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Over the past 50 years, great progress has been made in the diagnosis and treatment
of acute lymphoblastic leukemia (ALL), especially in pediatric patients. However, early
recurrence is still an important threat to the survival of patients. In this study, we
used integrated bioinformatics analysis to look for biomarkers of early recurrence of
B-cell ALL (B-ALL) in childhood and adolescent patients. Firstly, we obtained gene
expression profiles from the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) database and the Gene Expression Omnibus (GEO) database.
Then, we identified differentially expressed genes (DEGs) based on whether the disease
relapsed early. LASSO and Cox regression analysis were applied to identify a subset of
four genes: HOXA7, S100A11, S100A10, and IFI44L. A genetic risk score model was
constructed based on these four optimal prognostic genes. Time-dependent receiver
operating characteristic (ROC) curves were used to evaluate the predictive value of
this prognostic model (3-, 5-, and 10-year AUC values >0.7). The risk model was
significantly associated with overall survival (OS) and event-free survival in B-ALL (all
p < 0.0001). In addition, a high risk score was an independent poor prognostic risk
factor for OS (p < 0.001; HR = 3.396; 95% CI: 2.387–4.832). Finally, the genetic risk
model was successfully tested in B-ALL using an external validation set. The results
suggested that this model could be a novel predictive tool for early recurrence and
prognosis of B-ALL.

Keywords: acute lymphoblastic leukemia, early recurrence, genetic risk score model, differential gene
expression, microRNA

INTRODUCTION

Acute lymphoblastic leukemia is the most common cancer in children, and includes both B-cell and
T-cell lineages. B-ALL accounts for about 85% of pediatric ALL (1). With advances in chemotherapy
and hematopoietic stem cell transplantation, the cure rate in childhood ALL is currently around
90% (2). The prognosis for adolescent patients aged 15 to 20 years receiving pediatric protocols is
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similar to that of children, with a 5-year OS of 87.9% (3). In
spite of significant progress in long-term survival, 15–20% of
patients will suffer a recurrence, which is an important factor
for increases in mortality (4). Relapses occurring less than
18 months after diagnosis are defined as very early relapses,
relapses appearing between 18 months of initial diagnosis and
6 months after cessation of frontline therapy is regarded as an
early relapse, and relapses developing after 6 months of cessation
of frontline treatment are classified as late relapses (5). The time
from diagnosis to relapse is an independent risk factor for overall
survival (6), and the risk ratios for adverse outcome in patients
with late, early, and very early relapse were 1, 2.4, and 2.9,
respectively (p < 0.001) (5). Patients with late recurrence had
better survival rates than those who relapsed earlier (OS: 45–73%
vs. 22–38%) (7–9). Thus, identifying patients with a high risk of
earlier relapse is crucial to improving prognosis.

Genomic abnormalities have been confirmed to be related to
treatment response and disease relapse in acute leukemia (10–
12). An understanding of genetic abnormalities can guide the
selection of subsequent regimens after the induction of remission.
Technological progress has led to more detailed genetic profiling
of leukemia, including DNA sequence abnormalities, gene
expression abnormalities, chromosomal rearrangements, and
abnormal epigenetic modifications. It has been suggested that the
development of gene expression profiles for acute leukemia can
improve the prediction of prognosis (13). For example, Ng et al.,
established a 17-gene stemness score for rapid determination of
risk in acute myeloid leukemia (AML) (14). Overexpression of
Wilms tumor 1 gene indicates an adverse prognosis and poor
response to treatment in AML (15). In Ismail et al.’s study,
the expression level of the gene BIRC6 was an adverse risk
factor in acute childhood leukemia (16). Therefore, we aimed to
investigate the relationship between genetic profiling and early
relapse of childhood B-ALL.

In this study, we identified differentially expressed genes
(DEGs) between individuals with early recurrence and no early
recurrence of B-cell ALL, using data from the GEO and TARGET
public databases. We constructed a prognostic risk model based
on DEGs, using regression analysis. We verified the prognostic
value of this risk model using an external validation set from
the TARGET database. Using the potential biomarkers of early
relapse in B-cell ALL, we provided a new approach to early
diagnosis and treatment of patients at high risk of recurrence.

