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Abstract

In order for Alzheimer’s disease (AD) to manifest, cells must communicate “pathogenic material” such as proteins,
signaling molecules, or genetic material to ensue disease propagation. Small extracellular vesicles are produced via
the endocytic pathways and released by nearly all cell types, including neurons. Due to their intrinsic
interrelationship with endocytic processes and autophagy, there has been increased interest in studying the role of
these neuronally-derived extracellular vesicles (NDEVs) in the propagation of AD. Pathologic cargo associated with
AD have been found in a number of studies, and NDEVs have been shown to induce pathogenesis in vivo and in
vitro. Exogenous NDEVs are also shown to reduce plaque burden in AD models. Thus, the NDEV has the potential
to become a useful biomarker, a pathologic potentiator, and a therapeutic opportunity. While the field of NDEV
research in AD is still in its infancy, we review the current literature supporting these three claims.
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Background
For decades, therapies for Alzheimer’s disease (AD) have
targeted beta-amyloid (Aβ) and phosphorylated tau pro-
teopathies. Unfortunately, research has not yielded any
viable therapeutics over the past 20 years. This lack of
progress may be due to the complexity and heteroge-
neous nature of clinical AD. Approximately 80% of AD
subjects present with multiple pathologies post-mortem
such as amyloid, tau, vascular disease, Lewy Bodies, and
alpha-synuclein [1–3]. Interestingly, nearly 70% of cogni-
tively normal individuals also present with the same
post-mortem pathology. Hence, there is a need for a
paradigm shift in the field away from a focus on specific
proteins and towards understanding the cellular abnor-
malities and processes that contribute to abnormal pro-
tein accumulation. Autophagy is the cell’s strategy to
regulate metabolism by recycling intracellular materials

such as proteins into their basic parts, so as to be
re-utilized for other purposes [4]. This degenerative
process can occur two ways, either dysfunctional pro-
teins are captured by the lysosome for direct degradation
[5], or dysregulated cytoplasmic materials are internal-
ized into a double membrane structure referred to from
here on out as “autophagosomes” before incorporating
into the lysosome for degradation [6]. In addition to
breaking down discrete cytosolic materials, autophago-
somes can incorporate entire organelles for degradation;
in fact, this often occurs to mitochondria in metabolic-
ally stressed cells [7].
The field has recently begun focusing on lysosomal and

mitochondrial dysregulation as an early pathogenic “trigger”
for AD [8]. In order for disease to manifest, cells must com-
municate their pathogenic substances, which includes pro-
teins, signaling molecules, or genetic material to ensue
disease propagation. This may be accomplished by pack-
aging the pathogenic substances into compartments,
known as extracellular vesicles (EVs), which travel between
cells. Small EVs produced via endocytic pathways are re-
leased by nearly all cell types, including neurons [9]. EVs
contain proteins, lipids, and genetic material such as DNA,
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mRNA, and microRNA. They are released into extracellular
space to facilitate intercellular communication, export
waste, and interact with the microglia [10, 11]. EVs are im-
plicated in the spread of pathological proteins involved in
neurodegenerative diseases including AD [12]. Over the
last several years, EVs have emerged as a potential
biomarker, potentiator, and therapeutic option, and this
review seeks to synthesize the evidence collected to date.
The goal of this article is to show that through the abnor-
mal induction of autophagy seen in AD, the EV can serve
in all three of these roles.

