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Interpretable Differential Abundance Signature (iDAS)

Lijia Yu, Yingxin Lin, Xiangnan Xu, Pengyi Yang, and Jean Y. H. Yang*

Single-cell technologies have revolutionized the understanding of cellular
dynamics by allowing researchers to investigate individual cell responses
under various conditions, such as comparing diseased versus healthy states.
Many differential abundance methods have been developed in this field,
however, the understanding of the gene signatures obtained from those
methods is often incomplete, requiring the integration of cell type information
and other biological factors to yield interpretable and meaningful results. To
better interpret the gene signatures generated in the differential abundance
analysis, iDAS is developed to classify the gene signatures into multiple
categories. When applied to melanoma single-cell data with multiple cell
states and treatment phenotypes, iDAS identified cell state- and treatment
phenotype-specific gene signatures, as well as interaction effect-related gene
signatures with meaningful biological interpretations. The iDAS model

is further applied to a longitudinal study and spatially resolved omics data to
demonstrate its versatility in different analytical contexts. These results
demonstrate that the iDAS framework can effectively identify robust, cell-state
specific gene signatures and is versatile enough to accommodate various
study designs, including multi-factor longitudinal and spatially resolved data.

to achieving this generally involves two
steps. The first step consists in the
identification of subgroups of cells that
change in abundance in response to a
given phenotype (e.g., Milo, DA-seq).
The second step consists in annotating
these subpopulations by identifying
markers that characterize these groups.
Together, this enables scientists to
reach certain conclusions regarding
cell states and their corresponding
markers that drive these changes.

Recently, a number of algorithms have
been developed to analyze changes in
cell populations in response to dis-
ease progression or experimental in-
terventions. Notable methods include
Milo,[*l CNA,PI DA-seq,l®! MELD,”) and
Scissor.®] Most of these methods be-
gin by constructing a KNN graph and
summarizing it into an abundance ma-

1. Introduction

The recent increase in multi-sample and multi-condition single-
cell studies offers significant potential to uncover cell types and
molecular pathways crucial for the onset, progression, and treat-
ment of diseases.'3] These studies enable researchers to iden-
tify and analyze phenotype-specific subpopulations and marker
genes associated with various conditions. The standard approach

trix. Statistical methods such as gener-
alized linear models, logistic ridge re-
gression, and kernel density estimation
are then applied to link this matrix with sample-level pheno-
type labels, ultimately identifying phenotype-specific subpopu-
lations. This is achieved by providing perturbation scores rep-
resenting the significance of differential abundance (DA) tests
or probabilities related to the phenotype. It is important to note
that while many of these methods provide a “differential abun-
dance score” associated with each cell, further analytics is often
required to generate interpretable stories. Thus, a common next
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Figure 1. The proposed iDAS (Interpretable Differential Abundance Signature) framework identifies interpretable differential abundance signatures.
iDAS can incorporate any upstream differential abundance method or spatial samples analysis results as a starting point. It creates cell type-by-sample
pseudobulk profiles to perform ANOVA analysis, distinguishing genes significantly related to any main effect, F1 and F2. These genes are then further
categorized into four groups: main effect (F1, F2), interaction effect (F1 x F2), and additive effect (F1+F2). To further interpret the gene signatures,
additional differential expression analyses are performed to determine which category of effect each gene signature is most associated with.

step involves selecting distinct signatures of these differentially
abundant groups for more detailed analysis, typically using clas-
sic differential expression analysis methods. Here, the differen-
tial expression (DE) analysis can be approached from two levels.
The first is the sample-level view, where expression is aggregated
to create “pseudobulk” samples. Following this, genes associated
with sample-level phenotype outcomes are identified using meth-
ods originally designed for bulk RNA samples, such as edgeR,°!
DEseq2['% or Limma-voom.["12] The second is the single cell
level view, where differential expression (DE) analysis is done
without creating “pseudobulk,” and cells are modeled individu-
ally using generalized mixed effects models, such as MAST!* or
glmmTMB.!** Together, these approaches help understand the
gene features most associated with or affected by pathological or
experimental conditions, providing valuable insights into the un-
derlying biological processes.

Although these workflows do not usually require cell type an-
notation in the initial differential abundant groups identifica-
tion, the practical reality is that subsequent analytics often be-
come complex as it requires results to align or account for cell
types or other related factors for meaningful interpretation. For
instance, many DA analysis methods are clustering-free, allow-
ing them to detect DE genes between differential abundance re-
gions, which may include multiple cell types or experimental con-
ditions, thus complicating the interpretation of these DE genes.
To make these genes more interpretable, it is critical to jointly
examine the effects of cell types and other potentially related
factors.

To this end, we developed iDAS, a computational framework
to identify signatures generated from differential abundance al-
gorithms, while considering the effects of cell types and other
potentially relevant factors. This is an “ANOVA”-based model,
where we identify the gene signatures in the subpopulation
groups identified by the DA test. This can be thought of as a phe-
notype guided feature selection strategy where a model was used
to assess whether gene signatures exhibit significant responses to
multiple factors of interest. For example, iDAS aims to separate
biomarkers or biosignatures that are common to all individuals
or only specific to a given cell type. We believe that this analytical
approach will improve the interpretability and clarity of data anal-
ysis by better classifying the signal from the data, thereby leading
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to a better understanding of the relation between gene signature
and different factors. To demonstrate our model, we applied it
on a melanoma single cell dataset to identify the gene signatures
that are associated with cell state and treatment response and val-
idate the result in external bulk samples. In addition, we demon-
strate the generalizability of our model to complex experimental
design as well as spatially resolved single cell data from breast
cancer samples.

2. Results

2.1. Interpretable Differential Abundance Signature using an
ANOVA-based Framework

We present a two-stage ANOVA-based post-DA model approach
to improve interpretation for perturbation studies, named inter-
pretable differential abundance signature (iDAS). As illustrated
in Figure 1, for a single-cell dataset with two phenotypes such
as responding to treatment, we begin with the output from any
differential abundance algorithm or sample based spatial gene
analysis result. Examples include results from identifying binary
phenotype from Milo or nearest neighbor correlation of genes in
spatial samples. Next, we build on two-way factorial experiments
by jointly modeling cell-type (or cell-state factor, F1 in Figure 1)
and treatment phenotypes factor (F2 in Figure 1). We then ap-
plied the approach similar to NANOVA,[*] where we performed
a series of “nested” ANOVA and used the results between the
different models to classify genes into different categories relat-
ing to main and interaction effects (see Methods). These groups
include the main effects for cell type (F1) and treatment pheno-
type (F2), the interaction effect between cell type and phenotype
(F1xF2), the additive effect of cell type and phenotype (F1+F2),
and a non-significant group comprising genes not relevant to any
of the main factors. This broad classification enhances the in-
terpretability of various gene expression changes by distinguish-
ing their specific associations with cell types and phenotypic re-
sponses. For each broad category, we perform different post-hoc
analysis to determine gene signature among specific phenotypes
or cell types. These analyses are designed to suit the unique char-
acteristics of each category.
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2.2. iDAS Accurately Identify Cell States Markers on Melanoma
Data

