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We carry out an extensive numerical study of the dynamics of spiral waves of electrical
activation, in the presence of periodic deformation (PD) in two-dimensional simulation
domains, in the biophysically realistic mathematical models of human ventricular tissue
due to (a) ten-Tusscher and Panfilov (the TP06 model) and (b) ten-Tusscher, Noble, Noble,
and Panfilov (the TNNP04 model). We first consider simulations in cable-type domains,
in which we calculate the conduction velocity θ and the wavelength λ of a plane wave;
we show that PD leads to a periodic, spatial modulation of θ and a temporally periodic
modulation of λ; both these modulations depend on the amplitude and frequency of
the PD. We then examine three types of initial conditions for both TP06 and TNNP04
models and show that the imposition of PD leads to a rich variety of spatiotemporal
patterns in the transmembrane potential including states with a single rotating spiral
(RS) wave, a spiral-turbulence (ST) state with a single meandering spiral, an ST state
with multiple broken spirals, and a state SA in which all spirals are absorbed at the
boundaries of our simulation domain. We find, for both TP06 and TNNP04 models, that
spiral-wave dynamics depends sensitively on the amplitude and frequency of PD and
the initial condition. We examine how these different types of spiral-wave states can be
eliminated in the presence of PD by the application of low-amplitude pulses by square- and
rectangular-mesh suppression techniques. We suggest specific experiments that can test
the results of our simulations.
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1. INTRODUCTION
Sudden cardiac arrest is caused, in many cases, by cardiac arrhyth-
mias, such as ventricular tachyacardia (VT) and ventricular fibril-
lation (VF) (Roger et al., 2011, 2012). Estimates suggest that VF is
the main reason for death in 30% of the cases in which heart fail-
ure occurs (Zipes and Wellens, 1998; Fogoros, 2011). Thus, the
importance of studying such arrhythmias cannot be overempha-
sized. Such studies must use interdisciplinary approaches because
they require inputs from biology, bio-medical engineering, and
cardiology, on the one hand, and physics, non-linear dynam-
ics, and numerical methods, on the other; methods from these
areas must be used to study the complicated, non-linear, partial-
differential-equation models that have been developed for cardiac
tissue. Such equations can show, inter alia, spiral-wave turbu-
lence and spatiotemporal chaos, which is believed to be one of
the mathematical analogs of VF. The study we present here com-
bines theoretical ideas from spatiotemporal chaos in extended
dynamical systems with extensive direct numerical simulations, to
elucidate the effects of periodic deformation (PD) on spiral-wave
dynamics in detailed mathematical models for cardiac tissue and
to investigate the elimination of such spiral waves, in the presence
of PD, by the application of low-amplitude current pulses.

The mechanisms underlying VT and VF are not understood
with complete certainty; however, various clinical studies (Fenton
et al., 2008; Fogoros, 2011) have suggested that such arrhyth-
mias comprise the abnormal propagation of a wave of electrical
activation across the ventricles. Such irregular waves appear in
various ways. For example, they can arise because of an infarc-
tion scar (De Bakker et al., 1993), which can create an anatomical
path that anchors electrical waves; they are also seen around
obstacles in vitro (Valderrábano et al., 2000) and in cell-culture
experiments (Lim et al., 2006) (anatomically reentry). However,
reentry can occur in the absence of an anatomical pathway. For
instance, in vitro experiments (Davidenko et al., 1990; Ikeda et al.,
1996) have shown that fibrillation can be maintained by func-
tional reentry. However, ectopic activations (Chen et al., 1999;
Zimmermann and Kalusche, 2001), because of pulmonary veins
or abnormal cells, can also initiate fibrillation. In particular, both
experimental (Davidenko et al., 1992; Pertsov et al., 1993; Gray
et al., 1998; Jalife et al., 1998) and computational (Jalife et al.,
1998; Fenton et al., 2002; Cherry and Fenton, 2008) studies have
suggested that VT and VF are, respectively, manifestations of (a)
a rotating spiral (RS) or scroll wave or (b) broken spiral or scroll
waves that lead to spiral- or scroll-wave turbulence (ST).
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Several studies have investigated the transition from RS to
ST, both in experiments on cardiac tissue and in computational
studies of mathematical models for cardiac tissue; they find that
this transition can occur because of (a) a steep, increasing ini-
tial segment in the restitution curve, a plot of the action potential
duration (APD) versus the diastolic interval (DI) (Koller et al.,
1998; Garfinkel et al., 2000; Fenton et al., 2002), (b) a simi-
lar steep part in an analogous plot of the conduction velocity
θ versus DI (Qu et al., 2000b; Fenton et al., 2002), (c) alter-
nans (Karma, 1994; Koller et al., 1998; Qu et al., 1999; Cherry
and Fenton, 2008), and (d) heterogeneities, such as, conduction
and ionic inhomogeneities (Xie et al., 1998; Shajahan et al., 2007,
2009; Majumder et al., 2011a,b). Recently, some groups (Zhang
et al., 2004, 2006; Panfilov et al., 2007; Chen et al., 2008; Weise
et al., 2011) have begun to study the effects of the deforma-
tion of cardiac tissue on the RS-ST transition; such a transition
arises either because of periodic deformation or the stretch-
activated current associated with such deformation. These studies
have used simple, two-variable mathematical models for elec-
trical activation in such tissue. One of the goals of our study
is to investigate spiral-wave dynamics in general, and RS-ST
transitions in particular, in a simple mathematical model for
periodic deformation (PD) of cardiac tissue (Zhang et al., 2004,
2006; Chen et al., 2008) that we couple with ionically realistic
human-ventricular-tissue mathematical models, namely, (a) the
TP06 model, due to ten Tusscher and Panfilov (Ten Tusscher
and Panfilov, 2006), or (b) the TNNP04 model, of ten Tusscher,
Noble, Noble, and Panfilov (Ten Tusscher et al., 2004). A defor-
mation of cardiac tissue leads to modifications of ion-channel
parameters, because of stretch-activated currents, and also a mod-
ification of intracellular couplings. Our model for deformation,
based on Zhang et al. (2004, 2006) and Chen et al. (2008), is
a very simplified one in which the effects of deformation are
accounted for only by a temporal modulation of diffusion con-
stants (see section 2), which are related to intracellular couplings;
we do not include stretch-activated currents as considered in
Panfilov et al. (2005, 2007) and Weise et al. (2011). However,
in spite of this simplified representation of deformation, our
study yields important results that have been observed in two-
variable models for cardiac tissue both with periodic deformation
(PD) (Zhang et al., 2004, 2006; Chen et al., 2008) or mechani-
cal deformation (Panfilov et al., 2005, 2007; Weise et al., 2011);
the latter studies include stretch-activated currents. Such stretch-
activated currents with mechano-electrical feedback have also
been shown to affect electrical activation in anatomically real-
istic human models (Keldermann et al., 2010; Kuijpers et al.,
2011); mechano-electrical feedback can enhance electrical acti-
vation as discussed in Thompson et al. (2011) in the context of
myofibroblast-myocyte interactions (of course, pharmacological
and electrochemical interventions can also enhance electrical acti-
vation). On the positive side, our study uses ionically realistic
models that have not been employed in such deformation studies
so far (but see the recent Weise and Panfilov, 2013). We discuss the
principal results of the studies carried out in Zhang et al. (2004,
2006), Panfilov et al. (2005, 2007), Chen et al. (2008), and Weise
et al. (2011), in section 4, where we compare their findings with
ours.

We also investigate the efficacy of a low-amplitude suppression
scheme, developed for the suppression of spiral-wave turbulence
in 2D models for cardiac tissue (Sinha et al., 2001; Pandit et al.,
2002; Shajahan et al., 2009; Majumder et al., 2011a) in the absence
of PD. Our study yields several interesting results that we sum-
marize below before we discuss them in detail. We find first that
PD leads to a periodic, spatial modulation of the conduction
velocity θ and a temporally periodic modulation of the wave-
length λ of a plane wave. We then use three different parameter
sets, for both TP06 and TNNP04 models, to obtain three dif-
ferent prototypical spiral configurations, which we use as the
initial conditions IC1, IC2, and IC3 (see section 2). We find,
for the TP06 model, that spiral-wave dynamics depends sensi-
tively on PD and the initial condition. (For similar studies of
the sensitive dependence of spiral-wave dynamics on inhomo-
geneities, see Shajahan et al., 2007, 2009.) The initial condition
IC1 can lead to (a) an RS state with n-cycle temporal evolu-
tion (here n is a positive integer), (b) rotating-spiral states with
quasi-periodic (QP) temporal evolution, (c) a state with a sin-
gle meandering spiral MS, which displays spatiotemporal chaos,
(d) an ST state, with multiple broken spirals, and (e) a quiescent
state SA, in which all spirals are absorbed; the initial condition
IC2, with PD, can lead either to (a) an ST state, with multiple
spirals, or (b) an SA state, with no spirals; and for IC3, it can
be driven into (a) an ST state, with a single meandering spiral,
(b) an ST state, with multiple spirals, and (c) the state SA. For
all these initial conditions, precisely which one of these states is
obtained depends on the amplitudes Ax and Ay and the frequen-
cies fx and fy of the PD in the x and y directions. Spiral-wave
dynamics in the TNNP04 model, with PD, also shows sensitive
dependence on PD and the initial condition. This sensitive depen-
dence on parameters is a hallmark of extended dynamical systems
that show spatiotemporal chaos (Shajahan et al., 2007, 2009). We
also study, in the presence of PD, the efficacy of a low-amplitude
suppression scheme (Sinha et al., 2001; Shajahan et al., 2009) that
has been suggested, hitherto only without PD, for the suppres-
sion of spiral-wave turbulence, via low-amplitude current pulses
applied on a square mesh, in mathematical models for cardiac
tissue. Furthermore, we develop line-mesh and rectangular-mesh
variants of this suppression scheme. The latter suppresses spiral
turbulence in all cases we consider.