Extracellular vesicles are an alternate end-product of
endocytosis and interact with autophagic processes
Genesis of the extracellular vesicle
Small EVs are often cited having a diameter less than 150
nm [13, 14] and are responsible for the export of waste,
interaction with the immune system, and communication
between cells [10, 11, 13]. They are a byproduct of the
endocytic pathway, and their release is contingent on the
association of a multivesicular body (MVB) with the
plasma membrane, which causes them to be released into
the extracellular space [15]. The process of endocytosis is
responsible for the internalization of extracellular proteins
and biological material into the cell via invagination of the
plasma membrane, through clathrin or non-clathrin medi-
ated processes [16]. Endocytosed cargo is transported to a
collection of other internalized bilayer micelles located
near the periphery, and along with products of the
trans-Golgi pathway create the MVB, mediated early on in
the process by the key protein Rab5 [13]. Multiple tagging
proteins such as the endosomal sorting complexes re-
quired for transport (ESCRT) complex are essential in de-
termining the fate of MVBs and include the protein Vps4,
which is involved with terminating the budding into the
MVB [17]. Often, the MVBs are brought to the
trans-Golgi network for refinement and modification of
their cargo [18, 19] or for association with the autophagic
processes for degradation and reutilization [20]. A key
regulator in the process of autophagy is the interplay be-
tween insulin and the mammalian target of Rapamycin
(mTOR) signaling [21–24].
Signaling from the mTOR pathway activates down-

stream effectors that stimulate cell growth, survival, cyto-
skeletal reorganization, and metabolic processes [22].
When these signals are turned off, such as in states of in-
sulin resistance, the mTOR pathway ceases to initiate
these proliferative cellular responses and, consequently,
the cell switches on autophagy [25]. Therefore, it is no
surprise that mTOR is a key modulator of aging and
age-related disease and its initiation of autophagy has been
linked to the accumulation of protein aggregates and dys-
functional organelles associated with cellular dysfunction.
In fact, mTOR activity has been linked to disease

progression in mouse models of AD [26, 27] and fronto-
temporal lobar dementia [28]. Finally, mTOR activity sig-
nificantly impacts spatial learning and memory in aged
mice [29, 30]. There is evidence suggesting that dysregu-
lated insulin signaling [31], which is upstream of mTOR
signaling, may contribute to AD pathogenesis. A recent
study observed that upregulation of mTOR activity in
vitro increased the levels of cytosolic tau, facilitated intra-
cellular tau deposition and mediated tau localization to
EVs [32]. Given that tau and Aβ are inducers of excitotoxi-
city in neurons [33], this provides evidence for the in-
volvement of EVs as a potential feed forward loop, poising
the system for pathogenesis.

AD pathogenic proteins interact with endosomes and are
found in EVs
Aβ and hyperphosphorylated tau also interact with the
endocytic pathway and may contribute to EV biogenesis
in AD. Secretion of EVs is generally thought to increase
in response to stress or pathological conditions [14]. For
example, the total number of circulating EVs were sig-
nificantly increased in mice after chronic alcohol feeding
and in humans suffering with alcoholism. [34]. In
addition, increased EV release has been demonstrated in
hypoxia [35], cisplatin- or irradiation-induced DNA
damage [36, 37] and through oxidative stress [38]. Stud-
ies have shown that depolarization of cells, either by
Ca2+ or K+ influx has been shown to increase MVB as-
sociation with the plasma membrane, thereby increasing
EV secretion [39, 40]. A recent study reports no differ-
ence in the total number and size distribution of EVs
from the neuron isolated from blood between
age-matched controls and mild cognitively impaired
(MCI) subjects [41]. Inhibiting the formation, secretion,
or uptake of EVs reduces the spread of oligomers and
neurotoxicity [42]. Although additional studies are war-
ranted, this suggests that the pathogenic cargo within
the EVs are more important than the total number of
EVs in AD. Below is a summary of proteins currently
known to be related to neuronally derived EVs (NDEVs)
in AD patients.