To demonstrate our framework, we applied iDAS to a pub-
lic dataset measuring immunotherapy response in melanoma
cells.l"®] The dataset includes 20 patients, with samples taken
before and during immunotherapy treatment. We used the pre-
treatment samples of 18 patients after filtering out patient-
specific cell states not commonly present in melanoma. This re-
sulted in 8789 cells and 14 346 genes across 9 cell states being
used in the differential abundance analysis with Milo. Patient-
level phenotypes (responder and non-responder) were used as
the conditions of interest to calculate cell presence in each neigh-
borhood (see Figure Sla, Supporting Information). In total, we
identified 416 DA with log, FC > 5(see Figure S1b, Supporting
Information). Selected DA in neighborhood graph, along with
log, fold change of differential abundance cells across patients,
cell states, and patient phenotypes, are shown in Figure S1c—f
(Supporting Information). Specially, the DA groups of respond-
ing and non-responding cells co-appeared in several cell states,
such as mitochondrial, melanocytic, and antigen-presenting cell
states, this suggests that there may be gene signature associated
with both cell state and phenotype (Figure Sle, Supporting Infor-
mation).

Next, we aimed to discover the gene signatures that affect the
immunotherapy phenotype and cell states by applying iDAS to
the selected 4547 cells (Figure Slc, Supporting Information).
Here we performed the iDAS analysis with factor 1 (F1) defined
as cell state and factor 2 (F2) defined as patient-level phenotype.
Our result shows 158 genes were classified as factor 1 (cell state),
27 genes were classified as factor 2 (patient-level phenotype), 63
genes were classified as interaction effect genes and 33 genes
were classified as additive effect genes (see File S1, Supporting
Information). The remaining 13 791 genes were not significantly
associated with either cell state or phenotype. To highlight the
interpretative advantage of iDAS, we compared it with a stan-
dard differential expression workflow using the same pseudob-
ulk dataset. As shown in Figure S2 (Supporting Information),
while traditional DE methods can model complex designs, they
typically evaluate each coefficient independently without resolv-
ing overlapping contributions across factors (File S2, Support-
ing Information). Thus, making the cell-type specific phenotype
changes more challenging to interpret.

To assess whether the iDAS approach is able to identify known
cell state markers, we examine the gene markers associated with
the various cell states (F1, see Figure 2a) based on differential
gene expression analysis on each cell state. Figure 2b shows that
these top markers are highly expressed in specific cell states
as expected and align with the original study.'! For example,
we identify ESCO2 in mitotic cells (log,FC = 1.02; adjusted
p-value<1071%), GBP1 in antigen-presenting cell state (log,FC
= 2.27; adjusted p-value<107°), and THY1 in mesenchymal-
like cells (log,FC = 0.78; adjusted p-value<1071°). In parallel,
we also assess the predictability of these cells using a qualita-
tive metric and this is achieved by calculating the average area
under the ROC curve (AUC) based on 10-fold nested cross-
validation on a prediction model. The discrimination capacity of
cell state-specific gene signatures with AUC from 0.52 to 0.99 (see
Figure S3, Supporting Information). Figure 2c shows strong dis-
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crimination capacity for the example cell states, and the highest
cell state is antigen presentation. We also performed an analysis
of hallmark gene enrichment for all cell state positive markers
(log,FC > 0), and six cell states have markers enriched from the
hallmark gene list (see Figure S4, Supporting Information). Pos-
itive markers of antigen presentation and interferon alpha/beta
response cell states are both enriched in the interferon gamma
and alpha response hallmark gene sets, while markers of the mi-
totic cell state are enriched in the E2F targets, G2M checkpoint,
and mitotic spindle hallmark gene sets (see File S1, Supporting
Information). These results are consistent with the original pub-
lication, demonstrating that our method can effectively identify
main effect-related signatures.

2.3. Application on Melanoma Data lllustrates iDAS Capacity to
Identify Cell State Specific Inmunotherapy Response Gene
Signatures

To identify gene signatures specific to either the responding
group or the non-responding group, we examine the genes
associated with the treatment factor (F2). From the identified
gene markers associated with the main effect F2, we found 11
genes significantly upregulated in the responding groups and 5
genes significantly upregulated in the non-responding groups
(see Figure 3a), the other genes showed only small log, fold
changes. Within sample cross-validation shows these genes are
able to predict the treatment response label of pseudobulk sam-
ples with AUC of 0.976 (see Figure 3b). Figure 3c shows the ex-
pression of four example genes between the responding and non-
responding groups. TUBB4A is significantly upregulated in the
responding group, and has been linked to melanoma-associated
pathways in a previous study,!'”! suggesting its potential as a treat-
ment response marker. Another example of upregulation in the
responding group is B2M gene. A previous study found it ex-
pressed in either tumor or stroma are associated with a posi-
tive response to immunotherapy in a metastatic melanoma pa-
tient cohort.'®! We also found that ABL2 and APLP2 are the
most significantly upregulated genes in the non-responding cell
group (see Figure 3c). This aligns with a study showing ABL1/2
drives resistance to BRAF/MEK inhibitors in melanomal'®! and
APLP2decreases HLA class I expression, 2l which is linked to de-
differentiation and resistance to PD-1 inhibition.[*!] Additionally,
Figure 3d shows that the expression patterns of these genes in the
responding and non-responding groups are consistent across all
cell states, suggesting that these genes are mainly associated with
the treatment phenotype rather than cell state.

In addition to the main effect which represents overall re-
sponse signature across all cell states, the power of iDAS is the
ability to identify cell state specific signatures, which are formu-
lated as gene signatures associated with the interaction effect in
the iDAS framework. Figure 3e,f highlight two genes showing in-
teraction effects between cell state and treatment phenotype. We
found PDGFRB s highly expressed in the non-responding group
of mesenchymal-like cells (Figure 3e; Figure S5a, Supporting In-
formation), previous studies have shown PDGFR family play a
significant role in brain, breast, colorectal, melanoma and lung
cancers,[2223] suggesting that it may be potential marker for treat-
ment response. Another example is the gene WDR76 which is