2. METHODS
The electrical activation of the transmembrane potential Vm

of cardiac tissue is often modeled by a reaction-diffusion-type
equation,

∂Vm

∂t
+ Iion

Cm
= Dx

∂2Vm

∂x2
+ Dy

∂2Vm

∂y2
, (1)

where Cm is the membrane capacitance density, Iion is the sum of
all the ionic currents that cross the cell membrane, and Dx and Dy

are, respectively, the diffusion coefficients along x and y directions;
such diffusion terms are related to gap junctions (Ten Tusscher
et al., 2004; Ten Tusscher and Panfilov, 2006), which are net-
works of protein channels that allow the passage of ions from
cell to cell. We use two biophysically realistic ionic models for
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human cardiac myocytes: (a) the ten Tusscher and Panfilov model
(the TP06 model) (Ten Tusscher and Panfilov, 2006) and (b) the
ten Tusscher, Noble, Noble, and Panfilov model (the TNNP04
model) (Ten Tusscher et al., 2004). It is important to check the
compatibility of the models that we consider in our study with
the standard version of the original models (Ten Tusscher et al.,
2004; Ten Tusscher and Panfilov, 2006). One way to check for
such compatibility is by comparing the AP and its morphologi-
cal properties (Figure S1 and Table S1, Supplementary Material
S1) with those in our studies; we have checked this explicitly, as
we discuss in detail in the Supplementary Material S1.

We follow the method suggested in Zhang et al. (2004, 2006)
and Chen et al. (2008) for the introduction of PD into a mathe-
matical model for cardiac tissue. In particular, we note that any
point x = (x, y) in the medium changes to x′(t) = (x′(t), y′(t))
with

x′(t) = x [1 + Ax(t)] , (2)

y′(t) = y
[
1 + Ay(t)

]
,

if we impose a PD with Ax(t) = Ax cos (2π fxt) and Ay(t) =
Ay cos (2π fyt). By substituting Equation (2) into Equation (1), we
obtain

∂Vm

∂t
+ Iion

Cm
= 1

[1 + Ax(t)]2
Dx

∂2Vm

∂x2
(3)

+ 1
[
1 + Ay(t)

]2
Dy

∂2Vm

∂y2
;

a comparison of Equations (1, 3) shows that Equation (3) can be
rewritten as

∂Vm

∂t
+ Iion

Cm
= Dx(t)

∂2Vm

∂x2
+ Dy(t)

∂2Vm

∂y2
, (4)

with Dx(t) = Dx(1 + Ax(t))−2 and Dy(t) = Dy
(
1 + Ay(t)

)−2
.

In our numerical simulations, we use 2D square domains
with 1024 × 1024 grid points and lattice spacings δx = δy =
0.25 mm for both TP06 and TNNP04 models, so the sides of
our square simulation domains are L = 256 mm in the absence
of PD. We use a forward-Euler method for time evolution, with
a time step δt = 0.02 ms, a five-point stencil for the Laplacian,
and no-flux (Neumann) boundary conditions. We set the diffu-
sion coefficients Dx = Dy = D = 0.00154 cm2/ms (Ten Tusscher
et al., 2004; Ten Tusscher and Panfilov, 2006) for both the TP06
and the TNNP04 models for our numerical investigations. Other
parameters for our calculations are given in Tables 1, 2 and an
examination of the numerical stability of our numerical scheme
is given in the Supplementary Material S1.

To examine the spatiotemporal evolution of the electrical sig-
nal of the transmembrane potential, we obtain the local time
series of Vm(x, y, t), from a representative point (x = 125 mm,
y = 125 mm) (shown by an asterisk in all pseudocolor plots of
Vm). To obtain the plots of the inter-beat interval (IBI), we use
this local time series with 4 × 105 data points; the IBI is the time

Table 1 | Parameters for the periodic deformation (PD) that we use to

study the wave dynamics in our cable-type and square simulation

domains in both TP06 and TNNP04 ventricular models.

Type of Dimension of Parameter Amplitude of Frequency of

domain domain (mm) sets PD PD (Hz)

Lx = 1024, Ly = 4 (a00) Ax = 0, Ay = 0 fx = 0, fy = 0

Lx = 1024, Ly = 4 (a01) Ax = 0.1, Ay = 0 fx = 1, fy = 0

Lx = 1024, Ly = 4 (a02) Ax = 0.2, Ay = 0 fx = 1, fy = 0

Lx = 1024, Ly = 4 (a03) Ax = 0.3, Ay = 0 fx = 1, fy = 0

Lx = 1024, Ly = 4 (a04) Ax = 0.4, Ay = 0 fx = 1, fy = 0

Lx = 1024, Ly = 4 (a05) Ax = 0.5, Ay = 0 fx = 1, fy = 0

Lx = 1024, Ly = 4 (a06) Ax = 0.1, Ay = 0 fx = 3, fy = 0

Lx = 1024, Ly = 4 (a07) Ax = 0.2, Ay = 0 fx = 3, fy = 0

Lx = 1024, Ly = 4 (a08) Ax = 0.3, Ay = 0 fx = 3, fy = 0

Lx = 1024, Ly = 4 (a09) Ax = 0.4, Ay = 0 fx = 3, fy = 0

Lx = 1024, Ly = 4 (a10) Ax = 0.5, Ay = 0 fx = 3, fy = 0

Cable Lx = 1024, Ly = 4 (a11) Ax = 0.1, Ay = 0 fx = 5, fy = 0

Lx = 1024, Ly = 4 (a12) Ax = 0.2, Ay = 0 fx = 5, fy = 0

Lx = 1024, Ly = 4 (a13) Ax = 0.3, Ay = 0 fx = 5, fy = 0

Lx = 1024, Ly = 4 (a14) Ax = 0.4, Ay = 0 fx = 5, fy = 0

Lx = 1024, Ly = 4 (a15) Ax = 0.5, Ay = 0 fx = 5, fy = 0

Lx = 1024, Ly = 4 (a16) Ax = 0.1, Ay = 0 fx = 7, fy = 0

Lx = 1024, Ly = 4 (a17) Ax = 0.2, Ay = 0 fx = 7, fy = 0

Lx = 1024, Ly = 4 (a18) Ax = 0.3, Ay = 0 fx = 7, fy = 0

Lx = 1024, Ly = 4 (a19) Ax = 0.4, Ay = 0 fx = 7, fy = 0

Lx = 1024, Ly = 4 (a20) Ax = 0.5, Ay = 0 fx = 7, fy = 0

Lx = 256, Ly = 256 (a1) Ax = 0.1, Ay = 0.1 fx = 1, fy = 1

Lx = 256, Ly = 256 (a2) Ax = 0.2, Ay = 0.2 fx = 1, fy = 1

Lx = 256, Ly = 256 (a3) Ax = 0.3, Ay = 0.3 fx = 1, fy = 1

Lx = 256, Ly = 256 (a4) Ax = 0.4, Ay = 0.4 fx = 1, fy = 1

Lx = 256, Ly = 256 (a5) Ax = 0.5, Ay = 0.5 fx = 1, fy = 1

Lx = 256, Ly = 256 (b1) Ax = 0.1, Ay = 0.1 fx = 3, fy = 3

Lx = 256, Ly = 256 (b2) Ax = 0.2, Ay = 0.2 fx = 3, fy = 3

Lx = 256, Ly = 256 (b3) Ax = 0.3, Ay = 0.3 fx = 3, fy = 3

Lx = 256, Ly = 256 (b4) Ax = 0.4, Ay = 0.4 fx = 3, fy = 3

Lx = 256, Ly = 256 (b5) Ax = 0.5, Ay = 0.5 fx = 3, fy = 3

Tissue Lx = 256, Ly = 256 (c1) Ax = 0.1, Ay = 0.1 fx = 5, fy = 5

Lx = 256, Ly = 256 (c2) Ax = 0.2, Ay = 0.2 fx = 5, fy = 5

Lx = 256, Ly = 256 (c3) Ax = 0.3, Ay = 0.3 fx = 5, fy = 5

Lx = 256, Ly = 256 (c4) Ax = 0.4, Ay = 0.4 fx = 5, fy = 5

Lx = 256, Ly = 256 (c5) Ax = 0.5, Ay = 0.5 fx = 5, fy = 5

Lx = 256, Ly = 256 (d1) Ax = 0.1, Ay = 0.1 fx = 7, fy = 7

Lx = 256, Ly = 256 (d2) Ax = 0.2, Ay = 0.2 fx = 7, fy = 7

Lx = 256, Ly = 256 (d3) Ax = 0.3, Ay = 0.3 fx = 7, fy = 7

Lx = 256, Ly = 256 (d4) Ax = 0.4, Ay = 0.4 fx = 7, fy = 7

Lx = 256, Ly = 256 (d5) Ax = 0.5, Ay = 0.5 fx = 7, fy = 7

interval between two successive beats in the time series of the sig-
nal Vm. For the power spectra E(ω) we use the local time series
with 2 × 105 data points after the initial 105 data points have been
removed to eliminate transients. We present the spatiotemporal
evolution of Vm by a series of (Videos S1–S9) of its pseudocolor
plots; all these videos use 10 frames per second and each frame is
separated from the succeeding frame by 8 ms.

We often have to track the trajectory of the tip of a spiral
wave in a 2D simulation domain. The tip of such a spiral wave
is normally defined as the point where the excitation wave front
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Table 2 | Parameters for the initial spiral-wave configurations for TP06 and TNNP04 models; we refer to these as IC1, IC2, and IC3 initial

conditions.

