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Abstract: New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus
(PIRV), a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni), causes a disease in
Syrian golden hamsters (Mesocricetus auratus) (biosafety level-3, BSL-3) that has many pathologic
similarities to the South American hemorrhagic fevers (BSL-4) and, thus, is considered among
the best small-animal models for human arenavirus disease. Here, we extend in greater detail
previously described clinical and pathological findings in Syrian hamsters and provide evidence
for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal
target organ of the disease, and signs of Kupffer cell involvement were identified in mortally
infected hamster histopathology data. Differential expression analysis of liver mRNA revealed
signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway
and other host response pathways, including 17 key transcripts that were also reported in two
non-human primate (NHP) arenavirus liver-infection models, representing both Old and New
World mammarenavirus infections. Although antigen presentation may differ among rodent and
NHP species, key hemostatic and innate immune-response components showed expression parallels.
Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment
of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate
that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute
PIRV infection.
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1. Introduction

Pathogenic mammarenaviruses cause substantial morbidity and mortality each year. It is
estimated that more than 300,000 cases with about 5000 deaths are caused by Lassa virus (LASV) in
Africa annually [1]. In South America, more than 50,000 cases of hemorrhagic fever, most from Junín
virus (JUNV; Argentine hemorrhagic fever) infection, with a fatality rate of about 20%, have occurred
since the 1950s [2]. Pathogenic arenaviruses are hosted by peridomestic rodents, thus outbreaks of
zoonotic arenavirus disease in humans will continue to be a public health risk in these areas [3].
Arenaviruses that cause severe hemorrhagic disease in humans require biosafety level-4 (BSL-4)
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containment, which limits the number of institutions where pathogenesis studies can be performed,
and few animal models that recapitulate human arenavirus hemorrhagic fevers (AHF) are available.
Laboratory strains of house mice (Mus musculus) have been used; however, specific gene knock-outs
are required, which substantially compromises their value as models for human arenavirus disease [4].
Non-human primates (Macaca mulatta, Macaca fascicularis) have also been used for Lassa fever models,
and these share many features of human disease [5,6]. Jamaican fruit bats (Artibeus jamaicensis)
infected with Tacaribe virus also develop clinical signs with strong resemblance to human disease [7].
In addition, guinea pigs (Cavia porcellus) and Syrian golden hamsters (Mesocricetus auratus) have
been used in New World arenavirus studies. These two rodent species were found to exhibit many
pathologic similarities to human disease and, hence, they are favored small-animal models [8,9].

Pirital virus (PIRV, Pirital mammarenavirus) was first isolated from Alston’s cotton rats
(Sigmodon alstoni) on a farm near Caño Delgadito, Venezuela, in 1997 [10] and were subsequently
determined to be a natural reservoir host. PIRV is divergent from other New World arenaviruses;
isolates exhibit substantial genetic diversity despite antigenic similarity [10–12], and some evidence
suggests PIRV has undergone homologous recombination with other viruses [13]. Spillover of Guanarito
virus (GTOV), which causes Venezuelan hemorrhagic fever, into Alston’s cotton rats has occurred [14];
therefore, coinfection with PIRV could lead to novel recombinants or reassortants with zoonotic potential.

Experimental infection of Syrian hamsters with PIRV causes a disease with many similarities to
human arenavirus disease [15]. Clinical and pathological parallels to Argentine hemorrhagic fever
include pulmonary and splenic hemorrhage, focal necrosis of the liver, and reticulum cell hyperplasia.
Similarities to Lassa fever are more striking and include leukocytosis, megalothrombocytosis and
coagulopathy, liver necrosis, and elevated transaminases. Although no human cases of PIRV disease
have been documented, it is considered a BSL-3 agent because of its severe hemorrhagic disease in
Syrian hamsters [8,9].

We infected Syrian hamsters with PIRV to extend pathological findings from previous reports [15].
We sought to substantiate the use of hamsters as a model for human arenavirus disease by
identifying parallels in tissue pathology and immune pathway transcriptional profiles in PIRV-infected
hamsters compared to those reported in arenavirus-infected non-human primate (NHP) studies [16,17].
We expected to find similarities among both Old and New World arenaviruses, due to the divergence of
PIRV from strict categorization as a New World virus. Because of the prominent hepatic disease,
transcriptional profiling of liver RNA was performed. More than 3400 differentially expressed
transcripts were identified, which represented metabolic and host-response pathways. Many transcripts
representing hemostasis and antiviral pathways were modulated. Notably, several transcripts expressed
by T cells were elevated, including interferon-γ (IFNγ); however, signatures of T-cell exhaustion
and Tr1 regulatory T cells were also present, suggesting suppression of the adaptive response. Many
parallels with arenavirus-infected NHP were identified, suggesting the Syrian hamster may be a suitable
surrogate model for the study of human arenavirus disease.

