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To investigate the expression of endothelial nitric oxide synthase (eNOS) and nitric

oxide (NO) in the aorta of subclinical hypothyroidism (SCH) rat model. The mechanisms

underlying thyrotropin (TSH) affecting eNOS and PGRN expression in human umbilical

vein endothelial cells (HUVECs) cultured in vitro were investigated. In the current

study, SCH rat models were established by the administration of L-T4 injection after

thyroidectomy inWistar rats, as opposed to that in the normal and clinical hypothyroidism

(CH) groups. The concentrations of NO (pmol/µL) in the SCH and CH groups were

significantly lower than that in the normal group (40.8 ± 7.6 and 32.9 ± 10.8 vs. 51.2

± 12.1, P < 0.05). However, the expression level of eNOS is increased significantly

(P < 0.05) in both SCH and CH groups; a similar result was observed for the PGRN

protein. In cultured HUVECs, TSH can also up-regulate the expression of eNOS; however,

it is accompanied by a reduced concentration of NO and increased level of superoxide

anion, thereby indicating uncoupled eNOS. As eNOS is increased, we found that Akt

in HUVECs were upregulated by TSH, as well as PGRN expression. While inhibiting the

expression of PGRN in HUVECs using siRNA, the expression of eNOS, as well as Akt

were also inhibited. In conclusion, SCH can induce vascular endothelial dysfunction in

rats, and PGRN participated in the process of TSH-induced expression of Akt/eNOS in

the endothelium.

Keywords: subclinical hypothyroidism, thyrotropin, endothelial nitric oxide synthase, progranulin, human umbilical

vein endothelial cells, Akt

INTRODUCTION

Endothelial dysfunction is the early stage of many diseases, such as hypertension and
atherosclerosis (1, 2). The vascular endothelium expressed the receptor of TSH; however, its
function was not clear (3). Endothelial nitric oxide synthase (eNOS) is a crucial enzyme in the
production of nitric oxide (NO) generation and plays a vital role in anti-atherosclerosis (4).

Reportedly, although clinical hypothyroidism reduces the expression of eNOS in vascular
endothelium, it is increased in the cardiac tissue (5). Virdis et al. demonstrated that eNOS
was not altered in methimazole-induced hypothyroidism rat (6). Other groups studied the
endothelial function including macrovasculatures and resistance vessels in hypothyroidism
induced by propylthiouracil. Subclinical hypothyroidism (SCH) is an independent risk factor
of atherosclerosis; however, its influence on vascular endothelial function is yet controversial
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(7, 8). This might be attributed to the lack of SCH animal models,
and only indirect indicators can be obtained in the human study
such as serum indicators or invasive examinations (9–15). Some
findings suggested that SCH can induce vascular endothelial
dysfunction; nevertheless, the underlying mechanisms are yet
elusive (9–13).

Progranulin (PGRN), a growth factor with many functions,
is widely distributed in different cells. PGRN exerts various
functions in cell growth, traumatic healing, and tumor formation.
In recent years, its role in inflammation has been studied
intensively (16–18). In 2009, Kojima et al. first reported that
PGRN expressed in atherosclerosis plaque (19). Another study
found that PGRN had predictive value on carotid intima-
media thickness (subclinical atherosclerosis stage), independent
of other cardiovascular risk factors (20). Furthermore, PGRNwas
reported to upregulate the Akt/eNOS phosphorylation level in
HUVECs (21). Although only a few studies have addressed the
PGRN and vascular endothelial function, the studies on the role
of PGRN in the effect of TSH on vascular endothelial function are
absent.

This study investigated the influence of TSH on vascular
eNOS and its relationship with PGRN in SCH rat models
and HUVECs cultured in vitro to understand the mechanism
underlying TSH-induced endothelial dysfunction.

MATERIALS AND METHODS

Animals
Thirty male Wistar rats, weighing 180–200 g, were acquired
from Vital River Laboratory Animal Technology Co. (Beijing,
China) at the age of 6 weeks (6w). All animals were randomly
divided into 3 groups: normal control (NC, n = 10), subclinical
hypothyroidism (SCH, n = 10), and clinical hypothyroidism
(CH, n = 10). Rats in the CH and SCH groups underwent
total thyroidectomy, while the NC group received sham surgery
without the removal of the thyroid gland. After 4w, the rats
in the SCH group were administered a subcutaneous injection
of L-T4 (s.c 1.0 µg/100 g, Sigma, St. Louis, USA) daily for
14w. The NC and CH groups were administered physiological
saline injection. Serum TSH and total T4 levels were detected
every 4w post-surgery (Immulite, Diagnostic Products Co.,
Los Angeles, USA). All rats were sacrificed 14w after drug
injection. Serum samples and aortas were collected and stored
at−80◦C.