Model Initial GNa Gkr Gks GpCa GpK σ f

condition (nS/pF) (nS/pF) (nS/pF) (nS/pF) (nS/pF)

TP06 IC1 14.838 0.153 0.392 0.1238 0.0146 1

TP06 IC2 5 × 14.838 0.153 0.392 0.1238 0.0146 1

TP06 IC3 14.838 0.172 0.441 0.8666 0.00219 2

TNNP04 IC1 14.838 0.096 0.245 0.825 0.0146 1

TNNP04 IC2 5 × 14.838 0.096 0.245 0.825 0.0146 1

TNNP04 IC3 3 × 14.838 0.096 0.245 5 × 0.825 0.0146 2

Here, σf is the scale factor of the time constant τf (Ten Tusscher et al., 2004; Ten Tusscher and Panfilov, 2006).

and repolarization wave back meet; this point can be found by a
variety of methods (Barkley et al., 1990; Fenton and Karma, 1998;
Fenton et al., 2002; Otani, 2002; Gray et al., 2009; Nayak et al.,
2013). We use the tip-tracking algorithm of Nayak et al. (2013)
that locates the tip position by monitoring INa, the sodium cur-
rent. Pseudocolor plots of INa show a fine line along the arm of
a spiral wave (Figure 2A in Shajahan et al., 2009); this line ter-
minates in the spiral tip and can, therefore, be used to obtain the
spatiotemporal evolution of this tip.

In Figures S2A–F in the Supplementary Material S1, we show
schematic diagrams for illustrative periodic deformations of a
small part of our simulation domain, with 5 × 5 grid points
(indicated by gpts on the axes of figures); in these diagrams,
blue, open circles and blue, dashed lines show, at a particular
instant of time, the deformed simulation domain superimposed
on the undeformed one, which is represented by black, solid cir-
cles and black, full lines. We give representative diagrams for the
case of expansion, with deformations along only x, only y, or
both x and y directions, in Figures S2A–C, in the Supplementary
Material S1, at time t = 20 ms; the corresponding plots for con-
traction, at time t = 180 ms, are shown in Figures S2D–F, in the
Supplementary Material S1.

3. RESULTS
We begin by exploring the effects of PD both on plane-wave prop-
agation and on spiral-wave dynamics; here we vary the oscillation
amplitude and the frequency in the ranges 0 � Ax, Ay � 0.5 and
0 Hz � f � 7.0 Hz; the deformation amplitudes we use are com-
parable to those in other computational (Zhang et al., 2004, 2006;
Weise et al., 2011) and experimental (McCULLOCH et al., 1987;
Noble, 2002) studies; to set the scale of frequencies, we note that
the frequency of rotation of a single spiral wave is 4.75 Hz for the
TP06 model and 3.75 Hz for the TNNP04 model (see section 3.2).
We then study the effects of PD on the suppression scheme of
Pandit et al. (2002) and Shajahan et al. (2009).

3.1. PLANE-WAVE DYNAMICS IN A CABLE
We study plane-wave propagation in a thin, cable-type simulation
domain, with 16 × 4096 grid points, i.e., Lx = 4 mm and Ly =
1024 mm. We inject a stimulus of strength Istimulus = 150 pA/pF
at the left end of the cable for 3 ms and then study the effects of
PD on the plane wave that propagates through this cable; in par-
ticular, we measure the conduction velocity θ and wavelength λ

FIGURE 1 | Pseudocolor plots of the transmembrane potential Vm for

the TP06 model illustrating plane-wave propagation in a cable-type

domain, with PD along the axial-direction of the cable, and the

parameter sets given in Table 1. The Video S1 comprises 21 animations
that show the spatiotemporal evolution of these plane waves.

of the propagating wave in the cable. We find that θ � 70.6 cm/s
and λ � 21.6 cm for the TP06 model, and θ � 67.8 cm/s and
λ � 18.9 cm for the TNNP04 model, in the absence of PD. As sug-
gested in Clayton and Panfilov (2008), Shajahan et al. (2009), and
Ten Tusscher et al. (2004), it is useful to test the accuracy of the
numerical scheme by varying both the time and space steps that
we use for integration. We illustrate this for the TP06 model by
measuring θ for a plane wave, which is injected into the medium
by stimulating the left boundary of our simulation domain. We
find that, with δx = 0.025 cm, θ increases by 1.6% as we decrease
δt from 0.02 to 0.01 ms; if we use δt = 0.02 ms and decrease δx
from 0.025 to 0.015 cm then θ increases by 4.7%; such changes
are comparable to those found in earlier studies (Ten Tusscher
et al., 2004; Shajahan et al., 2009).

In Figure 1(a00–a20) we show, at time t = 600 ms, when
PD is applied along the axial direction of the cable, pseudo-
color plots of the transmembrane potential Vm for the TP06
model with PD along the axial direction of the cable, and the
parameter sets given in Table 1. The Video S1 comprises 21
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animations that show the spatiotemporal evolution of the plane
waves in Figure 1(a00–a20); these animations and Figure 1(a00–
a20) show that the conduction velocity θ is modulated in space
and the wavelength λ is modulated in time because of the PD.
Figure 2 illustrates these modulations via plots of θF and θB ver-
sus x for the conduction velocities of the wave front (Figure 2A)
and the wave back (Figure 2B), respectively; here the subscripts
F and B stand for wave front and wave back, respectively; and
Figure 2C shows the corresponding plot for λ versus time t;
in these plots we use the representative PD parameter values
Ax = 0.3 and fx = 5.0 Hz for the TP06 model. We calculate the
conduction velocities θF(x) and θB(x), in the cable-type domain
with PD, by recording the positions of the wave front and the
wave back at times t and t + 
t, with 
t = 2 ms; the wave-front
and wave-back conduction velocities, at the point x at time t,
are θF(x) = 
Fx/
t and θB(x) = 
Bx/
t, where 
Fx and 
Bx
are, respectively, the distances traveled by the wave front and
wave back in the time interval 
t. We locate the position of the
wave front by finding the value of x at which Vm � 0 mV; we
define the position of the wave back as the point, behind the
wave front, at which a secondary action potential can just be
initiated by an additional stimulus (this turns out to occur at

a value of Vm that is � 75% of the repolarization phase of the
action potential). We obtain the wavelength λ(t) by measuring
the distance between the wave front and the wave back at
time t.

In Figures 2A,B, the open circles show the values of θF(x) and
θB(x), respectively, that we obtain by the method described above;
the red lines show smooth sinusoidal envelopes, with amplitude
� 31.2 cm/s and spatial period � 14.5 cm, that give the average
modulations of these conduction velocities with x. Note that, in
the absence of PD, θ � 70.6 cm/s (this is shown via a gray, dashed
line in Figures 2A,B); therefore, the electrical wave can travel
� 70.6/f cm in 1/f s; hence, for a given PD frequency f , the spa-
tial period of oscillation of θF(x) and θB(x) is � 70.6/f cm; the
representative plots of Figures 2A,B, in which f = 5 Hz and the
period is � 70.6/5 = 14.12 cm, are consistent with this estimate.

Figure 2C shows that λ is a periodic function of t with a period
τ ; we expect that τ = 1/f , where f is the PD frequency; the illus-
trative plot in Figure 2C, with f = 5 Hz, is consistent with this
expectation because τ � 202 ms; the gray, dashed line shows the
value of λ that we obtain in the absence of PD.

It is useful to study how θ and λ of a plane wave behave,
in the presence of PD, when we change the values of the time

FIGURE 2 | The spatial modulation of θ and the temporal modulation of

λ of a plane wave propagating in a cable-type domain with PD. Plots
versus distance x along the cable of the conduction velocities with
D = 0.00154 cm2/ms, δt = 0.02 ms, and δx = 0.25 mm (A) θF , of the wave
front, and (B) θB, of the wave back; (C) plot versus time t of the wavelength
λ. The exact analogs of (A–C) are shown in (D–F), for D = 0.00154 cm2/ms,
δt = 0.01 ms, and δx = 0.25 mm, and in (G–I), for D = 0.00077 cm2/ms,

δt = 0.02 ms, and δx = 0.25 mm. We use the representative PD parameter
values Ax = 0.3 and fx = 5.0 Hz for the TP06 model. Open circles show the
values from our calculation; the red lines show smooth sinusoidal envelopes;
in the absence of PD, θ � 70.6 cm/s, � 71.7 cm/s, and � 47 cm/s,
respectively, for above three parameter sets [gray, dashed lines in (A,B)]; in
(C) the gray, dashed line shows the value of λ that we obtain in the absence
of PD.
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step and the diffusion coefficients. We find that, in the pres-
ence of PD, θ and λ continue to oscillate, as in Figures 2D–I,
as functions of x and t, respectively; the mean values of θ and
λ, about which these oscillations occur, are close to their val-
ues without PD, which depend on the diffusion coefficients and
marginally on the time step: In Figures 2D,E we show, for D =
0.00154 cm2/ms, δt = 0.01 ms, and δx = 0.25 mm, the analogs of
Figures 2A–C; and in Figures 2G–I we give their counterparts for
D = 0.00077 cm2/ms, δt = 0.01 ms, and δx = 0.25 mm.

The TNNP04-model analogs of the TP06-model
Figure 1(a00–a20) are given in Figure S4(a00–a11) in the
Supplementary Material S1. Our results for the TNNP04 model
are similar to those for the TP06 model.

3.2. SPIRAL-WAVE DYNAMICS IN A HOMOGENEOUS DOMAIN
We move now to systematic studies of spiral-wave dynamics in
a 2D, square simulation domain with side L = 256 mm, in the
presence of PD, for both TP06 and TNNP04 models.