2. Materials and Methods

2.1. Ethics Statement

All work was approved by the Colorado State University Animal Care and Use Committee
(protocol 14-4864A, 26 January 2016), Biosafety Committee, and in compliance with the USA Animal
Welfare Act.

2.2. Hamster Infections

Because PIRV causes significant hemorrhagic disease in hamsters but is not known to infect
humans, it is manipulated under BSL-3 containment [10]. All infection experiments were performed
in BSL-3 laboratories with appropriate personal protective equipment (PPE), including powered,
air-purifying respirators (PAPRs) and Tyvek suits. Pirital virus strain VAV-488 stocks were produced on
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Vero E6 cells (CRL-1586). Hamsters were anesthetized by inhalation of isoflurane and intramuscularly
(IM) inoculated with 104 TCID50 of PIRV, diluted in sterile phosphate-buffered saline (PBS), into the
right hindquarters. Hamsters were monitored twice daily for signs of disease, the appearance of
which was the criterion for humane euthanasia. Terminal blood was collected by cardiac puncture into
ethylenediaminetetraacetic acid (EDTA) and serum separator tubes (SST) at the time of euthanasia for
hematology, and blood chemistry and serology, respectively. Tissues harvested for RNA extraction
were placed in cryovials and snap-frozen in an acetone/dry ice bath, whereas tissues for histopathology
and immunochemistry were collected in 10% buffered formalin.

2.3. Hematology and Blood Chemistry

Three groups were analyzed by one-way analysis of variance (ANOVA); uninfected control (n = 3),
euthanized due to disease (n = 6), and infected (asymptomatic) survivors (n = 3). Hematology was
performed on whole blood collected in EDTA (Becton–Dickinson, Franklin Lakes, NJ, USA) using a
Heska HemaTrue Analyzer. Blood collected into SST tubes (Becton-Dickinson) was centrifuged at
1000× g for 10 min at 4 ◦C and serum analyzed with a Heska DRI-CHEM 4000 chemistry analyzer
(Heska, Loveland, CO, USA).

2.4. Histopathology and Immunohistochemistry

Paraffin-embedded formalin-fixed tissues were rehydrated, treated with citrate buffer at 90 ◦C
for 15 min, and blocked with SuperBlock T20 (Thermo, Rockford, IL, USA). Anti-PIRV mouse ascites
fluid was used at 1:150 dilution and incubated overnight at 4 ◦C. Unbound primary antibody was
removed by washing 3× with Tris-buffered saline containing 0.03% TWEEN-20 (TBST). Endogenous
peroxidase was quenched with 0.3% hydrogen peroxide in PBS for 5 min followed by washing 2× in
TBST. Secondary antibody was horseradish peroxidase-conjugated anti-mouse IgG (A4416, Sigma,
St. Louis, MO, USA) used at a 1:2000 dilution and incubated for 30 min at room temperature. Slides
were again washed 3× with TBST. 3,3′-diaminobenzidine (DAB) was added to the slides and allowed
to develop chromogen for 5 min. Hematoxylin was used to counterstain. Complete necropsies were
performed on all study animals to record gross pathologic lesions and to characterize the nature and
severity of histologic lesions for later corroboration with transcriptome data. A pathologist examined
the histology slides blindly. A lesion scoring system was devised where: (1) indicates that there were no
significant histologic lesions; (2) minimal indicates that <5% of total parenchyma was involved; (3) mild
indicates that 5–10% of the parenchyma was involved; (4) moderate where 10–25% of the parenchyma
was involved; (5) moderately severe indicates that 25–50% of the parenchyma was involved; and (6)
marked indicates that 50–75% or more of the parenchyma was involved.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

A sequence fragment of PIRV VAV-488 S segment (1717-2457, AF485262) was codon-optimized
for E. coli expression and de novo synthesized with flanking 5′ EcoRI and 3′ NotI restriction sites
(GeneArts). The fragment was subcloned into pET-23b with vector start and C-terminal His tags for
expression in E. coli BL21(DE3) as previously described [18]. The expressed antigen represents PIRV
VAV-488 N protein residues 296–542 (mw 32 kD).