€2500572 (3 Of14) © 2025 The Author(s). Small Methods published by Wiley-VCH GmbH


http://www.advancedsciencenews.com
http://www.small-methods.com

ADVANCED
SCIENCE NEWS

small

www.advancedsciencenews.com

d

www.small-meth

1.00 A
0.75 A
NI
o
<<
=
= =
Z 050/
g
5 ; ; 025 1
— Antigen Presentation , AUC = 0.95
UMAP_1 — Mitotic , AUC = 0.67
o Antigen_Presentation o Mitotic 4,—,7 — Mesenchymal like , AUC = 0.9
o Interferon_Alpha_Beta_Response o Neural_Crest_like —
o Melanocytic o Stress (Hypoxia Response) 0.00 1
. mgse;chzrﬁzall?hke |- o Stress (p53 Response) 0.00 0.5 050 075 1.00
o Mitochondrial(low_quality) 1-specificity
6 ESCO2 THY1
(] " [ ]
. L]
¢ o
3 | y
° »
o~ /e \» - ¢
B_I ° I 5 2 8, o ‘n:‘-
<§( 0 ‘e » ‘ " 5 ¢ ° N ..1. E)
> [ & ° ] * ! » ‘,“ + ¢ o TR
ety ! Yot L )
-3 . e? ® L -~ tc'
o /7 $ LI S
s 2 l..‘\' s,
¢ 0 ° ]
-8 -4 0 4 -8 -4 0 4 -8 -4 0 4
UMAP_1

methods

ods.com

Expression

6

4
2
0

Figure 2. iDAS cell state associated main effect signatures. a) UMAP plot of cell state annotations in Pozniak2024 data. b) UMAP plot of single cell
data, highlighting the top main effect signatures for three cell states. Gene expressions are shown for GBP1 in antigen-presenting cells, ESCO2 in
mitotic cells, and THYT in mesenchymal-like cells. c) The ROC curves depict the performance of classification models distinguishing each cell state
(Antigen-Presentation, Mesenchymal-like, Mitotic) from all other cell states in the dataset. The area under the curve (AUC) scores are as follows: Antigen-
Presentation (AUC = 0.97), Mesenchymal-like (AUC = 0.86), and Mitotic (AUC = 0.87).

observed to be highly expressed in the responding group of mi-
totic cells (Figure 3f; Figure S5b, Supporting Information). Cur-
rent literatures have shown that WDR76 function as tumor sup-
pressor in colorectal, bladder, colon and liver cancer,[**%°] show-
ing that it may also be potential marker for treatment response

in melanoma.

Small Methods 2026, 10, e2500572

2.4. Identification of Overall and Cell-Specific Inmunotherapy
Response Gene Signatures in Bulk Expression Data from
Independent Cohorts

After demonstrating that the signatures are meaningful within
the single cell dataset, we aimed to see the translational potential
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Figure 3. iDAS identifies the phenotype associated main effect signatures and interaction effect signatures between phenotype and cell states. a) Volcano
plot illustrates the phenotype main effect signatures. The horizon dashed line indicates the significance threshold at p-value < 0.001 (-log; (p-value) >
3). The vertical dashed lines mark the fold change thresholds at log, fold change > log, (1.5) and log, fold change < -log, (1.5). Upregulated genes in
responding cell groups are colored red, and in non-responding cell groups are colored blue. b) ROC curve evaluates the performance of a predictive model
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of these signatures by examining the fold-change of these mark-
ers in two other melanoma bulk RNA-seq data, Liu201912%! and
Hugo2017 dataset.!?”] In general, we note that the expression of
these markers are not always high in the bulk samples. Thus,
to further evaluate the predictive ability of phenotype-associated
main effect signatures, we only selected genes with log,FC
greater than log,(1.3) as features. Here, we built a generalized
linear model to predict the phenotype of bulk samples. The AUC
of 10-fold nested cross-validation is 0.675 from the Hugo2016
dataset (Figure 4a) and 0.595 from Liu2019 dataset (Figure 4b).
This result suggests that the signatures discovered in the single-
cell context are also predictive markers in a bulk RNA sequencing
setting, reinforcing their potential utility as robust biomarkers.

To assess the cell state markers identified from the single cell
data in the bulk we examine the deconvoluted bulk RNA-seq data.
This analysis confirmed that the marker genes, highly expressed
in specific cell states in single-cell data, retain similar expression
profiles in the deconvoluted bulk RNA data. Consequently, these
markers are validated as conserved cell- markers across various
datasets, as illustrated in Figure 4c and Figure S6 (Supporting In-
formation). We next examine the expression profile of the inter-
action effect signatures on the bulk deconvoluted dataset. Specifi-
cally, we examined the expression levels of WDR76and PDGFRB
in the context of patient response to immunotherapy. Our results
show that WDRY76 is slightly more highly expressed in the re-
sponding group than in the non-responding group in the mitotic
cell state in the Hugo2016 dataset (see Figure S7a, Supporting
Information). Its differential expression is more pronounced in
the Liu2019 dataset (see Figure S7c, Supporting Information). Al-
though Figure S7b (Supporting Information) shows a significant
differential expression of PDGFRB in mesenchymal-like cells in
the Hugo2017 dataset, the Liu2019 data does not support it as
a non-responsive marker gene of mesenchymal-like cells (see
Figure S7d, Supporting Information). Taken together, these re-
sults suggest that some of the cell state specific markers (inter-
action effect signatures) identified in the single-cell data are also
reflected in the bulk data.

2.5. iDAS can Incorporate any Upstream Differential Abundance
Method

In the above analysis, we primarily focus on identifying inter-
pretable gene signatures using a differential abundance method
called Milo. We then apply the same iDAS analysis with two
other well-established differential abundance detection methods,
DA-seq and Scissor. Using DA-seq, we identified 2437 respond-
ing cells and 4460 non-responding cells, whereas Scissor iden-
tified 3006 responding cells and 5783 non-responding cells (see
Figure S8, Supporting Information). We then applied iDAS to the
selected differentially abundant cells. iDAS identified 155 genes
associated with cell state, 36 with patient-level phenotype, 59 with

www.small-methods.com

the interaction effect, and 35 with the additive effect for DA-seq.
For Scissor, iDAS identified 217 genes associated with cell state,
6 with patient-level phenotype, 19 with the interaction effect, and
44 with the additive effect.

However, the patient-level phenotype-associated genes identi-
fied by iDAS varied significantly depending on the upstream dif-
ferential abundance (DA) detection method—Milo, DA-seq, or
Scissor (see Figure S9, Supporting Information). Only two genes
were shared across all three DA methods. In contrast, the ma-
jority of cell state-associated genes were consistently identified
across the three methods. For the interaction effect category, only
three genes were shared, while in the additive effect category, only
four genes overlapped. These differences suggest that the vari-
ability arises primarily from the choice of DA detection method
rather than from iDAS itself. Unlike Milo, which quantifies the
number of cells from each sample within k-nearest neighbors
and applies a negative binomial generalized linear model (NB-
GLM) to test differential abundance (DA) in each local graph,
DA-seq uses a logistic regression model to predict DA scores
for individual cells under two distinct conditions.[®! While Milo
and DA-seq rely solely on single-cell data to identify differential
abundance, Scissor integrates bulk data as a reference, mapping
bulk sample phenotypes to single cells by optimizing a regression
model based on the correlation matrix between bulk and single-
cell data. These differences could lead to variations in detecting
composition and expression shifts in the data.