Aβ
The amyloidosis hypothesis of AD suggests that Aβ
plaque accumulation leads to impaired neuronal signaling
and eventually cell death [43]. Mutations in genes associ-
ated with this toxicity include aberrant activity of BACE 1,
which then leads to accumulation of Aβ42 toxic plaques
[44]. Aβ is a c-terminal cleavage product of the amyloid
precursor protein (APP), which is a transmembrane pro-
tein found in endosomal membranes [45] and, to a lesser
extent, the mitochondrial membrane [46]. Notably, APP
has been shown to impede the functioning of the mito-
chondria in association with p53 and an increase of
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cytosolic reactive oxygen species, indicating that high
levels of APP can lead to toxicity of the neuron [47]. There
are multiple reports of these proteins and their substrates
within EVs of in vitro AD models and EVs derived from
neurons of AD patients. EVs isolated from neuronal cell
lines show that inducing AD mutations can increase sol-
uble APP (sAPP) protein β, sAPPα [13] and soluble Aβ1–
42 [48]. Cells expressing AD-related genotypes have also
shown an upregulation in C-end terminal fragments (a
byproduct of APP after beta-secretase processing) [49],
beta-secretase in released EVs, and co-localization of
beta-secretase enzyme 1 with early EV markers [13]. Ex-
periments involving depleting the media show that Aβ is
associated with the EVs during the excretion process [50].
NDEVs isolated from AD patients also have a signifi-

cant increase in soluble Aβ1–42 [41, 51–55]. Notably,
NDEVs isolated from AD patients have increased levels
of C-terminal fragments of the APP as well [45, 49];
compared to control subjects, NDEVs isolated from AD
patients show enrichment of undigested lysosomal APP
C-terminal fragments [45]. Aβ plaques also display inter-
active prion protein receptors, which is reported to in-
crease the pathogenicity of the disease [56]. Recently
muskelin, a protein involved with the reorganization of
the cytoskeleton, has been implicated in the decision for
either lysosomal degradation or EV secretion of the
prion receptor protein, which may have implications in
amyloidosis [57]. Finally, in a recent study between
healthy controls and age-matched clinical AD cohorts,
EV-bound Aβ strongly correlated with PET imaging of
brain amyloid plaque load while unbound freely circulat-
ing Aβ did not [42]. Collectively, EV transfer of Aβ
seems to be centrally involved in AD and can serve as a
useful antemortem biomarker of disease progression.

Hyperphosphorylated tau
The gradual deposition of hyperphosphorylated tau pro-
tein within select neuronal types is central to the tauopa-
thy component of AD [58]. For neuronal synapse
formation to occur, microtubule elongation needs to
occur. This is a process reliant on the incorporation of the
neuronal microtubule-associated protein tau [59]. Tau also
plays a role in axonal transport and neurite outgrowth,
and all these functions are modulated by site-specific
phosphorylation. Abnormal hyper-phosphorylation of tau
leads to destabilization of microtubule networks, disrup-
tion of axonal transport processes and eventually to the
accumulation of intra-neuronal neurofibrillary tangles,
which are the other classical, pathological hallmarks of ad-
vanced stage AD [60, 61]. Despite the heterogeneity of on-
set in the disease, the progressive accumulation of
neurofibrillary tangles are found to be highly correlative to
the symptomatic onset of dementia in patients suffering
with AD [62]. As tau becomes hyper-phosphorylated in

neurons, cellular clearance machinery takes it up for deg-
radation [63].
NDEVs from AD patients show an increase in tau phos-

phorylation at threonine 181 (p-T181-tau) and serine 396
(p-S396-tau) by 3–20-fold compared to NDEVs obtained
from age-matched controls [41, 51, 52, 55]. Moreover,
p-T181-tau levels are significantly higher in NDEVs iso-
lated from later stage AD patients than from when they
were still diagnosed with MCI [41], implicating either a
disruption in the clearance capabilities or an enhancement
in pathogenicity of EVs in later disease states. p-T181- and
p-S396-tau were significantly lower in NDEVs of patients
1–10 years prior to their AD diagnosis [52].