In the absence of PD, two methods are used to initiate spi-
ral waves in simulations (Pertsov et al., 1993; Bernus et al., 2002;
Ten Tusscher et al., 2004; Shajahan et al., 2009) and experiments
(Davidenko et al., 1992; Pertsov et al., 1993), namely, (1) the S1,
S2 cross-field protocol and (2) the S1, S2 parallel-field protocol.

We describe in the Supplementary Material S1 the precise S1,
S2 cross-field protocol that we use to obtain spiral waves in our
simulation domain. We use three types of spiral-wave initial con-
figurations for our subsequent studies; we refer to these as IC1,
IC2, and IC3 initial conditions (see Table 2 for parameter val-
ues). In Figures S5A–C, in the Supplementary Material S1, we
show the time evolution of pseudocolor plots of Vm for the TP06
model with the IC1 initial configuration; similar plots are shown
in Figures S5D–E and (F,I), respectively, for the IC2 and IC3 ini-
tial configurations. The TNNP04-model analogs of Figures S5A–I
are given in Figures S6A–I, in the Supplementary Material S1.

In Figures 3A–C, we show pseudocolor plots of Vm at times
t = 0 s, t = 2 s, and t = 4 s, respectively, for the initial condition
IC1 in the TP06 model, in the absence of PD; this initial con-
figuration evolves to a state with a rotating spiral (RS) in the
medium; the animation (a) in Video S2 shows the spatiotemporal
evolution of Vm for this case. The local time series of Vm(x, y, t),
from the representative point (x = 125 mm, y = 125 mm) (the
asterisk in Figure 3C), is shown in Figure 3D for 2 s ≤ t ≤ 6 s;
a plot of the IBI is given in Figure 3E, which shows that, after
initial transients (roughly the first 10 beats), the spiral wave
rotates periodically with an average rotation period T � 210 ms.
In Figure 3F, we plot the power spectrum E(ω), which we have

FIGURE 3 | Spatiotemporal evolution of Vm for the initial condition IC1

for the TP06 model in the absence of PD. (A–C) Pseudocolor plots of Vm at
times t = 0 s, t = 2 s, and t = 4 s, respectively, showing the evolution toward
a state with a rotating spiral (RS); the animation (A) in Video S2 shows the
spatiotemporal evolution of Vm for this case. (D) The local time series of
Vm(x, y, t), from the representative point (x = 125 mm, y = 125 mm) (the
asterisk in (C)) for 2 s ≤ t ≤ 6 s; (E) a plot of the IBI, which we obtain from

this time series, of length 4 × 105 iterations; (F) the power spectrum E(ω),
obtained from the local time series of (D), with discrete peaks at the
fundamental frequency ωf � 4.75 Hz and its harmonics. The spiral-tip
trajectory traces a roughly circular path, with radius lc � 20 mm, which is
shown, for 3.6 s ≤ t ≤ 4 s, by the white line that has been superimposed on
the pseudocolor plot of Vm in (C); a magnified view of this path is
shown in (G).
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obtained from the local time series of Vm mentioned above; dis-
crete peaks in E(ω) appear at the fundamental frequency ωf �
4.75 Hz and its harmonics. The periodic nature of the local time
series of Vm, the flattening of the IBI, and the discrete peaks
in E(ω) show that the temporal evolution of the spiral wave is
periodic; therefore, the spiral-tip trajectory traces a roughly cir-
cular path with radius lc � 20 mm; this circular path is shown,
for 3.6 s ≤ t ≤ 4 s, by the white line that has been superimposed
on the pseudocolor plot of Vm in Figure 3C; an expanded ver-
sion of this path is shown in Figure 3G. The Figures S7, S8 in the
Supplementary Material S1 show the analogs of Figure 3 for ini-
tial conditions IC2 and IC3, respectively; and the animations (b)
and (c) in Video S2 show the spatiotemporal evolution of Vm for
these cases. These animations, the pseudocolor plots of Vm, the
representative local time series of Vm, the plots of the IBI, and the
power spectra show that the initial conditions IC2 and IC3 lead,
respectively, to spatiotemporal chaos and spiral turbulence (ST),
with a single spiral meandering chaotically, and broken spirals,
respectively, in the simulation domain.

Figures S9A–G, S10A–G, and S11A–F (Supplementary
Material S1) show, respectively, the TNNP04 analogs of the TP06
Figures 3A–G (for IC1), Figures S7A–G in the Supplementary
Material S1 (for IC2), and Figures S8A–F in the Supplementary
Material S1 (for IC3); the spatiotemporal evolution of Vm for
these three initial conditions for the TNNP04 model are given in
animations (d), (e), and (f) in Video S2. From these animations
and the Figures S9A–G, S10A–G, S11A–F (Supplementary
Material S1) we conclude that the spatiotemporal evolution
of Vm in the TNNP04 model, without PD, is similar to, but
not identically the same as, that in the TP06 model for the
initial conditions IC1, IC2, and IC3. One difference is that, in
the TNNP04 model, we have a Z-type, spiral-tip trajectory in
Figures S10C,G (Supplementary Material S1), whereas, for the
same initial condition, we have an open spiral-tip trajectory
(Figures S7C,G in the Supplementary Material S1) in the TP06
model. This shows that spiral-wave dynamics in these two
models, without PD, depends sensitively on the ionic details of
these models and on the initial conditions.

3.3. SPIRAL WAVES WITH PD
We present systematic studies of spiral-wave dynamics here by
using IC1, IC2, and IC3 initial configurations in the presence
of PD. In the TP06 model, these initial configurations lead,
respectively, to (a) an RS state with a roughly circular spiral-tip
trajectory, (b) a single meandering spiral with turbulence (we
refer to this as SMST henceforth), and (c) multiple-spiral tur-
bulence (MST) with broken spiral waves in the absence of PD,
as we have described above. For the TNNP04 model the analogs
of these states are (a) RSC, a state with a rotating spiral whose
tip trajectory is roughly circular, (b) RSZ, a state with a rotat-
ing spiral whose tip trajectory is roughly Z-type, and (c) an MST
state.

We first consider the time evolution of IC1 for the TP06
model in the presence of PD, for which we deform the medium
periodically along both x and y directions, with amplitudes and
frequencies in the ranges 0.1 ≤ Ax = Ay ≤ 0.5 and 1.0 Hz ≤
fx = fy ≤ 7.0 Hz, respectively.

In Figures 4A–D we show pseudocolor plots of Vm at time
t = 4 s for (a) Ax = Ay = 0.1, fx = fy = 1.0 Hz, (b) Ax = Ay =
0.1, fx = fy = 3.0 Hz, (c) Ax = Ay = 0.1, fx = fy = 5.0 Hz, and
(d) Ax = Ay = 0.1, fx = fy = 7.0 Hz, respectively. The RS state,
which we obtain in the absence of PD, does not evolve into an
MST state in cases (a), (b) and (c); however, in case (d) the spi-
ral arm splits into multiple spirals to yield an MST state with
mild spatiotemporal chaos, in so far as the dominant spiral does
not break down but continues to evolve somewhat like a mother
rotor (Samie and Jalife, 2001; Chen et al., 2003; Wu et al., 2004;
Ideker and Rogers, 2006); the animations (a1), (b1), (c1), and
(d1) in Video S3 show the spatiotemporal evolution of Vm for
these cases in the time interval 0 s ≤ t ≤ 4 s; this video uses 10
frames per second (fps) and each pseudocolor plot of Vm is sep-
arated from its predecessor by 8 ms. The spiral-tip trajectories,
which follow from this spatiotemporal evolution, are shown in
Figures 3E–H for 3.6 s ≤ t ≤ 4 s (in Figure 4H we give the tip
trajectory for the main, central spiral in Figures 4A–D); these
tip trajectories are nearly circular with radii lc � 18 mm, but,
as we show below, the temporal evolution of Vm is different in
these cases. To examine this evolution, we obtain the local time
series of Vm(x, y, t), from the representative point (x = 125 mm,
y = 125 mm) (the asterisks in Figures 4A–D), and therefrom the
plots of the IBI shown in Figures 4I–L and the power spectra
of Figures 4M–P. Discrete peaks in E(ω) appear at the funda-
mental frequency ωf � 4.75 Hz and a few other frequencies (see
the caption of Figure 4). From Figures 4I–L we see that the IBI
displays a slight upward trend; this implies that, although the
temporal evolution is nearly periodic, there is a gentle drift,
toward lower frequencies, in the rotation rate of the dominant
spiral. Furthermore, there are small oscillations in the IBI in
Figure 4I (a 5-cycle), (j)(a 3-cycle), and (l)(a 2-cycle), but not in
Figure 4K (a 1-cycle); the natures of these oscillations and their
cycle lengths are confirmed by the Poincaré-type return maps,
shown in Figures 4Q–T and corresponding to the IBI plots in
Figures 4I–L, respectively; in these return maps, successive points
are connected by lines.