2.6. Extensibility of iDAS to Account for Longitudinal Studies and
to Spatially Resolved Omics Data

The flexibility of iDAS model can be illustrated by its ability to
handle multi-factor longitudinal data. For the same melanoma
dataset, we can also model by accounting for pre- and on-
treatment status for a given individual. Here, we define pre-
and on-treatment as factor F1, treatment phenotype status
(responding/non-responding) as factor F2, and cell state as factor
F3. This three-way model allows us not only to identify the main
effects associated with F1, F2, and F3, but also to detect two-way
interaction effects, such as F1F2, F1F3, and F2F3. By running
iDAS using a three-way random effects model, we identified a to-
tal of 350 genes that may be associated with one of the factors. We
found 19 interaction effect signatures, including 18 three-way ef-
fects and 1 two-way effect, along with 331 main effect signatures
(see File S1, Supporting Information). The only two-way interac-
tion effect gene is NDUFA4L2, which is a marker for the stress
(hypoxia response) cell state in responding group, regardless of
pre- or on-treatment status (see Figure 5a). For the main effect
signatures, one gene is associated with factor F1, 321 genes are
associated with factor F3, and 9 genes are classified under ad-
ditive effect categories. We found that the cell state-associated
genes, specifically the positive markers of seven cell states (see

using phenotype associated main effect signatures to distinguish between responding and non-responding samples. The area under the curve (AUC) is
0.976. c) The box plots display the expression levels of selected genes (ABL2, APLP2, TUBB4A, B2M) in responding and non-responding samples. For
ABL2 and APLP2, expression is higher in non-responding samples compared to responding samples, while for TUBB4A and B2M, expression is higher in
responding samples. d) Boxplot of expression levels of the selected genes (ABL2, APLP2, TUBB4A, B2M) between the responding and non-responding
groups. Pseudobulk samples are grouped based on phenotype and cell state, with colors representing the phenotype in each category. Boxplot of e,f)
are interaction effect signatures expression (PDGFRB and WDR76) across all cell states. ) PDGFRB is highly expressed in non-responding groups of
mesenchymal-like cells. f) WDR76 is highly expressed in responding groups of mitotic cells.
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Figure 4. Main effect signature validation using independent cohort from bulk data (Hugo2016 and Liu2019). a,b) AUC plots shows 10-fold cross-
validation to predict bulk sample responses using gene signatures derived from iDAS, analyzed via generalized linear models. c) shows cell state main
effect signatures are transferable to external bulk data. The box plot shows the expression of genes ESCO2, GBPT and THY1, mapped onto cell state
specific deconvolutions of external bulk RNA dataset. Consistent with the observations in Figure 2b, these genes exhibit high expression in particular
cell states, underscoring their role as specific markers across different datasets.

Figure S10, Supporting Information), are enriched in the hall-
mark gene lists, with most of them consistent with the original
publication (see File S1, Supporting Information).

Beyond the analysis of single-cell samples, iDAS framework
can also be applied to examine spatially resolved transcriptomics
data. For example, we used GHIST-predicted TCGA breast can-
cer spatial transcriptomics data to calculate the nearest neighbor
correlation for each gene across all cell pairs (see Methods). We
then modeled the spatial metric as an input to investigate the spa-
tial relationships of gene expression in relation to ER/PR status

Small Methods 2026, 10, e2500572

and AJCC pathological stage. As shown in Figure 5b,c, we found
that the correlation of expression for CLIC6and RAB30in neigh-
boring cells is higher in the ER+/PR+ group, while the correla-
tion of expression for KLRD1 and LTB is higher in the ER-/PR-
group, regardless of whether the tumor is detected in the early
or late stage. To explore tumor stage-associated genes, we discov-
ered that the correlation of expression for PDGFRA and SOX17in
neighboring cells is higher in early-stage tumor patients but not
in late-stage patients (see Figure 5d). Besides, we identified two
genes, ADIPOQ and CTH, that exhibit a mixed pattern across
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Figure 5. Application of iDAS to longitudinal and spatial results. a) Boxplot shows the expression levels of an interaction effect (F2F3) signature across
various cell states in both pre-treatment and on-treatment conditions. NDUFALZ is highly expressed in stress (hypoxia response) specific cell state
among responding groups. b) Boxplots showing nearest neighbor correlation of CLIC6 and RAB30, indicating their specificity to ER/PR status. These
genes demonstrate a strong correlation with ER+/PR+ group than ER-/PR- group. c) Boxplots showing that the nearest neighbor correlation of the same
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tumor stages and ER/PR status. These genes are highly corre-
lated in neighboring cells of ER+/PR+ patients in the early-stage
group but not in ER-/PR- patients (see Figure 5Se).

3. Discussion

In this study, we introduced iDAS, an ANOVA-based post-DA
framework designed to interpret gene signatures from differen-
tial abundance analysis. The novelty of iDAS lies in its ability to
systematically dissect main and interaction effects across mul-
tiple experimental factors. This analytical perspective is rarely
addressed in current differential abundance workflows. Using a
melanoma dataset, we demonstrated that iDAS effectively iden-
tifies both overall responding signatures (main effect) and cell-
state specific responding signatures (interaction effect). We iden-
tified cell state-specific signatures that have the power to distin-
guish between different cell states. We found upregulated and
downregulated genes in both responding and non-responding
groups, indicating potential markers for treatment response
and non-response. Signatures were further validated on bulk
datasets, demonstrating the transferability of the signature se-
lected by iDAS. Lastly, we demonstrate the flexibility of the model
by applying iDAS to more complex study designs, including lon-
gitudinal data with pre- and on-treatment measurements from
the same individual using three-way analysis, and in-silico spa-
tially resolved transcriptomics data.

One of the strengths of iDAS’s results is that the gene sig-
natures found in a smaller single cell dataset is transferable to
larger bulk RNA-sequencing datasets demonstrating its transla-
tional capacity. However, the validation strategies associated with
both overall and cell-type specific markers are imperfect as they
may depend on the difference between platforms as well as the
performance of deconvolution approaches. For example, while
our study shows very similar expression trends between single
cell and bulk datasets, we notice that some genes of interest found
in single cell are not “highly expressed” bulk. Hence, validation
across platforms should be conditioned on “expressed genes”. In
addition, the actual fold-change estimate in deconvoluted bulk
datasets are much lower than single cell data. Possible expla-
nations include masking of signals from rare cell states,!*) cell
states in the reference differing from the bulk data(Avilal3%31)),
and lack of raw counts as input from bulk samples. Thus, improv-
ing deconvolution methods will increase the reliability of trans-
lating single-cell insights to bulk RNA-seq data, enabling more
accurate for validation. It is important to note that in practice de-
convolution is not required for cell state implementation as there
exist other biotechnological platform strategies to select appropri-
ate cell state.