MATERIALS AND METHODS

Database
We downloaded one dataset (GSE13576) from the GEO
database1. The data from GSE13576 were based on the GPL570
platforms (Affymetrix Human Genome U133 Plus 2.0 Array)
and included data on 197 pediatric ALL patients with mRNA
expression information. The mRNA expression dataset of 486
B-cell ALL patients and their corresponding clinical information
were obtained from the TARGET database2. This dataset
1https://www.ncbi.nlm.nih.gov/geo/
2https://ocg.cancer.gov/programs/target/

included 370 microarray data points and 116 mRNA-seq data
points. The data of 370 cases were based on the GPL570
platform. miRNA-seq was performed in 53 of 486 patients from
the TARGET dataset.

Analysis of Differentially Expressed
Genes
The definition of early recurrence in this study was less than
24 months from diagnosis. Data from 370 childhood and
adolescent B-cell ALL patients from the TARGET database, and
197 pediatric patients from GSE13576 were classified into early
relapse and non-early relapse groups. Of the 370 patients from
the TARGET database, 127 had early recurrence and 243 did
not have early recurrence. In the GSE13576 dataset, 24 patients
were in the early relapse group, and 173 patients belonged to
the no early recurrence group. We used the limma R package
to normalize the data and performed gene differential analysis
by comparing the two groups in the R computing environment
(Version 3.6.2). The differences in the gene expression levels

TABLE 1 | Characteristic of patients.

Characteristic Number of cases Percentages (%)

Patients 370 100

Median age, years (range) 10 (1–20) /

Sex

Female 145 39.2

Male 225 60.8

WBC (×109/L)

≥50 152 41.1

<50 218 58.9

Cytogenetics

t(9;22)/BCR-ABL fusion gene 2 0.5

t(4;11)/AF4 fusion gene 14 3.8

Trisomy 4/10/17 38 10.3

Others 228 61.6

Unknown 88 23.8

Down’s Syndrome

Positive 32 8.7

Negative 272 73.5

Unknown 66 17.8

CNS#

CNS1 291 78.6

CNS2 57 15.4

CNS3 22 6.0

MRD (Day 29)

≥0.01% 164 44.3

<0.01% 199 53.8

Unknown 7 1.9

Protocol

POG9906 200 54.1

AALL& 170 45.9

#CNS, Central Nervous System, CNS1 = CNS negative, CNS2 ≤ 5
WBC/µL in CSF with blasts, CNS3 = CNS positive; &AALL includes protocol
AALL0232, 0331 and 03B1. ‘/’ means the characteristic of median age is not
suitable for percentage calculation.
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were adjusted for multiple testing using the Benjamini-Hochberg
method. Genes with a p-value < 0.05 and | Log2(fold change)
| > 0.5 were defined as DEGs in this study. Finally, a volcano
plot and heatmap of the DEGs was drawn using the ggrepel
and heatmap R packages, respectively. The Venn diagrams of the
DEGs were drawn using the website tool Venny 2.1.03.

Selection of Candidate Genes
The 370 samples from the TARGET database were randomly
separated into training and test (6:4) sets for constructing and
validating the prognostic models, using the base R package.
Univariate Cox regression analyses were used to explore the
correlations between the overall survival of B-cell ALL patients
and the expression level of DEGs in training set (n = 222). The
genes with a p-value< 0.01 were selected as candidate prognosis-
related genes. To further investigate the candidate genes, least
absolute shrinkage and selection operator (LASSO) regression
analysis was applied using the glmnet R package. This algorithm
minimizes the usual sum of squared errors with tenfold cross-
validation, and identifies the optimal lambda value. The genes
with coefficient are related to prognosis. The optimal prognostic
genes derived from the LASSO regression model were validated
using the Oncomine website4. We selected genes associated
with early recurrence as hub genes with which to construct
the prognostic model. Unpaired t-tests were used to compare

3https://bioinfogp.cnb.csic.es/tools/venny/index.html
4http://www.oncomine.org

the levels of gene expression between groups, using GraphPad
Prism (Version 7.03).