Similarly, we study the dependence of spiral-wave dynamics on
the amplitudes Ax and Ay of the PD, with the frequencies fx = fy
held at a fixed value. In Figure 5 we show the pseudocolor plots
of Vm at time t = 4 s for (a) Ax = Ay = 0.1, fx = fy = 1.0 Hz, (b)
Ax = Ay = 0.2, fx = fy = 1.0 Hz, (c) Ax = Ay = 0.3, fx = fy =
1.0 Hz, and (d) Ax = Ay = 0.4, fx = fy = 1.0 Hz. The spiral wave
does not split into multiple spirals for these representative val-
ues of the amplitudes and frequencies. The animations (a1), (a2),
(a3), and (a4) in Video S3 show the spatiotemporal evolution of
these spiral waves for the interval 0 s ≤ t ≤ 4 s. To examine this
evolution, we obtain the local time series of Vm(x, y, t), from the
representative point (x = 125 mm, y = 125 mm) (the asterisks
in Figures 5A–D) and the corresponding tip trajectories of spiral
waves, in the time interval 3.6 s ≤ t ≤ 4 s (blue lines with black
points in Figures 5E,H, respectively); these tip trajectories trace
nearly circular paths, with radii lc � 18 mm in Figures 5E,F; they
are of the meandering type in Figures 5G,H, with linear extents
lc � 24 mm and lc � 75 mm, respectively. From the local time
series of Vm mentioned above, we obtain the plots of the IBI
shown in Figures 4I–L and the power spectra of Figures 4M–P;
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FIGURE 4 | Time evolution of the RS state in the TP06 model in the

presence of PD with a fixed amplitude. Pseudocolor plots of Vm at time
t = 4 s for (A) Ax = Ay = 0.1, fx = fy = 1.0 Hz, (B) Ax = Ay = 0.1, fx =
fy = 3.0 Hz, (C) Ax = Ay = 0.1, fx = fy = 5.0 Hz, and (D) Ax = Ay = 0.1,

fx = fy = 7.0 Hz, respectively; the animations (a1), (b1), (c1), and (d1) in
Video S3 show the spatiotemporal evolution of Vm for these cases in the
time interval 0 s ≤ t ≤ 4 s. (E–H) Spiral-tip trajectories, which follow from
these spatiotemporal evolutions, for 3.6 s ≤ t ≤ 4 s [in (H) we give the tip
trajectory for the main, central spiral (D)]. We obtain the local time series
of Vm(x, y, t), from the representative point (x = 125 mm, y = 125 mm)
[the asterisks in (A–D)], and therefrom the plots of the IBI (I–L) and the
power spectra (M–P). The discrete peaks in E(ω) appear at the following

frequencies: (M) ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz, (N)

ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz, and small peaks at ω1 = 3 Hz,
ω2 = 7.75 Hz, ω3 = 11 Hz, ω4 = 12.5 Hz, ω5 = 15.75 Hz, (O) ω1 = 4.75 Hz,
ω2 = 9.5 Hz, ω2 = 14.25 Hz, and (P) ω1 = 4.75 Hz, ω2 = 9.5 Hz,
ω2 = 14.25 Hz. In (I–L) we see that the IBI shows a slight upward trend;
this implies that, although the temporal evolution is nearly periodic, there
is a slight drift, toward lower frequencies, in the rotation rate of the
dominant spiral; note also the mild oscillations in the IBI in (I) a 5-cycle,
(J) a 3-cycle, and (L) a 2-cycle, but not in (K) a 1-cycle; the natures of
these oscillations and their cycle lengths are confirmed by the
Poincaré-type return maps, shown in (Q–T), respectively; in these return
maps, successive points are connected by lines.

discrete peaks in E(ω) appear at the fundamental frequency ωf �
4.75 Hz and at the frequencies listed in the caption of Figure 5;
these peaks indicate that, in Figures 5M,N, we also have some
high-order cycles; the broad-band power spectra in Figures 5O,P

provide evidence for spiral turbulence with a meandering spiral
(SMST). In Figures 5Q–T, we show Poincaré-type return maps
which we obtain from the IBI plots in Figures 5I–L; in these
maps successive points are connected by lines. These plots give
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FIGURE 5 | Time evolution of the RS state in the TP06 model in the

presence of PD with a fixed frequency. Pseudocolor plots of Vm at
time t = 4 s for (A) Ax = Ay = 0.1, fx = fy = 1.0 Hz, (B) Ax = Ay = 0.2,

fx = fy = 1.0 Hz, (C) Ax = Ay = 0.3, fx = fy = 1.0 Hz, and (D) Ax = Ay =
0.4 , fx = fy = 1.0 Hz. The animations (a1–a4) in Video S3 show the
spatiotemporal evolution of these spiral waves for the interval
0 s ≤ t ≤ 4 s. (E–H) Spiral-tip trajectories, which follow from these
spatiotemporal evolutions, for 3.6 s ≤ t ≤ 4 s. We obtain the local time
series of Vm(x, y, t), from the representative point (x = 125 mm,

y = 125 mm) (the asterisks in Figures 4A–D) and therefrom the plots of
the IBI shown in (I–L), the power spectra E(ω) in (M–P), and the
Poincaré-type return maps, which we obtain from the IBI plots and
which show (Q) a 5−cycle, (R) a 5−cycle, (S) chaotic behavior, and (T)

chaotic evolution; discrete peaks in E(ω) appear at the following
frequencies: (M) ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz, (N)

ω1 = 4.75 Hz, ω2 = 9.5 Hz, ω2 = 14.25 Hz and small peaks at
ω1 = 3.75 Hz, ω2 = 8.5 Hz, ω3 = 13.25 Hz, ω4 = 15 Hz, ω5 = 17.75 Hz, (O)

ω1 = 4.75 Hz, ω2 = 9.5 Hz, and (P) ω1 = 4.5 Hz, ω2 = 9.5 Hz.

additional evidence for five cycles in Figures 5I,J,M,N and of
chaotic behavior in Figures 5K,L,O,P. The lines in Figures 5Q,R
move from the bottom-left corner to the top-right corner; this
suggests a low-frequency modulation of the spiral-wave dynam-
ics because of the PD; this is associated with the upward trend in
the IBI plots of Figures 5I,J.

We focus next on the types of ST states that we obtain, with
PD applied along both x and y axes, when we start with the
IC1 initial condition. In Figure 6 we show three representative
ST states; Figures 6A–C show, respectively, pseudocolor plots of
the transmembrane potential Vm for PD with (a) Ax = Ay =
0.3, fx = fy = 3.0 Hz, (b) Ax = Ay = 0.3, fx = fy = 5.0 Hz, and
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FIGURE 6 | Temporal evolution of representative ST states in the TP06

model with PD along both spatial directions. Three ST states, which we
obtain with the initial condition IC1 and PD, are shown via pseudocolor plots of
the transmembrane potential Vm with (A) Ax = Ay = 0.3, fx = fy = 3.0 Hz, (B)

Ax = Ay = 0.3, fx = fy = 5.0 Hz, and (C) Ax = Ay = 0.4, fx = fy = 7.0 Hz; the
animations (b3), (c3), and (d4) in Video S3 show, respectively, the
spatiotemporal evolution of Vm for these cases in the time interval 0 s ≤ t ≤ 4 s.
We obtain the local time series of Vm(x, y, t), from the representative points
(x = 125 mm, y = 125 mm) and (x = 50 mm, y = 50 mm), shown by asterisks

in (A–C); from these local time series, we obtain the plots of the IBI (D–F) and
the power spectra (G–I), with open-blue and black-filled circles for the time
series from (x = 125 mm, y = 125 mm) and (x = 50 mm, y = 50 mm),
respectively. These pseudocolor plots and animations of Vm and the plots of the
IBI and power spectra show that we have, roughly speaking, three types of ST
states with (A) multiple spirals, (B) a stable spiral core with broken spiral arms,
and (C) a single dominant meandering spiral; the second case (B) displays a
coexistence of a quasiperiodic and an ST state because of the dominant spiral
at the center and the broken spirals generated from its arm.

(c) Ax = Ay = 0.4, fx = fy = 7.0 Hz; and the animations (b3),
(c3), and (d4) in Video S3 show, respectively, the spatiotempo-
ral evolution of Vm for these cases in the time interval 0 s ≤
t ≤ 4 s. To examine this evolution, we obtain the local time
series of Vm(x, y, t), from the representative points (x = 125 mm,
y = 125 mm) and (x = 50 mm, y = 50 mm), both of which are
indicated by asterisks in Figures 6A–C; from these local time
series, we obtain the plots of the IBI shown in Figures 6D–F and
the power spectra of Figures 6G–I, with open-blue and black-
filled circles for the time series from (x = 125 mm, y = 125 mm)
and (x = 50 mm, y = 50 mm), respectively. These pseudocolor
plots and animations of Vm and the plots of the IBI and power
spectra show that we have, roughly speaking, three types of
ST states with (a) multiple spirals (Figure 6A), (b) a stable
spiral core with broken spiral arms (Figure 6B), and (c) a sin-
gle, dominant, meandering spiral (Figure 6C); the second case
(b) displays a coexistence of a quasiperiodic and an ST state
because of the dominant spiral at the center and the broken
spirals generated from its arm. Such coexistence behaviors have
been observed in both computational (Xie et al., 2001; Fenton
et al., 2002; Cherry and Fenton, 2008) and experimental studies

(Nash et al., 2006; Massé et al., 2007), which include in vivo
experiments.

We also obtain quiescent (Q) states with no spirals because
of the absorption of spiral waves at the boundaries as shown in
the pseudocolor plots of Vm in Figure S12 in the Supplementary
Material S1 and in Video S3.

To illustrate the rich variety of spatiotemporal patterns, we
summarize our results for the TP06 model, with the initial con-
dition IC1, by presenting a selection of pseudocolor plots of
Vm in Figure S13(a1–d5) in the Supplementary Material S1 (for
parameter sets see Table 1). The animations in Video S3 show the
spatiotemporal evolution of Vm for these cases in the time interval
0 s ≤ t ≤ 4 s. To examine this evolution, we obtain the local time
series of Vm(x, y, t), from the representative points (x = 125 mm,
y = 125 mm); these are shown in Figure S14 (Supplementary
Material S1); from these local time series, we obtain the plots of
the IBI (Figure S15 in the Supplementary Material S1) and the
power spectra (Figure S16 in the Supplementary Material S1).