Recombinant N was diluted in PBS (pH 7.4) and coated onto 96-well polyvinyl chloride plates at
100 ng/well (100 µL) and incubated overnight at 4 ◦C. Plates were washed 2× with PBS, blocked for
1 h at room temperature with 0.25% gelatin (Sigma G-6144) in PBS and washed 2×. Serum samples
(100 µL) were diluted 1:100 in PBS and titrated (log2), and incubated for 1 h at room temperature. Wells
were washed 3× with PBS-TWEEN-20, followed by incubation of protein-A/G-HRP conjugate (Pierce)
for 1 h. After washing 4× with PBS-TWEEN-20, 100 µL of ABTS substrate (KPL) was added for 15 min
then absorbance read at 405 nm.
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2.6. Detection of Viral RNA

Total RNA was extracted from tissues with an RNeasy kit (Qiagen, Hilden, Germany) using
stainless steel beads and homogenization (Tissue Lyser II, Qiagen) according to the manufacturer’s
instructions. RNA was quantified with a NanoDrop ND-1000 spectrophotometer (Thermo Scientific).
One-step polymerase chain reaction (PCR) was performed (Qiagen, 210212) with S segment-specific
primers, 5′-CAACCCAGGTTGTGTGTTTG-3′ (forward) and 5′-CAGGTCAAAGGGAGAGCTTG-3′

(reverse), that generated a product of 348 nt.

2.7. RNA-Seq

RNA from the livers of two uninfected hamsters (H1, H2) and three diseased hamsters that
were euthanized on days 7 (H35, H36) or 8 (H37) were used for transcriptome profiling. RNA-seq
libraries were prepared from 500 ng total RNA using Ribo-Zero (Illumina, San Diego, CA, USA)
library preparation methods and the manufacturer’s recommended procedure. The five samples
were prepared separately and pooled on a single HiSeq 2000 (Illumina) lane for paired end
2 × 100 nt sequencing. Fastq files were quality and adapter-trimmed using the default parameters
of Trimmomatic [19]. Using a reference-independent protocol, reads were assembled into contigs
using the Trinity package [20] and default parameters. The following options were used: JM 350G,
CPU 24, SS_lib_type RF. Within the Trinity package, sample library pairs of 5 samples (2 uninfected
and 3 infected) were subjected to RSEM estimation of transcript abundance by aligning them against
the Trinity-assembled contigs. Raw count data from RSEM was used as input for DESeq differential
expression analysis [21] with a false discovery rate (FDR) p value limit of <0.05. DESeq default size
factors normalization was applied, as well as the following dispersion estimation parameters: method
= “pooled”, sharingMode = “maximum”, fitType = “local” and a minimum of 200 read counts summed
across samples. Transcripts were identified by Basic Local Alignment Search Tool (BLAST) against
the RefSeqRNA databank (ngKLAST v.r. 4.3, Korilog, http://plealog.com/korilog/). The resulting
datafile of differentially expressed genes with transcript counts (Table S1) shows the reference species
for each hit. All raw fastq files are available at the National Center for Biotechnology Information
(NCBI) Sequence Read Archive under BioProject ID PRJNA258080.

2.8. Host Response-Associated Transcripts

Differentially expressed transcripts (DETs) were submitted to InnateDB to identify
interferon-associated transcripts [22]. Functional analysis of DETs was performed with the Database for
Annotation, Visualization and Integrated Discovery (DAVID) [23] to identify genes relevant to antiviral
and host defenses. Candidate lists associated with these responses was generated and submitted for
cluster analysis and plotting using R statistical software and the pheatmap plugin. The gene symbol
list was analyzed using Reactome [24] and within Cytoscape [25] to construct pathway maps with
highlighted DETs.