Genetic Risk Score Model Construction
The gene-related prognosis model in this study was esta-
blished using the training set. We applied a multivariate
COX regression model to assess the role of hub genes as
independent prognostic risk factors. Then, a four-gene-based
genetic risk score model was constructed. The risk score formula
is as follows:

Risk score =
n∑

i=1

βi × Expi

The β in the above formula is the regression coefficient of each
gene, and the Exp is the expression level of the gene. The cut-
off value of the risk score was defined as the median score. The
222 patients were separated into low- and high-risk groups based
on the threshold. To evaluate the predictive power of this risk
score model, we used the survival ROC R package to plot time-
dependent receiver operating characteristic (ROC) curves, and
calculated the area under the ROC curves (AUC).

Validation of the Genetic Risk Score
Model
For internal and external validation, the testing set (n = 148),
total set (n = 370) and external validation set (n = 116)
were used to assess the predictive power of the genetic

FIGURE 1 | Flowchart of risk model construction.
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FIGURE 2 | Identification of early recurrence-associated DEGs in pediatric B-cell acute lymphoblastic leukemia. Volcano plot of DEGs from Total Set (A) and
GSE13576 (B). Genes with p < 0.05 and | log2(FC)| > 0.5 are shown in red (upregulated genes) and green (downregulated genes). (C,D) Heatmap of DEGs for two
datasets, ER means early relapse, no-ER means no early relapse.

FIGURE 3 | Commonly changed DEGs in Total Set and GSE13576. (A) Upregulated genes in two datasets (33 common DEGs) (B) Downregulated genes in two
datasets (32 common DEGs).
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TABLE 2 | The common DEGs identified among GSE13576 and total set.

Gene Symbol (upregulated DEGs)

TOMM22, COTL1, S100A11, TSPO, HOXA7, CTSC, BIK, TUBB2A, RAPGEF5, SUCLG2, SNX10, TOP1MT, CRIP1, S100A10, ANXA2P2, CXXC5, S100A4, CAMK2D,
IGFBP7, S100A6, DAD1, CPVL, PKIG, TUBB6, HK2, WIPI1, MEIS1, LGALS1, TST, CHN2, MAP7, PPP1R14A, CLEC11A

Gene Symbol (downregulated DEGs)

ZNF91, GFOD1, SFMBT2, ZNF704, SIPA1L2, GBP4, CD69, HERC5, IFI44, TCF4, SHANK3, DAPK1, IFI44L, MYO5C, MRC1, ST3GAL6, MAN1A1, NAV1, FHIT,
CYP46A1, STK32B, COL5A1, MX1, PDE4B, S100Z, RASD1, POU4F1, ITGA6, MDK, P2RY14, DDIT4L, DNTT

TABLE 3 | The result of univariate Cox regression in training set.