The counterparts of Figures S13–S16 in the Supplementary
Material S1, for initial conditions IC2 for IC3, are given, respec-
tively, in Figures S17–S24 in the Supplementary Material S1.
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For the initial conditions IC2 and IC3 the analogs of the ani-
mations in Video S3 are given, respectively, in Videos S4, S5. For
IC2, with PD along both axes and different values of the ampli-
tude and the frequency, we examine the time series of Vm(x, y, t),
from a representative point in the simulation domain (Figure S18
in the Supplementary Material S1), the plots of the IBI (Figure
S19 in the Supplementary Material S1) and the power spec-
trum E(ω) (Figure S20 in the Supplementary Material S1), and
the spatiotemporal evolution of Vm (given by the animations in
Video S4) and conclude therefrom that, in this case, we obtain
either (a) a Q state with no spirals [see animations (a4), (a5), (b4),
(b5), (d4) and (d5) in Video S4] or (b) an MST state with broken
spiral waves (see the remaining animations in Video S4). A sim-
ilar analysis, for IC3 and PD along both x and y axes, based on
time series of Vm (Figure S22 in the Supplementary Material S1),
plots of the IBI (Figure S23 in the Supplementary Material S1),
the power spectrum (Figure S24 in the Supplementary Material
S1), and the spatiotemporal evolution of Vm (the animations in
Video S5) suggests that here we can have (a) a Q state with no
spirals [see animations (b3) (b4), (b5), (c4), (d4), and (d5) in
Video S5], (b) an SMST state [see animations (a1) and (a5) in
Video S5], or (c) an MST state with broken spiral waves (see the
rest of the animations in Video S5).

The TNNP04 model with PD also exhibits a rich variety of
spatiotemporal patterns with spiral waves like the TP06 model
as we discuss in the Supplementary Material S1 (see Figures
S25–S36). These figures and the associated Videos S6–S8 show
that spiral-wave dynamics with PD in the TNNP04 model is
quantitatively different from, but qualitatively similar to, that in
the TP06 model. These differences arise because of the differences
in the calcium-ion dynamics in these models; such dynamics can
play an important role in the spatiotemporal evolution of spiral
waves (Weiss et al., 2005; Ter Keurs and Boyden, 2007).

We have discussed spiral-wave dynamics in TP06 and TNNP04
models in the presence of PD along both x and y directions, with
initial conditions of types IC1, IC2, and IC3. We have also carried
out systematic simulations of spiral-wave dynamics in both these
models, with PD along only one (say x) direction. Here too our
results are, in the main, qualitatively similar to those we have pre-
sented above. Of course, there is anisotropic diffusion if the PD is
only along one direction. However, Q, RS, and ST states appear;
an overview of their spatiotemporal evolution is given in Figures
S37–S42 in the Supplementary Material S1.

3.4. SUPPRESSION OF SPIRAL WAVES
One of the principal goals of our extensive numerical studies
of spiral-wave dynamics in the TP06 and TNNP04 models with
PD is to understand its role in enhancing or suppressing spiral-
wave turbulence; this is an important step in developing an
effective, low-amplitude suppression technique for the elimina-
tion of turbulence with single or multiple spirals. So far, various
low-amplitude suppression algorithms have been developed to
eliminate spiral waves in monodomain mathematical models of
cardiac tissue; in these algorithms the control pulses are applied
in several ways. These include the following: (a) periodic stim-
ulation at a point (Zhang et al., 2003; Yuan et al., 2005); (b) a
line stimulus that must be applied to one of the boundaries (Tang

et al., 2008; Miguel et al., 2009); (c) an array of low-voltage control
pulses, which must be swept over the simulation domain (Sinha
and Sridhar, 2007; Sridhar and Sinha, 2008); or (d) the mesh-
based, low-amplitude suppression scheme we describe (Sinha
et al., 2001; Pandit et al., 2002). We have provided an overview of
such low-amplitude suppression schemes, in the absence of PD, in
earlier studies (Shajahan et al., 2009; Nayak, 2013); the most suc-
cessful of these is based on a mesh-based suppression algorithm;
this suppression scheme (Shajahan et al., 2009; Majumder et al.,
2011a; Nayak et al., 2013) can suppress spiral waves of electrical
activation even in the presence of conduction, ionic, and fibrob-
last heterogeneities (Shajahan et al., 2009; Majumder et al., 2011a;
Nayak et al., 2013). We now investigate the efficacy of this mesh-
based suppression scheme for both TP06 and TNNP04 models in
the presence of PD.

In this mesh-based suppression scheme, we apply a current
pulse of amplitude 75 pA/pF for 0.2 s over a mesh that divides our
square simulation domain with L = 256 mm into 64 square cells
of side l = 32 mm each; this pulse makes the links of the mesh
refractory and, thereby, effectively imposes Neumann boundary
conditions for any block inside the mesh; therefore, spiral waves
inside a block are absorbed on the links of the mesh that bound
the block. We have also extended this mesh-based scheme to one
that uses control pulses on a set of parallel lines; in this line-
based scheme, we apply a current pulse of amplitude 125 pA/pF
for 0.6 s over a set of parallel lines separated from each other
by l = 32 mm. As we show in the Supplementary Material S1
(see Figures S43, S44), both these schemes succeed in suppressing
spiral-wave turbulence in the TP06 and TNNP04 models with-
out PD; the line-based scheme uses a higher amplitude for the
control pulse and a longer duration of application than the mesh-
based one because the former has fewer control-pulse segments
than the latter. Furthermore, we show (see Figures S45–S48, in
the Supplementary Material S1) that the line-based scheme works
with PD only if the PD is applied along one spatial direction.

A minor modification of our line-based suppression scheme
suppresses spiral-wave turbulence: we use a rectangular-mesh-
based control scheme, in which we add a few control lines
perpendicular to the parallel lines of the line-based suppression
scheme. We present a comparison of spiral-wave suppression by
low-amplitude pulses on square, line, and rectangular suppres-
sion meshes in the TP06 model, with PD along both x and y
directions: We impose PD along both x and y directions with the
illustrative amplitudes Ax = Ay = 0.3 and frequencies fx = fy =
5 Hz for the initial configurations IC1, IC2, and IC3 (pseudo-
color plots of Vm in Figures 7A,E,I, respectively). We apply the
following control pulses: (1) pulses with amplitude 75 pA/pF for
t = 0.2 s over a square mesh (Figures 7B,F,J), with each square
block of side l = 32 mm; (2) pulses with amplitude 125 pA/pF
for t = 0.6 s over a line mesh (Figures 7C,G,K), with inter-line
spacing l = 32 mm; (3) pulses with amplitude 125 pA/pF for t =
0.6 s over a rectangular mesh (Figures 7D,H,L), with block sides
lx = 32 mm and ly = 64 mm. These pseudocolor plots of Vm and
the associated animations in Video S9 show that such spiral-wave
states, with IC1, IC2, and IC3 initial conditions, are suppressed by
both square- and rectangular-mesh suppression but not by line-
mesh suppression. Our rectangular-mesh suppression scheme is a
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FIGURE 7 | Comparison of spiral-wave suppression by low-amplitude

pulses on square, line, and rectangular control meshes in the TP06

model, with PD along both x and y directions. We impose PD along both
x and y directions with the illustrative amplitudes Ax = Ay = 0.3 and
frequencies fx = fy = 5 Hz for the initial configurations IC1, IC2, and IC3
(pseudocolor plots of Vm in (A,E,I), respectively). We apply the following
control pulses: amplitude 75 pA/pF for t = 0.2 s over a square mesh (B,F,J),

with each square block of side l = 32 mm; amplitude 125 pA/pF for t = 0.6 s
over a line mesh (C,G,K), with inter-line spacing l = 32 mm; amplitude
125 pA/pF for t = 0.6 s over a rectangular mesh (D,H,L), with block sides
lx = 32 mm and ly = 64 mm. These pseudocolor plots of Vm and the
associated animations in Video S9 show that these spiral states, with IC1,
IC2, and IC3 initial conditions, are suppressed by both square- and
rectangular-mesh control but not line-mesh control.

significant improvement over the square-mesh one because it uses
fewer control lines than the latter. The results of similar studies
for the TNNP04 model are given in Figure S49 (Supplementary
Material S1).

4. DISCUSSION AND CONCLUSION
We have carried out detailed and systematic numerical studies of
the effects of periodic deformation (PD) on spiral-wave dynam-
ics in ionically realistic mathematical models for cardiac tissue
by introducing PD in the recently developed TP06 and TNNP04
mathematical models for human ventricular tissue (Ten Tusscher
et al., 2004; Ten Tusscher and Panfilov, 2006), in which we include
deformation as in Zhang et al. (2004, 2006) and Chen et al.
(2008). We also investigate, in 2D simulations with PD, the effica-
cies of square-, rectangular-, and line-mesh-based, low-amplitude
suppression techniques to eliminate spiral-wave turbulence in
these models for cardiac tissue (Sinha et al., 2001; Pandit et al.,
2002; Shajahan et al., 2009; Majumder et al., 2011a).

We have first considered simulations in cable-type domains,
which are ideally suited for the calculation of θ and λ. We find
that PD leads to a periodic, spatial modulation of θ and a tempo-
rally periodic modulation of λ; the degrees of these modulations
depend on the amplitude Ax and frequency fx of the PD. To the

best of our knowledge, such modulations have not been quan-
tified in any earlier study, although a few studies (Zhang et al.,
2006; Chen et al., 2008) have suggested, in the context of spiral
waves, that such modulations can arise because of a Doppler-type
effect (Fenton et al., 2002).