3. Results

3.1. Disease Progression

To confirm previous findings in preparation for differential expression analysis, hematology
and histopathology analyses were performed on PIRV IM-inoculated hamsters with clinical signs.
Upon development of cutaneous and visceral petechiae with hind-limb paralysis, one hamster was
found dead on day 7, five hamsters were euthanized because of severe disease between days 7 and 10,
and one euthanized on day 12 because of severe disease; the remaining 3 hamsters showed no signs
of disease during the 20-day experiment. Euthanized hamsters exhibited hind-limb paralysis and
signs of hemorrhagic disease, including cutaneous and visceral petechiae, and some had significant
epistaxis. In total, 7 of 10 inoculated hamsters died or were euthanized (Figure 1A). The hamsters with
fatal disease had leukocytosis due primarily to elevated granulocyte and lymphocyte counts, elevated
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hemoglobin and hematocrit, thrombocytosis, and increased platelet size (Figure 1B). No differences
were found in monocyte counts, mean corpuscle volume, red cell distribution width, mean corpuscular
hemoglobin concentration, or mean corpuscular hemoglobin. Elevated alanine aminotransferase (ALT),
aspartate aminotransferase (AST), total bilirubin and blood urea nitrogen (BUN) levels were also noted
(Figure 1C). There were no differences in hematology or blood chemistry between the three exposed,
surviving hamsters and negative controls. The three infected but asymptomatic hamsters were antibody
positive to nucleocapsid by enzyme-linked immunosorbent assay (ELISA), one mortally-infected
hamster was antibody positive (euthanized on day 12), and the remaining six infected hamsters were
antibody negative (disease onset on or before day 10) (data not shown). Therefore, RNA-Seq was
performed on uninfected negative controls rather than asymptomatic PIRV-exposed animals, and then
compared to infected experimental samples.
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hamsters that did not show clinical signs of disease. 
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lobules were obliterated by coagulative to lytic necrosis with moderate-to-marked hepatocyte loss. 
Necrosis of the limiting plate was characterized by punctate or circumferential cell loss (Figure 1A), 
rounding up of individualized cells with hypereosinophilia of the cytoplasm and pyknosis or lysis of 
the nuclei. A central vein of one hamster at 7 days post inoculation (PI) showed multifocal intimal 
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in infected hamsters, 7–10 days PI, were moderately severe to marked and were largely characterized 
by apoptosis and/or necrosis of endothelial cells lining the sinuses of the red pulp. Many of the 
affected sinuses were filled with fibrin thrombi (sinus thrombosis, Figure 1C). Multifocally, 
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Figure 1. Clinical outcome of Pirital virus (PIRV) infection of Syrian hamsters. (A) Seven of the
10 hamsters died by day 12, whereas the remaining 3 infected hamsters appeared healthy until the
conclusion of the experiment on day 20. (B) Complete blood counts of hamsters showed elevated white
blood counts, hematocrit (HCT), hemoglobin (HGB) and mean platelet volume (MVP), and elevated
platelet counts. (C) Alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin and
blood urea nitrogen (BUN) levels were elevated in diseased hamsters but not in infected hamsters that
did not show clinical signs of disease.

3.2. Histology/Immunohistochemistry

Gross and histopathology analyses were performed to establish a basis for the interpretation
of the transcriptomic data. Lesions in infected hamsters were moderately severe-to-marked in the
liver and spleen and moderate in the lungs and pancreas of all animals. Hepatic inflammation was
typically portal to random and lymphoplasmacytic to neutrophilic in nature. Large areas of hepatic
lobules were obliterated by coagulative to lytic necrosis with moderate-to-marked hepatocyte loss.
Necrosis of the limiting plate was characterized by punctate or circumferential cell loss (Figure 1A),
rounding up of individualized cells with hypereosinophilia of the cytoplasm and pyknosis or lysis of
the nuclei. A central vein of one hamster at 7 days post inoculation (PI) showed multifocal intimal
hyperplasia (Figure 1B). Reticulin stain revealed partial to complete collapse of most affected hepatic
lobules. Immunohistochemistry revealed strong immunoreactivity in scattered Kupffer cells with their
characteristic morphology and endothelial cells lining both portal and central veins (Figure 2A).

As for the rest of the other parenchymatous organs, lesions were especially prominent,
most consistent in the spleen, lungs and pancreas. Lesions were comprised of organomegaly, multifocal
hemorrhages and multifocal areas of pallor or white nodules on gross examination. Splenic lesions in
infected hamsters, 7–10 days PI, were moderately severe to marked and were largely characterized by
apoptosis and/or necrosis of endothelial cells lining the sinuses of the red pulp. Many of the affected
sinuses were filled with fibrin thrombi (sinus thrombosis, Figure 1C). Multifocally, neutrophils and
macrophages were degenerate/necrotic along with variably severe lymphocytolysis and subsequent
reduction of the overall size of periarteriolar lymphoid
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(arrow) (H and E stain, original magnification 200×). (D) Liver of infected hamaster showing random 
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vessels by neutrophils. Pleural mesothelium was multifocally hyperplastic and/or hypertrophic in 
three hamsters. Pancreatic lesions were moderate to moderately severe. Interstitial edema was 
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vascular intima, endothelial cells were multifocally karyorrhectic and hypereosinophilic. 
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hemorrhage and edema was seen to varying degrees and lumina of affected vessels contained 
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Figure 2. Histopathology of PIRV-infected hamsters. (A) Normal liver from a control hamster showing
intact limiting plate (hepatocyte layer) surrounding portal triad that contains hepatic artery (A), portal
vein (PV) and bile duct (BD). Histopathology of PIRV-infected hamsters 7 days post infection (PI).
(B) Histologic changes in liver showing circumferential necrosis of the limiting plate with abundant
karyorrhectic debris from dead hepatocytes immediately surrounding portal vein (PV) and necrosis
and loss of lining endothelial cells (H and E staining, original magnification 100×). (C) Liver of infected
hamster showing endothelial necrosis (arrowhead) where cells are replaced by eosinophilic cellular
debris and pyknotic nuclei with focal intimal hyperplasia of central vein (CV) (arrow) (H and E stain,
original magnification 200×). (D) Liver of infected hamaster showing random foci of lytic necrosis
where hepatocellular details are lost with mixed inflammatory infiltrates expanding portal triads.
Bars = 100 µm.