Gene HR z p-value

HOXA7 1.538 5.805 6.43E-09

S100A11 1.476 5.324 1.02E-07

TOMM22 1.500 5.195 2.05E-07

SFMBT2 0.825 −5.175 2.27E-07

ZNF704 0.731 −5.113 3.18E-07

COTL1 1.384 5.050 4.42E-07

S100A6 1.498 4.947 7.55E-07

S100A4 1.524 4.885 1.04E-06

TSPO 1.514 4.609 4.05E-06

S100A10 1.350 4.455 8.41E-06

MDK 0.794 −4.058 4.95E-05

ANXA2P2 1.342 3.983 6.8E-05

HERC5 0.639 −3.938 8.21E-05

CYP46A1 0.808 −3.767 0.000165

CRIP1 1.239 3.686 0.000227

CTSC 1.288 3.668 0.000244

BIK 1.202 3.437 0.000588

HK2 1.322 3.369 0.000754

CXXC5 1.226 3.250 0.001155

GFOD1 0.713 −3.029 0.002457

TOP1MT 1.279 2.915 0.003553

CHN2 1.173 2.906 0.003658

IFI44L 0.896 −2.881 0.003967

LGALS1 1.136 2.750 0.005964

GBP4 0.780 −2.688 0.007177

MX1 0.837 −2.648 0.008097

IFI44 0.856 −2.639 0.008306

ZNF91 0.787 −2.410 0.015962

IGFBP7 1.144 2.329 0.019885

DAD1 1.208 2.260 0.023824

TUBB6 1.124 2.244 0.024804

RAPGEF5 1.303 2.182 0.029118

WIPI1 1.168 2.104 0.035405

PPP1R14A 1.103 2.032 0.042198

SIPA1L2 0.918 −1.968 0.049121

MEIS1 1.100 1.952 0.050895

TUBB2A 1.128 1.951 0.051024

DAPK1 0.891 −1.945 0.051819

CPVL 1.100 1.890 0.058766

CAMK2D 1.118 1.776 0.075672

COL5A1 0.918 −1.752 0.079833

MAP7 1.111 1.743 0.081344

(Continued)

TABLE 3 | Continued

Gene HR z p-value

TST 1.120 1.713 0.08663

DDIT4L 0.926 −1.668 0.09529

FHIT 0.892 −1.665 0.095844

ST3GAL6 0.908 −1.643 0.10029

SUCLG2 1.143 1.625 0.104209

PKIG 1.113 1.591 0.111563

SNX10 1.128 1.506 0.132115

CLEC11A 1.091 1.503 0.132803

MYO5C 0.873 −1.485 0.137488

MRC1 0.937 −1.359 0.174022

P2RY14 0.943 −1.083 0.278976

SHANK3 0.970 −0.942 0.346027

POU4F1 0.957 −0.855 0.39244

S100Z 0.954 −0.833 0.404886

NAV1 0.949 −0.787 0.431054

STK32B 1.039 0.662 0.508211

TCF4 0.964 −0.577 0.564058

PDE4B 0.973 −0.505 0.613274

RASD1 0.972 −0.469 0.638796

ITGA6 1.023 0.438 0.661388

DNTT 0.981 −0.402 0.687464

MAN1A1 0.984 −0.264 0.791807

CD69 1.012 0.155 0.876639

prognostic model for B-ALL. The risk score of each patient was
calculated using the regression coefficients of four genes in the
training set. The patients were divided into high- and low-risk
groups according to the median risk score of the training set.
Time-dependent ROC curves were plotted for the validation sets.
Survival analysis of the patients was constructed using the R
software, with the survival and survminer packages. We created
Kaplan-Meier plots to illuminate the correlations between the
genetic risk scores and the survival index of patients, including
overall survival and event-free survival (17). Univariate and
multivariate COX regression analyses were used to test whether
the genetic risk score model is an independent prognostic
risk factor relative to the clinical characteristics of the total
set. Statistical significance was tested using log-rank tests. The
prognostic risk factors were analyzed using Cox Regression with
the survival R packages. A p-value < 0.05 was considered to be
statistically significantly different.

Frontiers in Oncology | www.frontiersin.org 5 September 2020 | Volume 10 | Article 565455

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-565455 September 25, 2020 Time: 20:4 # 6

Huang et al. Early Recurrence Factors of ALL

FIGURE 4 | Identification of five significantly prognostic genes related to early relapse. (A) LASSO regression with tenfold cross-validation obtained 15 prognostic
genes using optimal lambda value. (B–F) The expression level of prognostic genes between ER and no-ER groups. ER means early relapse, no-ER means no early
relapse.

TABLE 4 | The result of LASSO regression in training set.

Gene Symbol Coefficients

ANXA2P2 0

BIK 0.065

CHN2 0.059

COTL1 0

CRIP1 0

CTSC 0

CXXC5 0.016

CYP46A1 0

GBP4 −0.020

GFOD1 0

HERC5 −0.027

HK2 0

HOXA7 0.239

IFI44 −0.055

IFI44L −0.048

LGALS1 0

MDK −0.069

MX1 −0.052

S100A10 0.006

S100A11 0.148

S100A4 0

S100A6 0.159

SFMBT2 −0.001

TOMM22 0

TOP1MT 0

TSPO 0

ZNF704 −0.068

Analysis of Differentially Expressed
MicroRNAs
For studying the regulation of gene expression, we obtained
miRNA-seq data for 53 B-ALL patients from the TARGET
dataset. Eight patients relapsed within 24 months, and were
included in the early recurrence group, and the remaining 45
patients were included in the no early recurrence group. The
edgeR R package was used to identify differentially expressed
miRNAs (DEMs) between the two groups. Genes with a adjusted
p-value < 0.05 and | Log2(fold change) | > 0.5 were defined as
DEMs. Volcano plots were performed using R packages.