The inter-assay coefficients of variation for TSH and TT4

were 1.73–5.75% and 1.26–3.27%, respectively. The intra-assay
coefficients of variation for TSH and TT4 were 1.16–4.12
and 4.34–6.13%, respectively. The animal experiments were
approved by the Animal Care and Use Committee of the First
Affiliated Hospital of China Medical University and adhered
to the guidelines of the National Institute of Health Guide for
animals.

Cell Culture
Human umbilical vein endothelial cells (HUVECs, ScienCell,
Carlsbad, USA) were cultured in endothelial cell medium (ECM,

ScienCell, Carlsbad, USA) in a humidified incubator (37◦C, 5%
CO2). HUVECs were stimulated by TSH after starvation for 12 h.

Inhibition of PGRN expression using siRNA: HUVECs were
changed to opti-MEM serum-free medium (Gibco, USA) after
washing twice with phosphate-buffered saline (PBS). Then,
LipofectamineTM2000/siRNA compound (60 pmol siRNA/well)
was added. Subsequently, the transfection complex with normal
ECM was removed after 6 h culture in the incubator.

MK-2206 (Selleck, USA), an inhibitor of Akt, was dissolved
in DMSO (the final concentration of DMSO was less than
0.1%). HUVECs were pretreated with MK-2206 (1µM) when
evaluating the AKT pathway.

Detection of NO Concentrations
The aortic tissues homogenates were centrifuged at 12,000 rpm
and 4◦C for 15min. The supernatants were extracted to detect the
NO concentrations in aortic tissues (Nitric Oxide Fluorometric
Assay Kit, BioVision, USA).

HUVECs, inoculated in a 96-well plate, were stimulated
with different concentrations of TSH for 24 h. The ECM was
removed, and diluted DAF-FM DA (3-amino, 4-aminomethyl-
2′, 7′-difluorescein, diacetate) added (5 µmol/L, 200 µL/well,
Beyotime, China), followed by incubation for 20min. After
washing for 3 times, fluorescence was detected by the microplate
reader (excitation= 495 nm and emission= 515 nm) adjusted by
the protein concentration in each well.

Detection of Serum PGRN Concentrations
Serum samples of all the rats were obtained and stored at−80◦C.
The PGRN concentrations in the serum were detected using Rat
PGRN ELISA Kit (Horabio, Shanghai, China).

Detection of Superoxide Anion in Cell
Supernatants
HUVECs were diluted with various concentrations of TSH, and
cell supernatants were collected. Colorimetric method was used
to determine the level of superoxide anion in cell supernatants.

Western Blot
BCA method was used to detect the concentrations of protein
extracted from the aorta of rats or HUVECs. The proteins
were separated by SDS-PAGE and transferred to PVDF
membranes. The membranes were blocked with 0.05% TBST
containing 5% BSA for 1 h, followed by probing with the
following primary antibodies at 4◦C overnight: anti-eNOS,
anti-p-eNOS (S1177) (1:500, Cell Signaling Technology, USA);
anti-Akt, anti-p-Akt (Ser473) (1:1,000, Abcam, USA); anti-
PGRN (1:1,000, Santa Cruz, USA). Subsequently, the membranes
were incubated for 1 h with peroxidase-conjugated secondary
antibody (1:3,000, Zhongshan Golden Bridge Biotechnology
Co. Ltd., China). The immunoreactive bands were detected by
chemiluminescence.

Real-Time PCR
Total RNA was extracted using TRIzol and reverse-transcribed
to cDNA using a PrimeScriptTM RT Kit. The samples were mixed
with SYBR R© Premix ExTaqTM, primers, and DEPC water. The

Frontiers in Endocrinology | www.frontiersin.org 2 July 2018 | Volume 9 | Article 353

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Jiang et al. Effect of TSH on eNOS

FIGURE 1 | Expressions of eNOS in the aorta of the three groups. Protein

samples were extracted from the aorta in rats of NC, SCH, and CH groups.