Dysfunctional insulin signaling
Central nervous system dysregulated insulin and periph-
eral hyperinsulinemia has been shown to be another
highly associated phenomenon with AD [31, 64–66]. Insu-
lin dysregulation can be characterized by low ratios of
tyrosine phosphorylated insulin receptor substrate 1
(IRS1) to serine phosphorylated IRS1 [67, 68] and has
been correlated with greater brain atrophy in humans with
AD [55]. Chronic high-fat diet fed mice exhibit this
post-translational modification shift in hippocampal slices
[69]. Downstream, insulin signaling induces transduction
pathways involving protein kinase B (Akt), and this dys-
regulated phosphorylation of IRS1 induces mTOR’s initi-
ation of autophagy via de-phosphorylated Akt (Fig. 1).
NDEVs isolated from AD patients have shown an increase
in serine phosphorylation of IRS1 [70]. The group report
that the differences in the IRS1 profiles were identifiable
up to 10 years prior to clinical onset of AD. This suggests
that proteins within NDEVs involved in insulin dysregula-
tion may be a useful biomarker.

Synaptic proteins
The consequence of AD is a loss of neuronal health and
function. NDEV cargo of AD patients display reduced
levels of synapse proteins, including synaptotagmins,
synaptophysin, synaptobrevin, synaptopodin, Rab3A,
growth associated protein (GAP) 43, and neurogranin
[71]. Also, low-density lipoprotein receptor-related pro-
tein (LRP) 6, heat shock factor protein 1, heat shock pro-
tein (HSP), and RE1 silencing transcription factor (REST
1) are also lower in NDEVs of AD patients [41, 51, 72].
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAR) is also shown to be downregu-
lated in NDEVs of AD patients. Additionally, neurexin 2α,
GluA4-containing glutamate receptor, and neuroligin 1,
all proteins essential for long-term potentiation processes,
are all significantly lower in NDEVs of patients 6–11 years
prior to AD diagnosis and, along with neuronal pentraxin
2, are all downregulated in NDEVs of AD patients [73].
These proteins are all involved with normal homeostatic
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processes of neurons. Further research into these cargo
levels could be beneficial to clinicians who are currently
searching for earlier biomarkers of disease; biomolecules
shown to have changed concentrations in AD patient
NDEVs are listed in Additional file 1: Table S1.

EVs in biomedical research
EVs in toxicity studies
For AD propagation to occur via EVs, EVs must have the
ability to transfer pathology between individual cells. Stud-
ies involving in vitro methods have supported the notion of
pathogenic propagation by EVs. Eitan et al. used multiple
genetically manipulated cell lines to characterize the cargo
released in EVs and showed an increase in Aβ42 / Aβ40 ra-
tio compared to controls [50]. They went on to show that
co-incubation of rat cortical neurons with EVs isolated
from AD transgenic cell lines had a similarly detrimental ef-
fect as co-incubation with medium concentrated in Aβ
alone [48]. Co-incubation of neuronal cells derived from
transgenic AD mouse models and EVs derived from adi-
pose differentiated stem cells reduces pathology and apop-
tosis markers [74]. EVs isolated from post-mortem AD
brains that contained increased levels of Aβ oligomers have
been shown to act as toxic species to cultured neurons

[75]. Blocking the formation, secretion or uptake of EVs
was found to reduce both the spread of Aβ and the related
cellular toxicity in these conditions [42]. These in vitro ex-
periments provide sound mechanistic evidence of the
pathogenicity potential of EVs but lack the in vivo support.
Probably the most compelling evidence for patho-

genic spread is through a recent study by Winston
and colleagues [41]. NDEVs isolated from patients
diagnosed with either MCI or a more advanced stage
of AD were microinjected into the hippocampus of
wild type C57/BL6 mice. Phosphorylated tau reactiv-
ity increased in the mice one-month post-injection
with MCI and AD derived EVs. Overall, this data
demonstrates that NDEVs isolated from MCI and
AD patients are capable of propagating tau path-
ology in normal mice. Additional studies have pro-
vided further evidence of this phenomenon with tau
and other proteopathies, adding validity to the ap-
proach [76, 77]. Recently, when EV formation was
blocked by inhibition of neutral sphingomyelinase-2
(nSMase2), AD pathology was decreased and im-
provements in memory were observed in an AD
mouse model [78]. Altogether, the results of these
provide rationale to pursue a means of inhibiting EV
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secretion as a potential therapy for individuals at
risk for developing AD. Overall, these studies suggest
a need for further investigation of the in vivo patho-
genic potential of EVs.
The EV has the capability of transmitting disease