mRNA-miRNA Network Construction
The miRNAs which were target DEGs were predicted by the
miRWalk5 and DIANA-Tarbase v.8 databases (18). We selected
the miRNAs that existed in both prediction databases to
construct an mRNA-miRNA network using Cytoscape software
(Version 3.7.2).

RESULTS

Characteristics of B-ALL Patients in the
Total Set From the TARGET Database
To determine the association of genetic profiles with early
recurrence in B-ALL, we obtained microarray profiles from
5 http://mirwalk.umm.uni-heidelberg.de/
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370 patients, and their clinical information, from the TARGET
database. Among them, 225 (60.8%) patients were male and 145
(39.2%) were female. The age at initial diagnosis ranged from 1 to
20 years, with a median age of 10 years. The clinical characteristics
of the patients are listed in Table 1, including cytogenetics,
minimal residual leukemia (MRD) at day 29 after induction, and
evaluation of the central nervous system (CNS) at diagnosis. The
median follow-up time was 8.9 years for all 370 B-ALL patients.
At the end of follow-up, 246 patients had relapsed (127 relapsed
within 24 months since diagnosis) and 169 patients had died. The

median OS and EFS time were 9.6 years (range, 0.5–15.7 years)
and 3.3 years (range, 0.1–15.7 years), respectively.

Identification of DEGs Based on Disease
Recurrence
The flowchart of the construction of our risk model is shown
in Figure 1. To identify the DEGs, we analyzed the gene
expression data of 370 precursor B-cell ALL patients obtained
from TARGET, and 197 pediatric ALL patients from GSE13576.

FIGURE 5 | Analysis of genetic risk score model in B-ALL patients. (A–D) Time-dependent ROC curves show AUC values at 3-year, 5-year and 10-year OS rate in
training set, Test Set, Total Set, and External Validation Set, respectively.
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Using a threshold of p < 0.05 and | fold change| > 0.5, we
identified a total of 1359 DEGs in the TARGET dataset, including
747 upregulated genes and 612 downregulate genes. There were
457 DEGs in GSE13576, including 215 upregulated genes and 242
downregulate genes. The DEGs of the early relapse vs. non-early
relapse groups in these two datasets are shown in the volcano
plot and heatmap, separately (Figure 2). Through integrated
analysis, we identified 33 commonly upregulated genes and
32 downregulated genes from the TARGET and GEO datasets
(Figure 3 and Table 2).

Construction of the Prognostic Risk
Score Model Using the Training Set
The 65 common DEGs (including 33 upregulated and 32
downregulated genes) were analyzed for prognostic value using
univariate Cox regression on the training set. As shown in
Table 3, 27 common DEGs had a p-value < 0.01, including
17 with a Hazard Ratio (HR) > 1 and 10 with HR < 1.
Using the LASSO algorithm, the optimal lambda value was
0.038, and 15 of the 27 DEGs were selected as potential

prognosis-related genes (Figure 4A and Table 4). Subsequently,
we searched for the relationship between 15 common DEGs
and early relapse using the Oncomine database. As shown in
Figures 4B–F, the gene expression of BIK, HOXA7, S100A10
and S100A11 were significantly higher in B-ALL patients
who relapsed within 24 months (both p < 0.05). The gene
IFI44L had lower expression levels in early relapse patients
(p < 0.05). These five genes associated with early recurrence
were selected to build a genetic risk score model for B-ALL
patients, using multivariate Cox regression. The risk model was
constructed from the four optimal genes: HOXA7, S100A10,
S100A11, and IFI44L. The genetic risk score model is as follows:

Risk score = (0.329 ∗ expression value of HOXA7) +
(0.136 ∗ expression value of S100A10) +
(0.275 ∗ expression value of S100A11) +
(−0.151 ∗ expression value of IFI44L)

The AUC values for OS at 3 years, 5 years and 10 years
were 0.820, 0.825 and 0.787 in the training set, respectively

FIGURE 6 | Prognosis of high-risk and low-risk group in B-ALL patients. Risk score distribution of high-risk (red) and low-risk (green) group in B-ALL patients from
Total Set (A) and External Validation Set (D). Scatter plots show survival status in Total Set (B) and External Validation Set (E), red plots represent dead and green
plots represent alive. Heatmap of the expression profiles of the four prognostic genes in low- and high-risk group in Total Set (C) and External Validation Set (F).

Frontiers in Oncology | www.frontiersin.org 8 September 2020 | Volume 10 | Article 565455

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-565455 September 25, 2020 Time: 20:4 # 9

Huang et al. Early Recurrence Factors of ALL

(Figure 5A). The risk score ranged from 1.535 to 6.539,
and we selected the median risk score as the cut-off value
(4.045). If the risk score was greater than the cut-off
value, the patient was defined as belonging to the high-
risk group, otherwise the patient was classified in the low-
risk group.

Verification of the Prognostic Risk Score
Model in the Validation Set
We used the test set (n = 148), the total set (n = 370) and the
external validation set (n = 116) to assess the predictive value
of the risk score model constructed using the training set. We
used the median value of the risk score formula defined using
the training set as the threshold for distinguishing high- and low
risk groups. The AUC curve showed that the 3-year, 5-year and
10-year OS of the test set, using the total set and the external
validation set were 0.785, 0.764, 0.720, 0.806, 0.801, 0.761, 0.809,
0.761, and 0.739, respectively (Figures 5B–D). The distribution
of risk score, survival status, and the heatmap of risk genes
in internal total set and external validation set are shown in

Figure 6. Among these four prognosis-related genes, HOXA7,
S100A10, and S100A11were overexpressed in high risk group and
IFI44L was downregulated. The prognosis of patients was worse
with the increase in risk scores. In the total set, the mortality
of patients in the high-risk group (64.3%) was higher than that
in low-risk group (27.0%, p < 0.0001). Similar conclusions were
drawn for the external validation set (mortality in high- and low-
risk groups: 33.3% vs. 2.3%, p < 0.0001). Kaplan-Meier curves
showed that patients in the high-risk group had significantly
poorer OS (3-year OS for total set: 55.0% vs. 89.6%; 95% CI:
48.3–62.7%, 85.3–94.2%; 3-year OS for external validation set:
22.2% vs. 89.2%; 95% CI: 7.17–68.9%, 83.3–95.4%; 5-year OS for
total set: 38.3% vs. 82.7%; 95% CI: 31.8–46.0%, 77.3–88.4%; 5-
year OS for external validation set: 11.1% vs. 85.7%; 95% CI:
1.86–66.5%, 79.0–93.0%; all p < 0.0001) and EFS (3-year EFS
for total set: 26.5% vs. 68.6%; 95% CI: 20.8–33.7%, 62.2–75.6%;
3-year EFS for external validation set: 30.0% vs. 85.5%; 95%
CI: 11.6–77.3%, 78.8–92.9%;5-year EFS for total set: 15.7% vs.
51.6%; 95% CI: 11.2–21.9%, 44.8–59.5%; 5-year EFS for external
validation set: 15.0% vs. 75.9%; 95% CI: 2.80–80.4%, 67.6–85.3%;
all p< 0.0001) (Figure 7).