N = 10 in each group. Error bars represent mean ± SEM; *P < 0.05, when

compared with the NC group.

primer pairs were as follows: eNOS, 5′-CTCGTCCCTGTGGAA
AGA CAA-3′ (forward) and 5′-TGA CTT TGG CTA GCT AGC
TGG TAA CTG T-3′ (reverse); PGRN, 5′-TGT GTA GCT GAG
GGG CAG TGT-3′ (forward) and 5′-GAT GTC TCT GGG GTG
GGATAAG-3′ (reverse);GAPDH, 5′-CAA TGACCCCTTCAT
TGA CC-3′ (forward) and 5′-CTC GTC CCT GTG GAA AGA
CAA-3′ (reverse). The reagents were purchased from Takara
(Shiga, Japan). The reactions were performed on LightCycler
Real-Time PCR System (Roche 480, Berlin, Germany).

STATISTICAL ANALYSIS

SPSS 16.0 software was used for analysis. Data were represented
as mean ± SEM. The one-way ANOVA analysis was used
for multiple comparisons. Data were obtained for a minimum
of three experiments. Statistical significance was considered at
P < 0.05.

RESULTS

Thyroid Function in Different rat Models
Serum TSH and TT4 were monitored in all the rats of NC, SCH,
and CH groups. Increased TSH and normal serum TT4 levels
in the SCH group as compared to the NC group 4w after L-T4

injection to 14w indicated the successful establishment of the
SCH rat model. Consecutively, increased TSH and decreased TT4

levels were also observed in the CH group (22).

FIGURE 2 | Protein expression of PGRN in aortic tissue in different groups.

NC, normal control; SCH, subclinical hypothyroidism; CH, clinical

hypothyroidism; N = 10 in each group. *P < 0.05, when compared with the

NC group.

Expression of NO and eNOS in Different
Rats
Fluorometric method was used to detect the concentrations of
NO in aortic tissues. The NO levels (pmol/µL) in the SCH and
CH groups were less than that in the NC group (40.8 ± 7.6 and
32.9± 10.8 vs. 51.2± 12.1, P < 0.05).

Moreover, Western blot showed that the protein
expressions of aortic eNOS in the CH and SCH groups
were significantly increased than the NC group (P < 0.05)
(Figure 1).

Expression of PGRN in Rats of Different
Groups
Compared to the NC group, the PGRN expressions in aorta were
significantly increased in the SCH and CH groups as evaluated by
Western blot (P < 0.05) (Figure 2).

The serum concentrations of PGRN in the SCH group (42.0±
7.3 ng/ml) and CH group (39.6 ± 3.1 ng/ml) were significantly
higher than that in the NC group (30.7 ± 8.5 ng/ml) (P <

0.05), which was in accordance with the results of Western blot.
However, no significant difference was observed between the
SCH and CH groups.

Effect of TSH on the Expression of
eNOS/NO in HUVECs in Vitro
HUVECs were stimulated with different concentrations
of TSH (0, 0.1, 1, 10, and 100 mIU/ml) for 24 h. The
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protein and mRNA expressions in HUVECs stimulated by
10 and 100 mIU/ml TSH were up-regulated significantly
(P < 0.05) as compared to no stimulation with TSH, and
the phosphorylation of eNOS (S1177) was also increased
(Figure 3).

However, the levels of NO in the cells decreased gradually as
the concentrations of TSH increased. When the concentrations
of TSH increased to 10 and 100 mIU/ml, a significant difference
was observed as compared to the control (Figure 4A).
Consecutively, we also collected the supernatant to detect
the levels of superoxide anion. The results showed that
TSH stimulation could significantly increase the levels of
superoxide anion, even in the minimum concentration

(Figure 4B). This phenomenon suggested that eNOS was
uncoupled.

Effect of Akt and PGRN in the
Up-Regulation of eNOS Induced by TSH
Akt is an critical signaling pathway regulating eNOS in the
endothelium. The present study found that up-regulation
of TSH-induced eNOS was accompanied by an increased
expression of Akt and its phosphorylation (Figure 5A). This
phenomenon suggested that Akt might participate in the
regulation of TSH on the expression of eNOS. MK-2206
was used to inhibit the activity of Akt. The results showed
that it attenuated the TSH-induced phosphorylation of Akt.