Follicles. Moderate to severe pulmonary lesions were present in four infected hamsters. Multifocal
acute interstitial pneumonia was evident in acutely infected animals at 7 days PI, especially in the
subpleural parenchyma and around pulmonary vessels. Apoptosis and/or necrosis of pneumocyte
type-I along with small foci of necrosis was observed in perivascular lesions. In most affected
animals, there was multifocal loss of bronchiolar lining epithelium. In the markedly affected hamsters,
inflammation was more of a lymphohistiocytic nature with margination of congested vessels by
neutrophils. Pleural mesothelium was multifocally hyperplastic and/or hypertrophic in three
hamsters. Pancreatic lesions were moderate to moderately severe. Interstitial edema was multifocally
accompanied by segmental loss of exocrine acini. Inflammatory foci were evident in the vicinity of
small venules showing apoptosis and/or necrosis of their lining endothelium. In affected vascular
intima, endothelial cells were multifocally karyorrhectic and hypereosinophilic.

Consistent immunoreactivity was observed in pulmonary foci of hypertrophic and occasionally
hyperplastic pleural mesothelium (Figure 2D). In the lungs, vascular necrosis and perivascular
hemorrhage and edema was seen to varying degrees and lumina of affected vessels contained smudged
cell debris and chromatin smearing. Small- to medium-sized venules were most affected, followed
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by capillaries and small arterioles. The wall of these vessels was segmentally to circumferentially
obliterated or smudged by leukocytic infiltration into tunica media.

Plasma enzyme levels were more similar among PIRV-infected hamsters and terminal-stage
lymphocytic choriomeningitis virus (LCMV-WE) NHP than those reported for the LCMV-infected
mouse model. Specifically, ALT but not AST levels were elevated during LCMV-WE infection of inbred
lab mice (Mus musculus), and neither were elevated in LCMV-ARM infection. The LCMV-WE strain
causes disease in non-human primates, whereas the ARM strain is non-pathogenic [26]. In contrast,
terminal stage LCMV-WE infection of NHP and PIRV-infected hamsters showed elevated ALT and
AST levels, similar to what we observed in PIRV-infected hamsters. Therefore, we chose the LCMV-WE
liver differential expression data from the Djavani et al. [16] study rather than LCMV-ARM as the most
appropriate comparison for the differential expression data described below.

3.3. Differential Expression Profiles

RNA-Seq was performed to gain insight into the substantial liver damage, neutrophil infiltration
and inflammation revealed in the histopathology and clinical chemistry. Liver-derived RNA of
three fatally-infected hamsters (accession #35, #36 and #37) was compared to two negative controls
using differential expression (DE) analysis. A total of 3486 transcripts were differentially expressed,
representing 2248 unique genes with known homology (Table S1). Of these, 394 unique genes were
predicted to be involved in host response and antiviral-related pathways. DAVID and Reactome
analyses revealed that unique enriched immune response transcripts (n = 286) had predicted
involvement in a variety of innate and adaptive immune responses. Importantly, key hamster immune
response transcripts showed expression trends that were coincident with those highlighted in studies
of Old World mammarenavirus [16], LASV infection of cynomolgus macaques (n = 55), and LCMV
infection of rhesus macaques (n = 358) (Table S1). In addition, the presence of PIRV S and L segment
RNA was detected in RNA-Seq data of analyzed hamsters, and conventional PCR detected vRNA
in all diseased hamsters but not the 3 infected hamsters that did not show clinical signs of disease.
Specific host-response functional groups are described below.