FIGURE 7 | Prognostic analysis of high-risk and low-risk group in B-ALL patients. Kaplan-Meier survival curve analysis of OS in the high-risk (yellow line) and low-risk
(blue line) patients in Total Set (A) and External Validation Set (C). Kaplan-Meier survival curve analysis of EFS in the high-risk and low-risk patients in Total Set (B)
and External Validation Set (D).
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FIGURE 8 | Prognostic prediction value of four-gene prognostic risk models in Total Set. (A) Univariate Cox regression analysis of OS. (B) Multivariate Cox regression
analysis of OS. ‘*’ means CNS, Central Nervous System, CNS1 = CNS negative, CNS2 ≤ 5 WBC/µL in CSF with blasts, CNS3 = CNS positive.
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FIGURE 9 | Identification of early recurrence-associated DEMs in B-cell acute lymphoblastic leukemia from TARGET database. Volcano plot of DEGs from TARGET.
Genes with p < 0.05 and | log2(FC)| > 0.5 are shown in red (upregulated microRNAs) and blue (downregulated microRNAs).

TABLE 5 | The DEMs identified in 53 B-ALL patients from TARGET database.

Gene Symbol (upregulated DEMs)

hsa-mir-885, hsa-mir-4465, hsa-mir-3919, hsa-mir-124-3, hsa-mir-124-1, hsa-mir-124-2, hsa-mir-3662, hsa-mir-27b

Gene Symbol (downregulated DEMs)

hsa-mir-26a-1, hsa-mir-16-2, hsa-mir-30c-1, hsa-mir-486-2, hsa-let-7f-1, hsa-mir-103a-2, hsa-mir-1247, hsa-mir-324, hsa-mir-10b

The Genetic Risk Score Model Is an
Independent Prognostic Factor
Risk factors such as age, gender, white blood count (WBC),
central nervous system (CNS) status at diagnosis, minimal
residual disease (MRD) at day 29, risk score and genetic
abnormalities were evaluated using univariate Cox model
analysis (Figure 8A) in the total set. Only factors with a p-value
of <0.2 (risk score, MRD at day 29, BCR-ABL/AF4 fusion gene
and Downs Syndrome) in the univariate analysis were included
in the multivariate analysis. Multivariate Cox regression analysis
showed that high risk score and MRD ≥ 0.01% at day 29 were
independent prognostic risk factors (p < 0.001 and =0.002;
HR = 3.396 and 1.662; 95% CI were 2.387–4.832 and 1.209–2.287,
respectively) (Figure 8B).

Identification of DEMs Based on Disease
Recurrence
Amongst the 53 B-ALL patients from the TARGET database, 17
differential microRNA precursors (pre-miRNAs) were identified
based on early disease recurrence (Figure 9), including eight
upregulated miRNAs and nine downregulated miRNAs (Table 5).

MiRNA Targeting DEGs
We built an mRNA-miRNA network using data from two
prediction websites and Cytoscape. As shown in Figure 10,
hsa-miR-124-3p, which is a pre-miRNA (hsa-mir-124-1, hsa-mir-
124-2, and hsa-mir-124-3) were upregulated in early recurrence
patients, targets the gene IFI44L. Hsa-miR-103a-3p and hsa-miR-
486-3p have the target genes HOXA7 and S100A10, respectively.
These two miRNAs could be produced by shear processing of
mir-103-2 and mir-486-2, both of which are downregulated in
patients who relapsed within 24 months.

DISCUSSION

Recurrence is an important factor for the increase of mortality
in ALL, and the early recurrence of leukemia predicts a worse
prognosis. Therefore, the identification of factors associated
with early recurrence is vital for the identification of new
risk subgroups in ALL patients, and also offers new directions
for targeted therapies in high-risk patients. MLL rearranged,
hypodiploid, BCR/ABL fusion gene and high end-induction
MRD are the common risk factors for relapse in childhood ALL
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FIGURE 10 | The mRNA-miRNA network. Pink color represents target genes and blue color represents miRNA. Yellow color shows hsa-miR-124-3p,
hsa-miR-103a-3p, and hsa-miR-486-3p.

patients (19). And several published articles showed that the
biomarkers for early recurrence in B-ALL include the persistence
of MRD, chromosome 19p13 translocations, upregulation of
nucleotide excision repair genes, deletion of CDKN2A/B and
overexpression of LINC00152 (Supplementary Table S1) (20–
24). In this study, we looked for genes involved in early relapse
of B-ALL on a larger sample. DEGs were identified from
early recurrence vs. non-early recurrence groups both in the
total set from the TARGET database and in the GSE13576
dataset. The common DEGs were subjected to univariate COX
regression and LASSO regression in the training set. The optimal
candidate DEGs were validated using the Oncomine website. We
constructed a genetic risk score model of B-ALL using stepwise
multivariate COX regression analysis, and verified its prognosis
predictive value.