FIGURE 3 | eNOS expression and its phosphorylation in HUVECs stimulated by different concentrations of TSH. (A) mRNA expression of eNOS in HUVECs stimulated

by different concentrations of TSH (0, 0.1, 1, 10, and 100 mIU/ml); (B) Protein expression of eNOS in HUVECs treated with different concentrations of TSH. Data were

obtained from three separate experiments. HUVECs without stimulating with TSH (0 mIU/ml) served as control; *P < 0.05, when compared with the control.

FIGURE 4 | Effect of TSH on NO and superoxide anion levels in vitro. HUVECs were stimulated by different concentrations of TSH (0, 0.1, 1, 10, and 100 mIU/ml) for

24 h. (A) NO levels in HUVECS and the OD values of NO were adjusted by concentrations of protein extracted from HUVECs; (B) Superoxide anion levels in the

supernatant; Data were obtained from three separate experiments. *P < 0.05, when compared to the control.
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In addition, MK-2206 can block TSH induction of eNOS
(Figure 5B).

We detected the expression of PGRN using different methods

in HUVECs treated with different concentrations of TSH (0,

0.1, 1, 10, and 100 mIU/ml) for 24 h. The results showed that
both mRNA and protein expressions of PGRN were increased

significantly in HUVECs stimulated with 10 and 100 mIU/ml

TSH (P < 0.05), similar to the changes of eNOS. In addition,

the levels of PGRN in the supernatant were also increased

(Figure 6).

The above findings showed that the change in PGRN were in
agreement with the altered eNOS. In order to further investigate
the relationship between them, we inhibited expression of PGRN
in HUVECs using siRNA before TSH stimulation. Subsequently,
the expression of eNOS was neither upregulated by TSH nor Akt
and its phosphorylation (Figure 7).

DISCUSSION

The present study found that the expression of the aortic
endothelial eNOS and PGRN increased in SCH rats; however,

FIGURE 5 | Role of Akt in the induction by TSH of eNOS in HUVECs. (A) Protein expression of Akt in HUVECs stimulated by different concentrations of TSH (0, 0.1, 1,

10, and 100 mIU/ml) for 24 h; (B) Inhibition of Akt: HUVECs were pretreated with 1µM of MK-2206 for 6 h or not, and then together with or without TSH (10 mIU/ml)

for 24 h. Data were obtained from three separate experiments. HUVECs without stimulating with TSH (0 mIU/ml) served as control; M represented MK-2206;

*P < 0.05, when compared with the control.

FIGURE 6 | Effect of TSH on PGRN in HUVECs. HUVECs were stimulated by different concentrations of TSH (0, 0.1, 1, 10, and 100 mIU/mL) for 24 h. (A) mRNA level

of PGRN in HUVECs stimulated by different concentrations of TSH as assessed by real-time PCR; (B) Protein expression of PGRN in HUVECs treated with different

concentrations of TSH as assessed by Western blot; this actin from figure 3 was re-used here, because PGRN was detected at the same time with eNOS in one

experiment of WB; (C) PGRN concentrations in supernatant from HUVECs stimulated by different concentrations of TSH. Data were obtained from three separate

experiments. HUVECs without stimulating with TSH (0 mIU/mL) served as control; *P < 0.05, when compared with the control.
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it decreased with respect to the NO concentration in the aorta.
In the HUVECs cultured in vitro, TSH can increase eNOS
expression through the Akt pathway, relating to increased PGRN.
Although the eNOS expression was up-regulated, increased
superoxide anion and reduced NO level indicated eNOS
uncoupling.

The decline in the physiological activity of endothelial NO
is a major indicator of vascular endothelial dysfunction and
a crucial mechanism for atherosclerosis. Clinical studies have

FIGURE 8 | Proposed mechanism of endothelial dysfunction induced by TSH.

TSH up-regulated eNOS expression in HUVECs by PGRN through Akt

pathway. Reduction in NO production and increase in superoxide anion

indicated uncoupled eNOS.

found that some patients with SCH were accompanied by
decreased endothelial-dependent vasodilation function (FMD,
reflecting the vascular endothelial NO ability), and TSH level was
negatively related to the FMD, which can be improved by L-T4
replacement (23, 24). The current study displayed that decreased
NO in the rat aorta existed not only in clinical hypothyroidism
but also in SCH. Although only TSHwas altered, SCH can induce
vascular endothelial dysfunction.

