33 (18)
С7—С8—Н8	120.5	C10—N3—C5 ⁱ	112.33 (18)
С9—С8—Н8	120.5	C5—N3—C5 ⁱ	112.4 (3)
N1—C1—C2—C3	-1.4 (4)	C2—C1—N1—Cr1	-178.7 (2)
C1—C2—C3—C4	1.1 (4)	C9—C10—N2—C6	0.000(1)
C2—C3—C4—C5	0.2 (4)	N3—C10—N2—C6	180.000 (1)
C3—C4—C5—N1	-1.2 (4)	C9—C10—N2—Cr1	180.000 (1)
C3—C4—C5—N3	177.9 (2)	N3—C10—N2—Cr1	0.000(1)
N2—C6—C7—C8	0.000(1)	C7—C6—N2—C10	0.000(1)
C6—C7—C8—C9	0.000(1)	C7—C6—N2—Cr1	180.000 (1)
N2—C10—C9—C8	0.000(1)	N2—C10—N3—C5	63.9 (2)
N3—C10—C9—C8	180.000 (1)	C9—C10—N3—C5	-116.1 (2)
C7—C8—C9—C10	0.000(1)	N2-C10-N3-C5 ⁱ	-63.9 (2)
C4—C5—N1—C1	1.0 (4)	C9—C10—N3—C5 ⁱ	116.1 (2)
N3—C5—N1—C1	-178.1 (2)	N1—C5—N3—C10	-64.4 (3)
C4—C5—N1—Cr1	-179.9 (2)	C4—C5—N3—C10	116.4 (3)
N3—C5—N1—Cr1	1.0 (3)	N1—C5—N3—C5 ⁱ	63.4 (4)
C2-C1-N1-C5	0.3 (4)	$C4-C5-N3-C5^{i}$	-115.8 (3)

Symmetry code: (i) x, -y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C7—H7····N1 ⁱⁱ	0.95	2.75	3.578 (5)	146
C7—H7…N1 ⁱⁱⁱ	0.95	2.75	3.578 (5)	146
C9—H9…Cl1 ^{iv}	0.95	2.82	3.447 (4)	124
C9—H9···Cl1 ^v	0.95	2.82	3.447 (4)	124
C4—H4…Cl2 ^{vi}	0.95	2.77	3.534 (4)	138

Symmetry codes: (ii) x, -y+1/2, z-1; (iii) x, y, z-1; (iv) x+1/2, y, -z+3/2; (v) x+1/2, -y+1/2, -z+3/2; (vi) x+1/2, -y+1/2, -z+5/2.