3.4. Hemostasis and Clotting

As expected from the hematology (Figure 1) and histopathology findings (Figures 2 and 3),
DETs indicative of hematological dysregulation were identified (Figure 4). Importantly, dual enrichment
of Anxa2 and S100a10 occurred, which has also been reported in the arenavirus NHP model [16]. Annexin
A2 and S100 calcium-binding protein A10 form a profibrinolytic complex that promotes plasmin
generation [27] and subsequent clot degeneration. In addition, the plasminogen activator urokinase
receptor Plaur was elevated. Multiple platelet-activating components, including thrombospondin
(Thbs1), von Willebrand factor A domain (Vwa8), platelet-activating factor components Pafah1b2 and
Pla2g7, platelet endothelial cell-adhesion molecule (Pecam1), and Serpine1 were elevated. In addition,
enrichment of the clotting pathway component DETs, such as tissue-factor pathway inhibitor protein
(Tfpi), Cd49b (alpha 2 integrin) and fibronectin type III domain protein (Fndc), was also observed.
Enthothelial glycoprotein transcripts Vcam1, typically present in cytokine-activated endothelia,
and Icam1, were not significantly altered; however, they showed a trend toward enrichment in infected
liver. Finally, of 79 unique hemostasis-related DETs in PIRV-infected hamster livers, 34 were depleted.
These included several clotting factors (F2, F5, F7, F8, F10–F12). Of these, depletion of F7, F11 and
F12 also occurred in arenavirus-infected NHP [28]. An additional hemostatic regulator, orosomucoid
1 (Orm1), showed similar trends in the NHP arenavirus system. Little is known about the function
of Orm1 during arenavirus infection; however, it is classified as an acute phase plasma protein.
These results are consistent with the impaired hemostasis that occurs in NHP arenavirus-induced
hemorrhagic fevers [16].
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3.5. Innate Response

As expected from other models, innate immune response transcriptional markers were also
enriched in PIRV-infected hamster livers (Figures 5 and 6). For example, major components of the
cytosolic nucleic acid sensing RIG-I/MDA5 pathway were elevated; DETs included Ddx58, Ddx60,
Eif2ak2, the STAT-induced inhibitor Socs1, and Trim32. Secondly, support for canonical NFκB activation
was present in the concomitant transcriptional enrichment of Nfkb2 and Relb, thus favoring NFκB
dimer formation. Moreover, ubiquitin antigen-processing pathways also appeared activated, due to
enrichment of Herc6, Usp18, Trim6 and Tnfaip3.

The glycosylphosphatidylinositol (GPI) anchor cell-surface protein lymphocyte antigen 6 (Ly6e)
is a repressor of monocytes, and its enrichment has been associated with increased viral disease
progression [29,30]. Importantly, Ly6e transcripts were enriched in LASV-infected human peripheral
blood mononuclear cells (PBMCs) [31], as well as in other hemorrhagic fevers. Here, PIRV-infected
hamster liver also showed enrichment of Ly6e, further corroborating the relevance of the hamster
pathology system. Lastly, some arenaviruses activate the TLR2 signaling pathway [32–34]; similarly,
here, Tlr2 and Tlr3 expression was elevated in the livers of the infected hamsters.
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3.6. Interferon Pathway

Transcripts representing type I and III IFNs were not detected, likely because sampling was
confined to terminal-stage infections. Nevertheless, several downstream genes of the type I IFN
signaling pathway were elevated, consistent with reports of other New World arenavirus human
infection [35], including Ifi27, Ifi27l2b, Ifi44, Ifi204, Ifit1, Mx1 and Mx2 (Figures 5 and 6). Likewise,
several enriched interferon response components, i.e., Ifit2, Ifit3, Ifih1, Isg15, Isg20 and Oas2 showed
trends consistent with the arenavirus host response in NHP models (Figure 6) [16]. Zpb1, a negative
regulator of type I IFN signaling [36], was also present and not detected in uninfected samples.
These results are consistent with the hypothesis that a type I response had occurred prior to
RNA-Seq sampling.

Two genes expected to enhance IFNγ expression (Tbx21, Runx1) were also elevated, consistent
with leukocyte activation (Table S1). Concomitantly, Ifng transcripts were present in infected hamster
livers but not uninfected controls. Enrichment of Ifng is also consistent with the late-stage infection
profile for LASV-infected macaque PBMCs. Similarly, the pertinent receptor, Ifngr2, was also enriched
in our samples and those of LCMV-infected NHP. Moreover, several downstream IFNγR signaling
effectors, such as Stat1, Irf7, Irf8, Gbp1, Gbp2, Oas2 and Oas3 were elevated in livers of infected
hamsters (Table S1).

3.7. Adaptive Immunity

Many adaptive immunity components associated with MHC class I antigen processing and
presentation were also identified (Figure 7). Of 43 unique DETs in this category, 30 were elevated,
suggesting many components of the antigen-processing pathway were functional. Of these, about one
third were similarly enriched in the Djavani et al. study (n = 13) and one (Psmb8) in the Malhotra et al.
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study [16]. T-cell receptor αβ and Igκ sequences were also elevated in the livers of infected hamsters,
which is consistent with the observed lymphocyte count elevation (Figure 1).