Our results showed that TSH stimulation increased the
expression of eNOS in HUVECs. eNOS is known as a
double-edged sword in cardiovascular system: NO is produced
from the substrate, L-arginine, under the effect of eNOS
in physiological condition playing the role of protection; in
the pathological state, decreased level of NO and increased
level of superoxide anion can generate ONOO−, thereby
aggravating the oxidative stress reaction that is termed as eNOS
uncoupling (25–27). eNOS uncoupling commonly exists in
many diseases, such as hypertension and atherosclerosis. The
mechanisms of eNOS uncoupling are complex, encompassing
L-arginine deficiency, increased concentration of ADMA (an
endogenous nitric oxide synthase inhibitor), lack of cofactor
of four hydrogen biopterin, and oxidative stress (28, 29).
Balzan et al. found that TSH promoted angiogenesis in human
dermal microvascular endothelial cells through the cAMP-
mTORpathway; simultaneously, the levels of vascular endothelial
growth factor (VEGF) and eNOS were increased (30). This
effect is also present in endothelial cells of the human cardiac
microvascular and rat aorta (30). However, another study showed
that TSH reduces the expression of eNOS in cultured HUVECs
(31). In our study, although TSH up-regulated the expression of

FIGURE 7 | PGRN inhibition can prevent eNOS upregulation induced by TSH in HUVECs. siPGRN was used to inhibit the expression of PGRN in HUVECs; the

concentration of TSH was 10 mIU/ml, stimulating for 24 h; Data were obtained from three separate experiments. *P < 0.05, when compared with the control.
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eNOS, the concentration of NO decreased and the superoxide
anion increased, indicating that TSH induced eNOS uncoupling
(32). Previous studies also demonstrated that the increase in
eNOS due to increased peroxide was a characteristic pathological
change in atherosclerosis (33).

The current study investigated the expression of PGRN in
subclinical and clinical hypothroidism rats for the first time. The
expression of PGRN increased in serum and aorta in subclinical
and clinical hypothyroidism rats. The TSH-stimulated increase
in PGRN led to the up-regulation of eNOS through Akt signaling
pathway in HUVECs in vitro. Akt exerts an important role
in mediating TSH actions in thyroid. This pathway was also
very important in TSH mediating eNOS. Atherosclerosis is
known to occur as a series of inflammations depending on
the endothelial injury (2). PGRN is a pivotal inflammatory
modulator, highly expressed in inflammation and injury. It can
directly bind to TNF receptors and disrupt the TNF-α-mediated
responses (20). Conversely, PGRN exerted the pro-inflammatory
functions in high-fat diet-induced insulin-resistance and obesity.
These results suggested that PGRN may exert dual functions

in inflammation (18). PGRN was highly expressed in foam
cells and macrophages of atherosclerotic plaques, and knockout
of PGRN resulted in severe atherosclerotic lesions (34).
Previous results showed that serum PGRN was closely related
to inflammatory factors and considered as an independent
predictor of atherosclerosis in patients with metabolic syndrome.
Furthermore, PGRN influences the early stage of atherosclerosis,
and the mechanisms might be correlated with the inflammatory
factors instead of conventional cardiovascular risk factors (20).
Kojima et al. reported that PGRN inhibits the MCP-1-mediated
monocyte migration in atherosclerosis, as well as, enhance the

TNF-α-mediated migration of aortic smooth muscle cells (19).
Owing to the complex role of PGRN, its effects in TSH-induced
vascular endothelial dysfunction necessitate further studies.

The deficiencies in this study include lack of morphological
study of the aortic endothelial microstructural changes in
subclinical hypothyroidism rats. The mechanism underlying
eNOS uncoupling is complicated, thereby demanding further
studies. Akt phosphorylation has not been studied in the aortas
for technical reasons: it is hard to separate only the endothelial
cells from the aortas for experiments and quantity of endothelial
cells in aortas was limited.

In conclusion, endothelial dysfunction existed in the SCH,
PGRNparticipated in the process of TSH up-regulating the eNOS
expression in the endothelium through Akt pathway. However,
TSH reduced the production of NO indicating uncoupled eNOS,
which resulted in endothelial dysfunction (Figure 8).
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