The iDAS framework offers much greater flexibility in han-
dling complex experimental designs than pairwise DE analyses.
First of all, in contrast to a series of pairwise DE analyses, iDAS
can perform multiple group comparisons simultaneously. Fur-
thermore, the proposed framework is flexible enough to handle

www.small-methods.com

longitudinal studies where iDAS can easily include random ef-
fects in the models when the data includes repeated measure-
ments from the same patients such as pre- and on-treatment in-
formation. This addition provides a more accurate understand-
ing of each effect in the model between different experimental
factors.

In our external bulk validation, we focus on the validation of
the markers and not necessarily the validation of the actual “pre-
diction model”. That is, we train a new model with the signature
expression profile using the bulk data to predict the treatment
phenotype on the same data. The ability to integrate models be-
tween single-cell and bulk data is a topic of interest in data har-
monization within the single-cell community. There are methods
in bulk data, such as log-ratio approaches, that enable transfer
learning across cohorts.[32] Future work will be to develop single
cell extension to these approaches and integrate it into the iDAS
framework.

iDAS can incorporate any upstream differential abundance
method, though the identified gene signatures may vary across
different DA methods. We found different DA methods can pro-
duce different cell state results due to their different design ap-
proaches. To improve the results of the iDAS gene signature,
further research should be conducted to develop an intermedi-
ate step to harmonize cell states generated by different methods
and to obtain stable gene signatures across DA methods. One
approach to improve the stability of cell state labels is to apply
AdaSampling.[®3] Tt can iteratively reclassify cell state labels to re-
duce noise and correct misclassification, leading to more consis-
tent and reliable cell states across different DA methods.

As an ANOVA-based framework, whether datasets meet the
assumptions for performing ANOVA testing is a main concern
for researchers. In our workflow, we create pseudobulk per cell
type per sample instead of aggregating all cells within a sample.
This preserves major differences among cell types while reduc-
ing technical noise. Since iDAS aims to identify genes linked to
treatment effects while minimizing cell type or state influences,
this approach aligns with our objective and enhances robustness.
Besides, creating pseudobulk helps reduce overdispersion and
brings the data closer to a normal distribution, which is an impor-
tant assumption for performing ANOVA. While the homogeneity
of variance (homoscedasticity) may not always hold in two-factor
or three-factor analyses, the iDAS model allows users to select the
top percentage of genes instead of relying on a strict p-value cut-
off. In many cases, selecting the top 5% or 10% of genes is more
useful for research purposes than sticking to a fixed threshold.
A nonparametric approach could also avoid the assumptions of
ANOVA. However, with more than 15 000 genes, running such
tests would be extremely time-consuming. Further research is
needed to explore more efficient solutions in this area.

While iDAS provides a flexible and interpretable framework
for identifying gene signatures associated with mean and inter-
action effects across multiple experimental factors, its scalabil-
ity is limited. iDAS only supports up to three factors. As the

two genes in panel (b) is consistent across both early and late stages, indicating that their expression is not dependent on the stage of disease progression.
d) Boxplots illustrating the nnCorrelation of two stage-specific genes, showing differential expression between early and late AJCC pathological stage of
the disease. e) Boxplots depicting interaction effect between ER/PR status and AJCC pathological stage for ADIPOQ and CTH, with varying expression

levels depending on both factors.
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number of factors increases, the number of potential interac-
tion terms grows combinatorially, leading to challenges in sta-
tistical power, increased model complexity, and diminished in-
terpretability. Moreover, iDAS operates on pseudobulk data ag-
gregated by cell types, which limits its sensitivity to detect subtle
within-cell-type heterogeneity or continuous cellular trajectories.
These features are better captured by single-cell-level models.

In summary, to enhance the interpretability of differential
abundance signatures, we introduce an ANOVA-based frame-
work, iDAS, that is able to identify the signature from multiple
conditions at once. Our findings confirm that iDAS framework
can effectively identify robust cell-state specific gene signatures
and the framework is flexible to handle various complex study de-
signed including multi-factor longitudinal and spatially resolved
data.

4. Experimental Section

Dataset and Processing:  In this study, it was used three public datasets
of melanoma immunotherapy patients to demonstrate the iDAS frame-
work: one single cell RNA-seq dataset and two bulk RNA-seq datasets.

Pozniak2024: This single cell RNA-seq data is from a longitudinal pro-
filing study of metastatic melanoma under immune checkpoint blockade
(1CB).I"®1 Biopsies were taken from cutaneous, subcutaneous, or lymph
node metastases before treatment (BT) and early on-treatment (OT; be-
fore the second ICB infusion) and processed for scRNA-seq using the 10x
Genomics Chromium platform. For two-way iDAS analysis, it was used
the pre-treatment data, filtering out cell states named Patient-specific-A
and Patient-specific-B and only including protein coding genes. This re-
sulted in a dataset of 18 patients with 8789 cells and 14 346 genes for the
differential abundance analysis to identify significant DA groups. For the
three-way iDAS analysis, we used the pre- and on-treatment data together,
which includes 13 789 cells and 13 887 genes. The single cell dataset was
mapped to the GRCh38 genome reference.

Liu2019: This bulk RNA-seq data comes from a cohort of patients
with advanced melanoma who received PD1 blockade as palliative
treatment.[?6] FFPE tissues were obtained before PD-1 blockade. Patients
were classified into five clinical statuses in the original study: Complete Re-
sponse (CR), Partial Response (PR), Minor Response (MR), Progressive
Disease (PD), and Stable Disease (SD). For this analysis, CR and PR as
responders (n =47) and PD and SD as non-responders (n = 72) resulting
in a dataset of 119 individuals was selected. The data was aligned using
STAR with GRCh38 reference and quantified with RSEM to yield gene-level
expression in transcripts per million (TPM). It was directly used the TPM
matrix for our analysis.

Hugo2017: This bulk RNA-seq data comes from a cohort of pa-
tients with metastatic melanoma who received either pembrolizumab
or nivolumab as their anti-PD-1 therapy.l?’”l Melanoma specimens be-
fore treatment with sufficient RNA quality were analyzed by RNA-Seq.
Paired-end transcriptome reads were mapped to the UCSC hg19 reference
genome using Tophat2. Normalized expression levels of genes were re-
ported in FPKM values. It was directly used the FPKM matrix of 26 patients
for this analysis.

iDAS Framework: iDAS involves two main components, the first com-
ponent uses a series of nested ANOVA-statistics to classify genes into dif-
ferent groups, and the second component performs relevant differential
expression analysis for signature identification and interpretation. Each
step was described in the following subsections.