Several DETs associated with adaptive immunity were depleted, including a cluster of five
genes (Cul7, Fbxo3, Huwe1, Rnf220, Skp2) involved in the cytosolic polyubiquitination of polypeptides
immediately prior to proteasomal processing and loading onto nascent MHC class I proteins. Likewise,
IgA/IgM epithelial transport receptor (Pigr) transcripts were depleted, suggesting that export of these
classes to the luminal epithelial surface of the liver may have been impaired. Cd3 sequences were also
detected, as were transcripts for Cd49b, which may have been expressed from natural killer (NK) or
natural killer T (NKT) cells [37]. Both Lag3 and Cd226 transcripts were also elevated in infected livers.
Along with Cd49b, these are defining markers of T regulatory 1 (Tr1) cells [38]. In addition, Lgals9,
which encodes Galectin-9, was significantly elevated in livers of infected hamsters. Galectin-9 drives
development of regulatory T cells that can attenuate antiviral T-cell responses [39].
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3.8. Mononuclear Phagocyte System

The mononuclear phagocyte system (MPS) is a multi-cellular network made up of monocytes,
macrophages and dendritic cells (DCs). Expression of Ifng and histopathological evidence of
immunoreactive Kupffer cells and extracellular damage, suggestive of activation of the pro-inflammatory
arm of the MPS, led us to assess transcript markers of MPS activation within the PIRV-infected liver
RNA-Seq dataset. Extensive evidence of macrophage activation was identified, but no markers for
DCs or monocytes were apparent (as reviewed in [40]). Specifically, no transcripts indicative of
Batf3-dependent classical DC1 (cDCs) differential expression were present, nor were Irf-4 dependent
cDC2 lineage markers, with the exception of Cd11b/Cd18 (Table S1). It has been argued that Cd11b is
more accurately assigned to macrophages and monocytes rather than cDCs [41]. Moreover, there were
no differentially expressed markers of monocytes (iNOS, Cd16, Cd1c). This is consistent with the lack of
difference in monocyte counts between infected and un-infected controls. However, there was extensive
evidence of macrophage lineage cells, consistent with a bias toward a pro-inflammatory response.

Differentially expressed macrophage markers were delineated as M1, pro-inflammatory or M2,
pro-Th2 (Table S1). Figures 5 and 6 show highlighted pro-inflammatory markers. For example,
plasminogen activator urokinase receptor Plaur was elevated. Two additional MPS markers [42],
which also physically interact in vivo and contribute to inflammation, lipocalin 2 (Lcn2, Log2 FC 6.0–6.4,
FDR p = 5.8 × 10−4) and matrix metallopeptidase 9 (Mmp9, present in infected, FDR p = 4.4 × 10−3)
were also elevated (Figure 5, Table S1). Further, Il1b and several associated transcripts, including
transcripts for IL-1 receptors, accessory proteins and antagonists, were enriched, which was consistent
with acute inflammation (reviewed in [43]). Chemokine-signaling ligand transcripts Cxcl10 and
Cxcl11, expected to be expressed from activated macrophages, were also elevated [41]. Moreover,
Klf6 (Kruppel-like transcription factor) transcripts were enriched [44].

Of 17 differentially expressed macrophage markers in the dataset, 16 were consistent with a
pro-inflammatory M1-type response, and just 1 DET was representative of an M2 healing or cellular
remodeling response (Table S1) [43]. Depletion of the transcript encoding the vascular endothelial
growth factor, Vegfa, was consistent with M2 extracellular matrix remodeling.

3.9. Apoptosis and Autophagy Pathways

Many genes involved in ubiquitination were differentially expressed, most of which were elevated
in infected hamsters (Table S1). Isg15, Mdm2, Siah1, Ubd and Usp18 were substantially elevated, whereas
Hectd3, Huwe1 and Usp32 were depleted. In addition, transcripts of genes associated with apoptosis
were significantly elevated, including Aen, Birc3, Cflar, Coxc6a2, Fas, Fbf1, Ivns1abp and Serpinb10
(Table S1), consistent with previously reported JUNV-induced apoptosis [45].