through prion receptor protein (PrP) activity [79]. PrP is a
cell surfaced anchored protein with unknown physio-
logical functioning, but is highly associated with AD
pathology [80]. Its pathological, misfolded form is
protease-k-resistant and is implicated in encephalopathies
[81]. Research in animal models of AD have shown that
the prion receptor is necessary for the cognitive impair-
ment associated with Aβ [82], however in other studies,
PrP has been shown to mediate toxicity both in vitro and
in vivo [83]. It is clear that this warrants further explor-
ation, as the prion receptor likely to plays multiple roles
associated with AD pathological proteins [84]. In AD,
there is growing evidence for the prion receptor-
containing EV being capable of spreading pathology [79,
85]. Aberrant autophagy may play a role in this spread [8].
While there is clearly a need for more research in order to
understand this relationship, these findings suggest a po-
tential mechanism connecting AD pathogenesis, the EV,
and autophagy.

EVs as novel AD therapeutics
While EVs may play a role in the spreading of the dis-
ease, some studies have demonstrated a positive effect of
introducing non-pathogenic EVs to alter the course of
pathology and disease. This therapeutic effect was ob-
served when EVs from young mice were found to signifi-
cantly decrease aging-associated signaling molecules
such as mTOR in aged mice [86]. Furthermore, EVs in-
troduced into the brain of an AD transgenic mouse can
benefit the clearance of toxic oligomers in vivo [87, 88],
indicating the role of EVs in the interaction with amyloid
plaques, which are known to have prion receptor pro-
teins [13, 89]. As described above, Yuyama and col-
leagues showed that the introduction of naïve EVs into
the brain of AD transgenic mouse models helped in the
clearance of toxic fibrils [88, 90]. Others have suggested
that EVs derived from mesenchymal stromal cells may
have a therapeutic benefit in the promotion of neurovas-
cular plasticity in other neurodegenerative diseases such
as stroke in vivo [91]. Introducing exogenous EVs into
the central nervous system is a potentially novel strategy
for creating therapies for AD due to their ability to cross
the blood-brain barrier efficiently [92] and their innate
secretion of enzymes that are effective at breaking down
toxic fibrils [93]. Furthermore, EVs derived from fibro-
blasts have been shown to induce axonal regeneration in
an optic nerve injury model via wingless/integrated
(Wnt) and mTOR signaling [94]. Additionally, EVs iso-
lated from murine neuroblastoma (Neuro-2a) cells were

able to reduce synaptic dysfunction and ameliorate Aβ
pathology in a microglial dependent manner following
intracerebral administration into APP heterozygotic
transgenic mice expressing the Swedish and Indiana mu-
tations [90]. The group demonstrated that EVs are incor-
porated into murine microglia in a glycosphingolipid
(GSL)-glycan independent manner [90]. The field of EV
research in the central nervous system is still in its in-
fancy, and yet there are already promising therapeutic
applications being brought forward.

Conclusion
The research field has long held fast to proteopathic hy-
potheses of AD induction where cell to cell transfer of
pathogenic proteins is postulated, and the topographical
progression of neuritic plaques and neurofibrillary tan-
gles have been extensively explored. Spreading through
network connections could facilitate this propagation to
distant areas within a neuronal network, possibly by a
trans-synaptic mechanism [95]. The EV provides a suit-
able vector for spreading of pathogenic proteins within
this context. More detailed studies are needed to prove
that regional EVs transmit in patterns that mimic con-
sortium to establish a registry for Alzheimer's dis-
ease (CERAD) and Braak staging schemata, however
recent advancements in targeted EV labeling in vivo may
provide a powerful tool for testing this hypothesis [96].
The pathogenic spreading of AD via cell-to-cell trans-