[A] ANOVA-based test to classify genes

[A1] Two-way fix effect model

The development of the ANOVA-based tests in our framework was in-
spired by the nonparametric ANOVA (NANOVA) method,[">] which was
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originally proposed for classifying genes based on their factor effects in
microarray data. In this approach, gene expression was modeled as the
response variable and the cell type or experiment factors as explanatory
variables. Specifically, in two-way factorial experiments, it could summa-
rize gene expression by one of the following ANOVA models.

Model 1 = yjp, = p+a; + f + (aB)j + €jimy M
Model 2 = yj, = 1+ a; + f + €jiny (2)
Model 3 — Yim = H + & + €jm (3)
Model 4 — vy, = p + B + € 4)
Model 5 — Yim = H + Ejm (5)

In these models, a;with {i: 1, ..., [}, and ﬁj with {i: 1, ..., J}
denote the two factors of interest at levels i and j, respectively, and
Y{g,jjm} represents the expression of gene g under the condition defined by
(a;,B)- Here, mwith m =1, ..., my; is a subscript for replicates. The full
model (Model 1) includes yu representing the baseline gene expression
and (af);as the interaction term, indicating that genes were influenced by
both factors and the effect of one factor depends on the level of the other.
The “additive” model (Model 2) shows that genes are affected by both fac-
tors independently, without any interaction effect. “Single-factor” models
(Models 3 and 4) illustrate genes affected by only one factor, either «; or
B;. Lastly, the “null” model (Model 5) indicates that gene expression was
not influenced by either factor.

Next, iDAS classified genes into five groups (Cey, Cry, Cr1x r20 Cr1 4 20
Chon — sig), each corresponding to one of the models described earlier (see
Figure S11b, Supporting Information). This classification was based on a
series of ANOVA tests as detailed below.

1) No effect test: In this step, a test was conducted to determine whether
the gene expression is affected by any factor, corresponding to the null
hypothesis HO : a; = ﬁj = (aﬂ)y =0;i=1..,1j=1, ..., J(Model
5) versus alternative hypothesis HO : V a; # 0, B #0, (ap); #0; i=
1,...,, j=1, ..., J (Model 1). The p-values were then adjusted us-
ing the Benjamini & Hochberg method to control the false discovery
rate. The significance level of the p-value was set using two methods:
either by ordering the p-values and defining the top 2% as the signif-
icance level, or by using a predefined significance level, such as 0.05
or 0.01. Genes with p-values larger than this significance level are con-
sidered part of the non-significant group (Cpp _ gjg). The significant
genes (C) were further classified into four groups (Cry, Cryy Cry x 2

Crr4p2)-

2) |Interaction effect test: Cg, was then further classified into interaction
effect and non-interaction effect groups. The null hypothesis is HO :
(aﬂ)g =0;i=1..,1j=1, .., J(Model 2), indicating no interaction
effects between factor 1 and factor 2. The alternative hypothesisis H1:
(aﬂ),-j #0;Vi=1, .., 1 j=1, ..., J, which corresponds to Model 1.
Follow the same idea from “No effect test”, the set of gene signatures
with significant interaction effects is defined as having p-values less
than significance level and is denoted as Cgy  f,.

3) Main effect test: To test the main effect of a (F1), the null hypothesis
is HO: a; =0; i=1, ..., |, indicating no effect of F1 on the gene
signatures, which corresponds to Model 4. The alternative hypothesis
isH1: a;#0; Vi=1, ... |, corresponding to Model 2.

Similarly, to test the main effect of # (F2), the null hypothesisis HO : f; =
0;j: 1, ..., J, indicating the set of gene signatures with no F2 effect,
which corresponds to Model 3. The alternative is still Model 2, H1: ﬂj #
0j=1 ...,/

The two tests described above were applied to the genes set

Ciig™ Cr1 x 2 to identify genes having a (F1) and f(F2) effect, respec-

tively. Denote these two sets as C, and Cj, then it could get Cry =

C,~ {C, N Gy} and Cry = G4~ {C, N )
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4) Additive effect: After performing the three tests described above, the re-
maining genes in C, are classified into Cr | p,, representing the addi-
tive effect group. This set was defined as Cjg\ {Cryx 2 N Cry N Cpr}-

[A2] Three-way random effect model

In this section,a three-way ANOVA classification model with a random
effect was constructed. Specifically, in three-way factorial experiments,
gene expression can be summarized using one of the following ANOVA
models..

Model T = Yjjum = # +aj+ B + v+ (@B + (Br)j + ()i + (aBr)

+u, + Eijknm (6)

Model 2 — iy = 4+ o + f + yi + (@B) + (Br)j + (ar)i

+u, + Eijknm (7)

Model 3 = yjuum =+ + i+ v+ (Br)i + (@r)ix + Uy + €jnm (8)

Model 4 — Vignm = M+ & + B+ 7 + (aﬁ)g + (ar)j +u, + Eijknm ©)

Model 5 = Yium = 1+ + B + 1+ (@B)y + (BY)jk + U + €jjnmn (10)
Model 6 — Yikm = H + @ + B; + 1 + Uy + €jiam (1)
Model 7 — Yiknm = H + @+ Uy + €jiknm (12)
Model 8 = iy = f + B + Uy + € (13)
Model 9 — Yijknm = H + Yk + Uy + €jiknm (14)
Model 10 — Yijknm = H + Up + €jjknm (15)

In these models, a; with {i: 1, ..., [}, fwith {j: 1, ..., J}and y, with

{k:1, ..., K} denote the three factors of interest at levels i, j and k, respec-
tively, and y(g jinm) represents the expression of gene g under the condition
defined by («;,6;,7) - Here, nwith n =1, ..., Njy is a subscript for ran-
dom effect factor, mwithm =1, ..., Mj; is a subscript for replicates. The
baseline gene expression is denoted as u. (afy);iis the interaction term,
indicating that genes were influenced by three factors and the effect of
one factor depends on the level of the others. (af);, (f7)jand (ay); are
the interaction term of two factors. Model 1 was the full model, includ-
ing all three factors with two-way and three-way interaction effects, and a
random effect u,. Model 2 only includes two-way interaction effects. Mod-
els 3, 4, and 5 include only two-way interaction effects, but each model
excludes one of the two-way interaction effects. Model 6 illustrates that
genes were affected by three factors independently, without any interaction
effect. Models 7,8, and 9 were single factor models, showing that genes
were affected by only one factor. Lastly, Model 10 indicates that gene ex-
pression was not influenced by any factor.