We have considered three types of initial spiral-wave config-
urations, IC1, IC2, and IC3, for both the TP06 and TNNP04
models. In the TP06 model, these configurations evolve, respec-
tively, to (a) an RSC state, (b) an SMST state, and (c) an MST
state, in the absence of PD; in the TNNP04 model they evolve,
respectively, to (a) an RSC state, (b) an RSZ state, and (c) an
MST state, in the absence of PD. We have used such initial con-
ditions because various experimental and computational studies
(Damle et al., 1992; Davidenko et al., 1992; Pertsov et al., 1993;
Gray et al., 1995; Gray and Jalife, 1996; Beaumont et al., 1998;
Gray et al., 1998; Witkowski et al., 1998; Qu et al., 2000a; Fenton
et al., 2002; Ten Tusscher and Panfilov, 2006; Shajahan et al., 2009)
have suggested that spiral-wave dynamics in cardiac tissue can
lead to (a) a stable rotor (Davidenko et al., 1992; Pertsov et al.,
1993; Beaumont et al., 1998), as in our RSC state, (b) a single,
meandering rotor whose time series is chaotic (Gray et al., 1995;
Gray and Jalife, 1996; Qu et al., 2000a), as in our SMST state, and
(c) multiple rotors, which yield a state with spatiotemporal chaos

Frontiers in Physiology | Computational Physiology and Medicine June 2014 | Volume 5 | Article 207 | 12

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Nayak and Pandit Spiral-wave dynamics

(Damle et al., 1992; Gray et al., 1998; Witkowski et al., 1998; Qu
et al., 2000a), as in our MST state. Thus, our initial conditions,
IC1, IC2, and IC3, lead to the three major types of spiral-wave
evolutions, and slight variants thereof (e.g., RSZ), which have
been seen in earlier studies and whose evolution we study now
with PD. This shows that spiral-wave dynamics in these two mod-
els, without PD, depends sensitively on the ionic details of these
models and on the initial conditions. A rich variety of spiral-
wave behaviors result when we add PD to the TP06 and TNNP04
models, which are quantitatively different from, but qualitatively
similar to, that in the TP06 model. These differences arise because
of the differences in the calcium-ion dynamics in these models;
such dynamics can play an important role in the spatiotempo-
ral evolution of spiral waves (Weiss et al., 2005; Ter Keurs and
Boyden, 2007). Our principal findings here can be summarized
as follows: In the presence of PD, an RS state may show (a)
periodic behavior with high-order cycles in time, (b) temporally
quasiperiodic (QP) evolution, (c) a state with spiral-wave tur-
bulence, or (d) a quiescent state Q. For an ST state, which can
be of SMST or MST types, PD can either leave the system in
an ST state or make it evolve to a Q state, in which all spirals
either annihilate each other or are absorbed at the boundaries
of the simulation domain. Precisely which one of these states
is obtained depends sensitively on our initial conditions and on
the PD parameters Ax, Ay, fx, and fy. This sensitive dependence
on parameters is a hallmark of extended dynamical systems that
show spatiotemporal chaos (Shajahan et al., 2007, 2009). Thus,
our study systematizes the effects of PD on spiral-wave dynam-
ics and turbulence in two, biophysically realistic mathematical
models for cardiac tissue; and it complements earlier studies of
spiral-wave dynamics, in such models, that have concentrated on
the dependence of such dynamics on ion-channel and electro-
physiological properties (Karma, 1994; Qu et al., 1999, 2000a,b)
and on conduction (Xie et al., 1998; Ten Tusscher and Panfilov,
2003; Shajahan et al., 2007, 2009) and ionic inhomogeneities
(Shajahan et al., 2009; Majumder et al., 2011a,b). By using the
biophysically realistic TP06 and TNNP04 models for cardiac tis-
sue, our study generalizes the work of Zhang et al. (2004, 2006)
and Chen et al. (2008) on spiral-wave instabilities in a simple,
two-variable model for cardiac tissue, which is subject to PD.

Moreover, our studies have used three types of spiral-wave
initial configurations to examine, via extensive and systematic
numerical calculations, the transitions between different states of
our system as the amplitude and frequency of the PD are var-
ied. Our work extends significantly earlier studies of PD (Zhang
et al., 2004, 2006; Chen et al., 2008) and mechanical deforma-
tion (Panfilov et al., 2005, 2007; Weise et al., 2011). Zhang et al.
(2004) have studied the instability of a spiral wave of electrical
activation by introducing, in a simple, two-variable, FitzHugh-
Nagumo-type model (Aliev and Panfilov, 1996) for cardiac tissue,
the possibility of periodic, temporal oscillations in the diffusion
constant. Their study shows that the resulting deformation can
lead to a transition from a stable, RS state to an ST state with
multiple spirals. In another study Zhang et al. (2006) have shown
that such an ST state can be driven into a quiescent state with
no spirals, if the oscillation frequency of the PD is chosen to be
close to the characteristic frequency of the spiral wave in the RS

state of the system. Chen et al. (2008) have studied the effects
of PD in the two-variable, Bär model (Bär and Eiswirth, 1993)
on spiral-wave dynamics by varying the parameter ε, which sets
the time scale of the slow variable in this model, and the ampli-
tude A and frequency f of the PD; their study shows that the
RS-ST transition can be effected by changing ε, A, and f suitably.
Panfilov et al. (2007) have shown that mechanical deformation
can either (a) induce a spiral wave to drift or (b) break up spi-
ral waves and thus lead to complex spatiotemporal patterns in the
three-variable Fenton–Karma model (Fenton and Karma, 1998)
for cardiac tissue; the model that (Panfilov et al., 2007) use for
deformation is different from, and more realistic than, the one
used in Zhang et al. (2004, 2006) and Chen et al. (2008) in so
far as it includes a stretch-activated current, which accounts for
the mechano-electrical feedback in cardiac tissue, whose stress
tensor controls the deformation; their study shows that rotating
spirals become unstable both because of the stretch-activated cur-
rent and the deformation of the tissue. In a related study, which
also includes stretch-activated currents, Weise et al. (2011) have
shown that such deformation can lead to pacemaker activity in
a discrete version of the two-variable, Aliev-Panfilov, reaction-
diffusion model (Aliev and Panfilov, 1996). Note that the studies
in Zhang et al. (2004, 2006), Panfilov et al. (2007), Chen et al.
(2008), and Weise et al. (2011) have used only a particular type
of spiral-wave configuration in their two-variable models, with
either PD or mechanical deformation. Moreover, Zhang et al.
(2004, 2006), Panfilov et al. (2005, 2007), Chen et al. (2008), and
Weise et al. (2011) have focused on simple, two-variable, math-
ematical models for cardiac tissue. Thus, these studies cannot
address spiral-wave dynamics in such tissue at the detailed ionic
level we consider in our work by using state-of-the-art, ionically
realistic mathematical models for ventricular tissue. Furthermore,
the authors of Zhang et al. (2004, 2006) and Chen et al. (2008)
study the effects of PD on spiral-wave dynamics for a limited
set of initial conditions. For example, in Zhang et al. (2004), the
authors have studied the behavior of a single rotating spiral (RS)
in the presence of PD; the authors of Zhang et al. (2006) have
used a broken-spiral state as an initial configuration to study the
elimination of spirals from the system in the presence of PD; in
Chen et al. (2008), the authors have studied an RS initial config-
uration and its spatiotemporal evolution with PD. The authors of
Panfilov et al. (2005, 2007) and Weise et al. (2011) have used an
RS initial configuration to examine the effect of mechanical defor-
mation on this RS state; they have not investigated the transitions
between different spiral-wave states. None of these studies have
carried out the detailed numerical investigations of spiral-wave
dynamics that we present in our work, which considers a variety
of initial conditions.

Furthermore, we have shown that square- and line-mesh-
based, low-amplitude suppression schemes eliminate spiral-wave
turbulence in both the TP06 and TNNP04 models in the
absence of PD; this line-based suppression scheme is a signifi-
cant improvement over the square-mesh suppression scheme of
Sinha et al. (2001), Pandit et al. (2002), Shajahan et al. (2009),
and Majumder et al. (2011a) because it has fewer control lines.
However, we have found that the line-based scheme works with
PD only if the PD is applied along one spatial direction. We have
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then shown that a minor modification of our line-based suppres-
sion scheme can suppress spiral-wave turbulence: in particular,
we introduce a rectangular-mesh-based suppression scheme, in
which we add a few control lines perpendicular to the parallel
lines of the line-based suppression scheme; this rectangular-mesh
scheme is also a significant improvement because it uses fewer
control lines than the one based on a square mesh. We would
like to emphasize here that no spiral-wave suppression scheme
has been tried in the presence of PD hitherto; our study is the first
to address this issue.

The formation of patterns in reaction-diffusion type system
with various types of flows have been investigated in Biktashev
et al. (1998), Leconte et al. (2003), Kuptsov et al. (2005),
and Ermakova et al. (2009); in particular, break up of spi-
ral excitation waves has been observed in a moving excitable
medium as suggested in Biktashev et al. (1998); these studies
have shown that linear shear flow can cause spiral-wave breakup
in an excitable medium. Recent studies in Yoshida (2010) and
Yashin et al. (2012a,b) have investigated pattern formation in
a gel medium that can be oscillated mechanically; the effect
of these mechanical oscillations on the underlying spatiotem-
poral chemical oscillations, because of a Belousov–Zhabotinsky
(BZ) reaction, can be studied in such systems. Our work here
presents the cardiac-tissue analogs of such chemical-oscillation
studies.

Our study has used methods of non-linear-dynamics to eval-
uate the effects of periodic deformation on waves of excitation,
both plane waves and spiral waves, and has obtained there-
from important physiological implications. In particular, we have
shown, for the first time, how spiral-wave turbulence can be
suppressed even in the presence of such deformation. This has
potential applications in defibrillation because spiral-wave tur-
bulence in our mathematical models is the analog of ventricular
fibrillation (Davidenko et al., 1992; Pertsov et al., 1993; Gray et al.,
1998; Jalife et al., 1998). Furthermore, our study has immediate
implications for experiments on cell cultures with cardiac cells.