fer remains far from being proven or universally ac-
cepted. Alternatively, the functional brain should also be
understood as multiple interacting subsystems and con-
necting hubs that interact within a larger default net-
work; all of which have been mapped using functional
connectivity analyses. Brain imaging research has re-
vealed that patients with AD have a specific anatomic
pattern of reduced metabolism based on fMRI relative to
age-matched controls [97]. The pattern of reduced me-
tabolism bears a striking resemblance to the regions
comprising the posterior components of the default net-
work [98]. Intriguingly, the regions within the default
network that show higher resting metabolism in healthy
adults are also those that are most vulnerable to damage
from AD. These findings lend to the notion that changes
in the default network may somehow lead to or modify
amyloid deposition [99]. These regional changes in the
default mode may also differentially modify EV cargo in
affected networks. However, quantifying changes in EV
cargos and metabolism in the context of the default
mode would be extremely difficult if not impossible
given the lack of unique region specific markers for cir-
culating EVs and the inaccessibility of specific brain tis-
sue EVs from living patients.
Multiple studies have already characterized the vesicle

in both genetically manipulated experimental situations
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and in blood taken from AD patients, bolstering its
translatable reliability. Unfortunately, despite this grow-
ing evidence supporting the importance of EVs in AD,
there is still a lack of standardization in methods [100].
Ultracentrifugation methods have been used to ob-
tain highly pure EV fractions [101], but the reprodu-
cibility and efficiency of this method remains
unclear. Many laboratories have instead opted to use
microfiltration technologies, antibody-coated mag-
netic beads, microfluidic devices, or precipitation
techniques using ExoQuick reagent, with the latter
giving the most favorable outcomes in both quantity
of EVs isolated and in quality of protein cargos
[102]. Recently, the ExoQuick precipitation reagent
was shown to yield comparable results to ultracentri-
fugation methods in independent studies of Down
syndrome (DS) from independent labs [53, 103].
From blood, we consistently isolated 40% more
NDEVs on average from DS blood when compared
to controls based on the EV surface marker differen-
tiation (CD) 81. Using ultracentrifugation methods,
Levy and colleagues support this trend with evidence
that post-mortem brain tissue isolated from individ-
uals with DS expelled nearly 40% more EVs than
non-DS controls based on levels of both Flotillin-1
and Flotillin-2 levels and acetylcholinesterase activity
[103]. Thus it seems that orthogonal methods used
by different laboratories can yield comparable out-
comes in this context. While these data are promis-
ing, moving forward it is imperative that the field
utilize a cohesive definition of the term “EV” in
order to create inter-experimental reliability. A pro-
posed characterization of EVs includes the combin-
ation of size profiling through particle analysis or
electron microscopy and assessing the enrichment
for EV-associated proteins such as CD 9, CD 63, CD
81, and/or apoptosis-linked gene 2-interacting pro-
tein X (Alix) [104–106].
There are interesting lines of research going into

both the induction of AD using pathogenic EVs and
the sequestration of toxic plaques using exogenous
healthy EVs. Ultimately, it is the hope that using
these gold standard approaches will provide reliable
and reproducible insight into the role that the
NDEV plays in pathogenesis of AD. Furthermore,
there is a pressing need to determine the potential
role of EVs derived from cell types other than neu-
rons in AD pathophysiology. By ensuring concrete
definitions of the EV, research can reliably
characterize the role these vesicles collectively play
in the development or potential treatment of AD.
With the impending health care burden on our soci-
ety, it is clear that the field needs an influx of novel
approaches through which to study AD. The EV,

with all of its connections to AD via aberrant meta-
bolic pathways, provides a unique and promising re-
search venture.

Additional file

Additional file 1: Table S1. Proteins related to neuronally derived EVs
of Alzheimer’s disease patients (DOCX 95 kb)
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