Next, genes were classified into ten groups

(Cr1 Cra) Cp3, Crix 2
CodditiverCF1 x F2 x F3» Cnon—sig)v

each corresponding to one of the models described earlier (see
Figure S11c, Supporting Information). This classification is based on a
series of ANOVA tests as detailed below. This classification is based on a
series of ANOVA tests as detailed below.

CF2 X F3» CF] X F3» tho—way combiner

1) No effect test: In this step,a test was conducted to determine whether
the gene expression is affected by any factor, corresponding to
the null hypothesis HO: a;=f; = = (@f); = (Br)j = (a7)y =
(aﬁy),-jk =0, i=1..,1j=1 ..., J k=1,..,K (Model 10) ver-
sus alternative hypothesis HO: V «;#0, §;#0,5 #0, (af); #

0, (Br)y #0, (ar)u #0, (@hy)y #0; i=1 ..., j=1 .., J k

Small Methods 2026, 10, e2500572

www.small-methods.com

1,...,K (Model 1). The p-values were then adjusted using the Ben-
jamini & Hochberg method to control the false discovery rate. The
significance level of the p-value was set using two methods: either by
ordering the p-values and defining the top 2% as the significance level,
or by using a predefined significance level, such as 0.05 or 0.01. Genes
with p-values larger than this significance level were considered part
of the non-significant group (C,,, _ 5i5)- The significant genes (Cy;) are
further classified into other groups.

2) Interaction effect test: Cy, was then further classified into interac-
tion effect and non-interaction effect groups. The null hypothesis,
HO: (af)y =0, (Br)p =0 (ar)p =0 (@fy)y=0i=1,...,1j=
1, ..., J, k=1,...,K(Model 6), indicating no interaction effects
among factors. The alternative hypothesis is H1: (af); # 0, (7); #
0 (@) #0, (@B # 0V i=1,.., 0 j=1, .., J, k=1,..K,
which corresponds to Model 1. The set of gene signatures with signifi-
cant interaction effects is denoted as C,,;, while set of gene signatures
without significant interaction effects is denoted as Cpyps-

3) Main effect test: To test the main effect of a (F1), our null hypothesis is
HO: a; #0, f=0,1,=0i=1 ..., L j=1 .., J k=1..Kin
dicating no effect of §(F2) and y (F3) on the gene signatures, which cor-
responds to Model 7. The alternative hypothesis is H1: a; #0, f; #
0,7#0;,Vi=1, ..., j=1 ..,J k=1,..,K, corresponding to
Model 6.

Similarly, to test the main effect of g (F2), the null hypothesis is HO : «; =
0, B # 0 =0 i=1 .., 1Lj=1 ..,J k=1,..,K, indicating the
set of gene signatures with only F2 effect, which corresponds to Model
8. And the alternative is still Model 6, H1: «; # 0, Bi#0, 7 #0;V i=
Lo hj=1 ) k=1, K

Lastly, to test the main effect of y (F3), the null hypothesis is HO : «; =
0, ﬂJ =0,y #0,i=1 .., 1j=1 .. J k=1,..,K, indicating the
set of gene signatures with only F3 effect, which corresponds to Model
9. And the alternative is still Model 6, H1: a; # 0, ,Bj #0,y,#0;, Vi=
Lo b= k=1 K

The three tests described above were applied to the genes set Cypyps tO
identify genes having a (F1), #(F2) and y (F3) effect, respectively. Cr,
is the gene set that fails the main effect test for F1 but passes the main
effect tests for F2 and F3. Conversely, Cp, fails the main effect test for
F2 but passes the main effect tests for F1 and F3. And Cg; fails the main
effect test for F3 but passes the main effect tests for F1 and F2.

4) Additive effect: After performing the three tests described in main ef-
fect test, the remaining genes in Cy,,,; are classified into C,ygiiver
representing the additive effect group, which includes F1+F2, F1+F3,
F2+F3 and F1+F2+F3.

5) Three-way interaction effect test: The interaction gene set C;,, was fur-
ther classified into groups based on three-way interaction effects and
two-way interaction effects. the null hypothesis is HO: (afy) =
0;i=1, ..., L j=1,..,J k=1,..,K, indicating there is no three-
way intersection effect, which corresponds to Model 2. And the alter-
native is H1 : (aﬂy)yk £0,Vi=1 ..., Lj=1 ..,/ k=1..K,
which corresponds to Model 1. With this test, C;,,, can be partitioned
into Cryy 2 ;3 When p-value less than the significance level, and
Ciwo — way When p value is greater than cutoff value.

6) Two-way interaction effect test: To further interpret the two-way inter-
action effect genes, they were classified into four groups: F1F2, F1F3,
F2F3, and a general two-way combination group.

To test the two-way interaction effect of (af) (F1F2), the null hypothesis
is HO : (aﬁ)y =0;i=1 .., j=1, ..., J, indicating no effect of
(ap) (F1F2) on the gene signatures, which corresponds to Model 3. The
alternative hypothesis is H1: (af); #0;Vi=1, ..., |, j=1, ..., ],
corresponding to Model 2.

Similarly, to test the two-way interaction effect of (fy) (F2F3), the null hy-
pothesisis HO: (By); =0;j=1, ..., J, k=1,..., K, indicating no ef-
fect of (By) (F2F3) on the gene signatures, which corresponds to Model
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4. The alternative hypothesis is H1: (By); #0;V j=1,
1, ..., K, corresponding to Model 2.

Lastly, to test the two-way interaction effect of (ay) (F1F3), the null hypoth-
esisis HO: (ay)y=0;i=1, ..., |, k=1,..., K, indicating no effect
of (ay) (F1F3) on the gene signatures, which corresponds to Model 5.
The alternative hypothesisis H1: (ay); #O;Vi=1, ..., |, k=1,..., K,
corresponding to Model 2.

The tests described above were applied tothe genes set Gy, _ ,,, to iden-
tify genes having (af) (F1F2), (By) (F2F3) and (ay) (F1F3) interaction
effect, respectively. Cry, f, is the gene set that passes the two-way in-
teraction effect test for F1F2 but fails the main effect tests for F2F3 and
F1F3. Conversely, Cr, , r3 passes the main effect test for F2F3 but fails
the main effect tests for F1F2 and F1F3. And Cgy 3 passes the main
effect test for F1F3 but fails the main effect tests for F1F2 and F2F3.

After performing the three tests described above, the remaining genes in
Ciwo — way are classified into Gy, _ 0y combine: representing the two-way
combination effect group.

) k=

[B] Differential expression analysis for signature identification and
interpretation

The second step was illustrated using a two-way fixed-effect model. Af-
ter classifying the gene list into four categories, the iDAS framework per-
forms differential gene expression analysis at each level of the factors for
both main effects and interaction effects. In this case study, where factor
1 was cell state and factor 2 was phenotype, the process was as follows:

® Main Effect F1 (Cell state): Differential expression (DE) analysis was
performed using limmal?] on the main effect-related gene signatures
to identify cell markers characterizing each cell state.