In this study, a four-gene risk score model was identified
from 65 common DEGs. The AUCs of the risk model in the
training and verification sets were all greater than 0.7, indicating
that the risk score had a good prognosis predictive value in
>70% of patients. The survival indexes OS and EFS in the high-
risk group were confirmed to be worse than those in low-risk
group with statistically significant differences. To further verify
the relationship between the model and prognosis, we included
clinical factors for univariate and multivariate COX analyses. The
results showed that high genetic risk score and MRD ≥ 0.01% at
day 29 were independent adverse prognostic factors.

The HOXA7 gene is a member of the homeobox (HOX)
gene family, which plays vital roles in hematopoiesis and
cell differentiation (25). Previous research has shown that the
gene HOXA7 is overexpressed in MLL-fusion leukemias, which
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commonly have very poor outcomes (26–29). The proteins
encoded by S100A10 and S100A11 are members of the S100
family. S100 proteins are involved in many cellular processes,
such as cell growth and motility, cell cycle progression and
differentiation (30). Dysregulated expression of S100 proteins is a
common feature of human cancers, including pediatric ALL (31,
32). High S100A10 expression has a link to poor outcomes and
chemoresistance in several types of cancer, including leukemia
(33). The overexpression of S100A11 is also associated with
cancer progression and poor survival. The IFI44L gene is a type
I interferon-stimulated gene. Although the function of IFI44L
is unclear, some studies have revealed that it is involved in the
inflammatory response, and may be a tumor suppressor (34–36).
According to data from a study by Bhojwani et al., the expression
of the genes HOXA7, S100A10, and S100A11 was significantly
higher in B-ALL patients who relapsed within 24 months than in
those who did not (4). In contrast, IFI44L was highly expressed
in patients with no recurrence or late recurrence. This finding
is consistent with those of our research. These results suggest
the possibility of the use of the four genes as early prognostic
biomarkers for childhood and adolescent B-ALL.

MiRNAs are dysregulated in cancers, including hematological
malignancies (37, 38). MiR-124 is regarded as a tumor suppressor
in some solid tumors (39–41). Previous studies indicated that
upregulation of miR-124 can reduce the invasion ability of tumor
cells (42, 43). However, the role miR-124 plays in hematological
malignancies remains controversial (44). Chen et al., suggested
that miR-124-1 deregulation might have a favorable impact
on prognosis in AML (45). Liang found that miR-124 is
overexpressed in pediatric prednisone-poor response ALL, and
contributes to glucocorticoid resistance (46). MiR-103a-3p is
considered to be an oncogene in gastric cancer, colorectal
cancer, and breast cancer, while it suppresses cell proliferation
and invasion in prostate cancer (47–49). In leukemia, the
function of miR-103 is also controversial. Upregulation of miR-
103 was found by Yefenof et al., to sensitize leukemia cells
to glucocorticoids (50). However, a study by Zhang et al.,
showed that miR-103 is upregulated in adriamycin-resistant
cells (51). miR-486-3p could act as a tumor-suppressive miRNA
in several cancers (52–54). In our study, pre-miR-124s (miR-
124-1, miR-124-2 and miR-124-3) were upregulated in early
recurrence B-ALL, and miR-124-3p was predicted to target
the gene IFI44L. pre-miR-103a (miR-103a-2) and pre-miR-486
(miR-486-2), which target the genes HOXA7 and S100A10,
respectively, were downregulated in patients who relapsed within
24 months. In summary, the dysregulation of microRNA may
be a potential mechanism for the abnormal expression of these
prognostic genes.

CONCLUSION

Our study identified four genes related to early recurrence of
B-ALL in childhood and adolescent patients, using integrated
bioinformatics analysis. The four-gene risk score model is

an independent prognostic risk indicator. Detection of the
expression levels of these four genes provides a new signature for
the early identification of high-risk patients.
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