Various stretching devices have been developed to control the
contraction and expansion of a cell (Barbee et al., 1994; Huang
et al., 2010; Wang et al., 2010) and a layer of cells in culture (Lee
et al., 1996; Sotoudeh et al., 1998; Waters et al., 2001; Winter
et al., 2002; Rana et al., 2008). In these devices, both uniax-
ial and biaxial (Pang, 2009) stretching methods can be used to
deform substrates; moreover, in some of these devices, the stretch-
ing can be applied in a cyclic manner at different frequencies. This
stretching-induced deformation of the substrate leads, in turn,
to the deformation of a layer of culture cells that are attached to
the substrate. Examples of such studies include the following: The
study in Barbee et al. (1994) has measured the strain that develops
in cultured vascular smooth muscle cells when they are deformed
by the stretching of a substrate to which they adhere. The authors
of Lee et al. (1996) have used a device, which applies homoge-
neous, equibiaxial strains of 0–10% to a cell-culture substrate,
to verify quantitatively the transmission of substrate deformation
to a 2D sheet of cultured cardiac cells. The studies in Sotoudeh
et al. (1998) have used endothelial cells in tissue culture, on a
silicon elastic membrane, and have designed an apparatus that
allows for the control of the magnitude and frequency of the

dynamical stretching that is applied uniformly to these cells to
produce equibiaxial dynamical stretches, with area changes rang-
ing from 0% to 55% and frequencies ranging from 0 to 2 Hz. The
authors of Waters et al. (2001) have developed a system for the
imposition of cyclic biaxial strain to stretch cultured pulmonary
epithelial cells; similar techniques have been used in Winter et al.
(2002) to study the effects of strain in cell cultures and in vitro
experiments. The authors of Rana et al. (2008) have studied the
response to such stretching in cultured neonatal rat atrial car-
diomyocytes by using a device that can impose homogeneous
equibiaxial deformation. Other recent studies include those of
Huang et al. (2010) and Wang et al. (2010), which have stud-
ied the mechanical activities of living cell, fiber, and tissue by
applying both equiaxial and uniaxial deformation, and recording
the dynamics of the response of these systems by using high-
resolution imaging techniques; the former experiment has used
fibroblasts and the latter endothelial cells in culture. We suggest
that such experimental studies of the responses of cell cultures to
an applied stress can be easily generalized to study the types of
problems we have concentrated on here. In particular, by impos-
ing a periodic deformation on cardiac tissue or cell cultures,
experiments should be able to verify the predictions we have
made, on the basis of our in silico studies, about the modulations
of θ and λ in the presence of PD and the effects of PD on spiral-
wave dynamics, which we have discussed in detail in the previous
Section.

We end with some limitations of our model. The first limi-
tation is that our model does not include stretch-activated cur-
rents (Panfilov et al., 2005, 2007; Weise et al., 2011) explicitly;
but Vm depends on PD and all ionic currents depend on Vm,
so PD affects all such currents implicitly. Next, the PD in our
model affects the electrical activation of our medium but it is
not, in turn, affected by this activation; by contrast, the model
for mechanical deformation used in Panfilov et al. (2005, 2007)
and Weise et al. (2011) allows for electrical feedback to affect such
deformation; our model does not include soft-tissue mechanics,
which can be incorporated in mathematical models for cardiac
tissue by including stress and strain tensors, from elasticity theory
(Nash and Hunter, 2000; Nash and Panfilov, 2004; Keldermann
et al., 2009), as in the studies of Panfilov et al. (2005, 2007)
and Weise et al. (2011); however, these studies use only a two-
variable model for cardiac tissue and not the ionically realistic
TP06 or TNNP04 models that we employ. Moreover, because of
the absence of detailed ion-channel dynamics, the simple, two-
variable models for cardiac tissue, which have been used in the
studies of Panfilov et al. (2005, 2007) and Weise et al. (2011), do
not account for the effects of deformation on ion-channel activ-
ity and the intracellular calcium concentration as suggested in
Cherubini et al. (2008), Pathmanathan and Whiteley (2009), and
Ambrosi et al. (2011). In spite of the simplicity of our model for
PD, our study captures various features of spiral-wave dynamics
that have been observed in models that include stretch-activated
currents (Panfilov et al., 2007); in particular, our model dis-
plays spiral-wave breakup because of PD. Thus, this result of
ours is robust. The only qualitative effect that our study misses
is deformation-induced pacemaker activity, for which it has been
argued (Kohl et al., 1999; Panfilov et al., 2005; Weise et al., 2011)

Frontiers in Physiology | Computational Physiology and Medicine June 2014 | Volume 5 | Article 207 | 14

http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive


Nayak and Pandit Spiral-wave dynamics

that stretch-activated currents are essential. To the best of our
knowledge, our elucidation of the effects of PD on spiral-wave
dynamics in mathematical models for cardiac tissue, although
simple in its modeling of PD, is the first study that explores the
effects of PD on spiral-wave dynamics in ionically realistic math-
ematical models for ventricular tissue. A complete study of a
realistic model for deformation, with stretch-activated currents,
and such ionically realistic mathematical models lies beyond the
scope of the present paper. While this paper was being prepared
for publication, a new study appeared on a human-ventricular
mathematical model with mechanical deformation (Weise and
Panfilov, 2013). The authors of this study have used the same
type of deformation that they have employed in their previous
investigations of mechanical deformation (Weise et al., 2011);
they have studied spiral-wave dynamics in the context of the
drifting of a spiral wave as a function of Gs (here, Gs is the
maximum conductance of the stretch-activated current). In their
numerical studies they have found that, in a constantly stretched
medium, there is an increase of the core size and period of a spi-
ral wave, but no change in its rotational dynamics; in contrast,
in the dynamically stretched medium, they observe spiral drift.
We have found such behaviors, to some extent, in our period-
ically deformed medium; e.g., the initial condition IC1, which
leads to a stable rotating spiral with a circular tip trajectory, in
the absence of PD, can lead to a variety of behaviors, which
can include slow spiral drift in the presence of PD. Our model
does not include mechano-electrical feedback in a realistic way,
as we have described above. Therefore, we have not attempted
to study how different mechanical stimuli, other than the PD
we consider, initiate or affect spiral-waves in our model; studies
of other mechanical stimuli lie beyond the scope of our paper.
In Weise et al. (2011) it has been noted that both electrical and
mechanical stimuli can cause the formation of a pacemaker in
cardiac tissue; and mechanical stimuli can translate the mechan-
ical energy into an electrical stimulus, as argued in Janse et al.
(2003) and Cooper et al. (2006). We use a monodomain descrip-
tion for cardiac tissue; and we do not use an anatomically realistic
simulation domain (Panfilov and Keener, 1995; Trayanova and
Tice, 2009), muscle-fiber orientation, and transmural heterogene-
ity (Majumder et al., 2011b, 2012); the inclusion of these features
lies beyond the scope of this study. We note, however, that recent
studies (Potse et al., 2006) have compared potentials resulting
from normal depolarization and repolarization in a bidomain
model with those of a monodomain model; these studies have
shown that the differences between results obtained from a mon-
odomain model and those obtained from a bidomain model are
extremely small.
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Video S1 | Spatiotemporal evolution of plane waves in cable-type

domains, with PD along the axial-direction of the cables, for the TP06

model, shown via pseudocolor plots of the transmembrane potential Vm;

the time evolution is shown for 0 s ≤ t ≤ 2 s; we use 10 frames per second

(fps); in real time each frame is separated from the succeeding frame by

8 ms.

Video S2 | Spiral-wave dynamics in the TP06 and TNNP04 models in the

absence of PD; the time evolution of pseudocolor plots of the

transmembrane potential Vm is shown for 0 s ≤ t ≤ 4 s; we use 10 frames

per second (fps); in real time each frame is separated from the succeeding

frame by 8 ms.

Video S3 | Spiral-wave dynamics for the TP06 model in the presence of PD

along both x and y directions with an initial condition of type IC1; the

time evolution of pseudocolor plots of the transmembrane potential Vm is

shown for 0 s ≤ t ≤ 4 s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S4 | Spiral-wave dynamics for the TP06 model in the presence of PD

along both x and y directions with an initial condition of type IC2; the

time evolution of pseudocolor plots of the transmembrane potential Vm is

shown for 0 s ≤ t ≤ 4 s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S5 | Spiral-wave dynamics for the TP06 model in the presence of PD

along both x and y directions with an initial condition of type IC3; the

time evolution of pseudocolor plots of the transmembrane potential Vm is

shown for 0 s ≤ t ≤ 4 s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S6 | Spiral-wave dynamics for the TNNP04 model in the presence of

PD along both x and y directions with an initial condition of type IC1; the

time evolution of pseudocolor plots of the transmembrane potential Vm is

shown for 0 s ≤ t ≤ 4, s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S7 | Spiral-wave dynamics for the TNNP04 model in the presence of

PD along both x and y directions with an initial condition of type IC2; the

time evolution of pseudocolor plots of the transmembrane potential Vm is

shown for 0 s ≤ t ≤ 4 s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S8 | Spiral-wave dynamics for the TNNP04 model in the presence of

PD along both x and y directions with an initial condition of type IC3; the

time evolution of pseudocolor plots of the transmembrane potential Vm is

shown for 0 s ≤ t ≤ 4 s; we use 10 frames per second (fps); in real time

each frame is separated from the succeeding frame by 8 ms.

Video S9 | Comparison of spiral-wave suppression by low-amplitude

pulses on square, line, and rectangular control meshes in the TP06 model,

with PD along both x and y directions, for the time interval 0 s ≤ t ≤ 1 s;

we depict pseudocolor plots of Vm and use 10 frames per second (fps); in

real time each frame is separated from the succeeding frame by 8 ms.
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