® Main Effect F2 (Phenotype): DE analysis was performed using limma on
the main effect-related gene signatures to find signatures that are highly
differentially expressed between the responding and non-responding
cell groups.

® Interaction Effect: For interaction effect, cell state—specific respond-
ing or non-responding signatures were of primary interest. First, the
top 10 marker genes of each cell state in the interaction signatures
were identified. Then, Differential expression (DE) analysis was then
repeated using these marker genes across the two phenotypes to de-
termine whether any cell state marker genes were also differentially ex-
pressed between the phenotype groups. Genes specifically expressed in
one phenotype within a given cell state were subsequently selected and
designated as cell state—specific responding or non-responding mark-
ers.

In sum, the iDAS R package allows users to apply either a linear re-
gression model using the 1m function in stats package or a linear mixed-
effects model using the 1mer function from the 1me4 package. For all hy-
pothesis tests, users can choose to use either raw p-values or adjusted
p-values cut off to identify whether a gene is associated with a factor of
interest. In the first step, where genes are classified as associated or not
associated with any factor, iDAS also provides an option to use a p-value
quantile cutoff. This is a user-defined percentage value that sets the sig-
nificance threshold based on the distribution of full model p-values or ad-
justed p-values (Figure S11, Supporting Information).

Differential Expression Analysis using Limma: Pseudobulk expression
matrices were generated by aggregating single-cell data across cell states
and treatment phenotypes. A linear model was constructed for each gene
using the design formula ~ cell state X treatment phenotype, in-
corporating both main effects and their interaction term. Top differentially
expressed genes were identified for each model coefficient (cell state, treat-
ment phenotype, and their interaction) using topTable, with an adjusted
p-value threshold of < 0.01. Genes were assigned to each factor based on
their significance with respect to the corresponding model coefficient.

Differential Abundance Analysis using Milo:  Milo was used to perform
differential abundance (DA) analysis on the single-cell dataset to identify
the most significant DA groups and exclude insignificant ones for further
iDAS analysis. Following the official Milo guidelines, this analysis involved
several steps: creating a Milo object, constructing a KNN graph with 30
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PCA-reduced dimensions, defining representative neighborhoods using
the same k value (k = 10) used in building the KNN graph, counting cells
in neighborhoods, building a design matrix, and conducting differential
abundance testing, with all other parameters set to default. We then ex-
tracted the DA neighborhoods with a false discovery rate (FDR) of <0.2
and a log, fold change (log,FC) of >5. This approach ensured that it was
focused on the most relevant DA groups for our subsequent analysis.

Differential Abundance Analysis using DA-Seq and Scissor:  DA-seq with
default parameters was applied to assign a differential abundance score to
each cell, were selected asand selected cells with scores above 0.96 or be-
low -0.96 differentially abundant cells. For Scissor, pseudobulk data were
first created for each sample, using the patient-level phenotype as the sam-
ple phenotype. Scissor analysis was then performed using the binomial
approach with alpha = 0. As a result, all cells were classified as either re-
sponding or non-responding cells.

Apply iDAS to Pozniak2024 Single Cell Data: In this case study, the DA
cells identified by Milo were used for the iDAS analysis. To apply iDAS
with two-way fix effect modelcell state and the patient’s immunotherapy
response phenotype were taken as the two main effects. To avoid the high
false discovery rate commonly associated with single-cell analysis, usually
dueto alarge number of replicates and violation of independence assump-
tions that can lead to false signals, pseudobulk samples were created in-
stead of directly using single cells in the analysis. For each sample, the
average gene expression per cell state was calculated. iDAS analysis was
performed on the log2 transformed pseudobulk matrix. he iDAS model
was used to identify the main effect signatures that are differentially ex-
pressed in cell states (F1), treatment phenotypes (F2), and the interac-
tion effect signatures related to both factors (F1xF2). To apply iDAS with
a three-way random effect model, cell states, patient immunotherapy re-
sponse phenotypes, and sample pre/on treatment status were used as the
three main effect factors, with patient ID as the random effect factor.

Hallmark Pathway Enrichment Analysis: To perform enrichment
analysis on gene expression data, the bitr function from the
clusterProfiler package was employed, which translates gene
symbols to Entrez IDs using the org.Hs.eg.db database. Human
gene set data were retrieved from msigdbr, specifically focusing on the
Hallmark gene set collection.

For each set of positive markers (log,FC > 0) associated with a cell
state or treatment phenotype, it was first assessed whether the subset
contained more than five genes to proceed with enrichment analysis. If
this criterion was met, the enricher function was applied to identify sig-
nificantly enriched gene sets based on the translated Entrez IDs, using a
minimum gene set size of five to ensure validity. The enriched gene sets
were then visualized using the dotplot function from the same package,
with plots titled according to their corresponding category.

Bulk Deconvolution with BayesPrism:  To demonstrate that the gene sig-
natures identified by iDAS are transferable to external bulk datasets, cell
states within the bulk dataset were first identified. The official guidelines
for applyingto apply BayesPrism(**] for deconvolution of the bulk data
into the corresponding cell states identified in the single-cell data were
followed. Genes with expression in fewer than five cells in the scRNA-seq
matrix were removed, and only protein-coding genes were selected for the
deconvolution analysis. All other parameters were set to their default val-
ues.

Evaluation: General linear regression models were built to predict the
response status or cell states of single-cell pseudobulk samples or exter-
nal bulk samples using the signatures. A nested 10 cross-validation was
performed using the nestcv.glmnet function from the nestedcv pack-
age and the generalized linear model was constructed with the glmnet
package.

Spatial Analysis with In-Silico Spatially Resolved Transcriptomics Data
on TCGA Breast Cancer. The GHIST prediction results, applied to a
set of TCGA breast cancer dataset, were used. A set of samples fo-
cused on the HER2+ breast cancer subtype from TCGA-BRCA was se-
lected, HER2+ patients were identified based on a positive entry in the
“lab_proc_her2_neu_immunohistochemistry_receptor_status” metadata
column, resulting in 92 TCGA samples with corresponding matched H&E
images. The in-silico prediction was described in detailed from GHIST
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paper.3] After filtering out NA values in the AJCC pathological stage,
only ER/PR positive (ER+/PR+; n = 54) and ER/PR negative (ER—/PR—;
n = 22) in-silico spatially resolved transcriptomics samples were se-
lected. In total, 274 genes were predicted using the GHIST package.
scFeatures was then applied to calculate the nearest neighbor corre-
lation (nnCorrelation) between these genes and their most adjacent
neighboring cells, resulting in a nearest neighbor correlation matrix of 274
genes across 76 samples. the nearest neighbor correlation was then ex-
plored with the factor of ER/PR status and the AJCC pathological stage.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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