4. Discussion

Syrian hamsters infected with PIRV develop clinical disease that shares similarities to Lassa and
LCMV-WE hemorrhagic fevers [16]. Indeed, 363 unique transcripts had coordinated trends among
PIRV-infected hamsters and LCMV-infected NHP [16]. Of these, 17 hamster DETs were also common
to Lassa virus-infected NHP liver transcriptome signatures (18). These included hallmarks of the
innate immune response, such as Ddx58 (RIG-I), Oas2, several additional interferon response genes
(Ifi44, Ifit2, Isg15, Mx2) and the general lymphocyte proliferative marker, Cd69. Therefore, compared to
NHP models, the overall hamster PIRV transcriptome signature was more similar to the associated
New World representative LCMV than Old World LASV infection.

The innate immune response/IFN category (n = 32) contained the highest number of coordinately
regulated transcripts among the hamster and LCMV NHP model systems (Table S1). Furthermore,
dysfunction of clotting cascades, leading to thromobosis and/or hemorrhage, is a principal feature of
Argentine hemorrhagic fever. Although the mechanisms that govern this are unknown, inhibition of
aggregation may disrupt platelet function. Interestingly, 22 unique hemostasis transcripts were
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common among PIRV and LCMV-WE liver infections [16]. Therefore, although there are likely
differences among rodents and NHP in antigen-presenting components, important hemostatic and
innate immune response markers are similar. Conspicuously, IFNβ sequences were absent in the
assembled transcriptome. A BLAST search of the Syrian golden hamster using the mouse IFNβ

sequence returned no hits. An annotated hamster genome is available and has 115× coverage
(BioProject PRJNA77669), suggesting IFNβ may be absent in hamsters. This may be a consequence of
the highly inbred nature of the Syrian golden hamster used in biomedical research, which was founded
with one male and two females that were littermates (see S. Alder, 1948, Nature 162:256), and which
may explain why Syrian hamsters are highly susceptible to a number of viruses.

The M1 pro-inflammatory arm of the MPS may contribute to pathogenesis of acute PIRV infection
in hamsters, which is similar to trends observed in LCMV infection of NHP (17). The spleen, liver and
lungs are the largest units of the MPS which, in part, explains why these organs are the most
consistently involved targets of PIRV infection. Strong immunoreactivity of the Kupffer cells and
endothelium of hepatic sinusoids and central veins corroborates findings in previous studies of PIRV
infection in hamsters and hepatotropism [15]. In the absence of significant macrophage infiltrations
around foci of hepatic necrosis, the current study corroborates the central role that Kupffer cells
play in the progression of PIRV infection. Moreover, the strong immunoreactivity detected in the
cytoplasm of mononuclear cells lining hepatic sinusoids is further evidence as to the role of fixed
macrophages in Pirital virus-induced pathology. The morphology of these cells is unmistakable.
Consistent elevation of coagulation values in PIRV-infected hamsters [15] and sinus splenic thrombosis,
reported here, are consistent with the presence of procoagulant molecules. Pirital infection of the MPS
is a characteristic reminiscent of virus-induced fulminant hepatitis [46,47]. In addition to sinusoidal
coagulation, which hampered effective circulation in the liver contributing to widespread necrosis of
hepatic parenchyma, destruction of the limiting plate and loss of the supporting reticulin network
reduced the ability of the liver to regenerate. Similar pro-inflammatory signatures were present in
LCMV-infected NHP livers (17). For example, enrichment of Il6r, Il1r, and evidence of TNF (Tnfrs12,
Tnfrs1b) and cytokine activity (enrichment of Il6R/Il1R) were consistent with a pro-inflammatory M1
response (42). Additional pro-inflammatory markers in the NHP liver dataset included enriched Klf6,
Stat1 and Irf1, as well as Il23 in late-stage infection.

Two biomarkers for arenavirus hemorrhagic fevers were identified in the transcriptome data.
The first was Lcn2; because the protein is excreted in the urine, it may have diagnostic value for
assessment of the prognosis of hemorrhagic diseases, similar to its use in human liver and renal
disease [48]. Importantly, Lcn2, which as a cell-surface protein transports iron, was also among
the DETs common to PIRV-infected hamster liver and arenavirus NHP liver pathology models.
The predicted function of Lcn2 differs depending on whether it is cell-surface bound or secreted.
As a cell-surface molecule, it internalizes iron. Alternatively, the matrix metalloprotease Mmp9
and Lcn2 form a heterodimer which, when secreted from neutrophils and macrophages, promotes
extracellular remodeling [49]. Similarly, the secreted plasminogen activator, urokinase receptor (Plaur),
is expressed from macrophages [50]; moreover, the presence of soluble Plaur in patient plasma has
been suggested as a diagnostic tool for Crimean-Congo hemorrhagic virus infection [51] and could
be used for arenavirus disease in a similar manner. This transcript was dramatically enriched in
PIRV-infected livers (Log2 FC 8.2, FDR p = 7.2× 10−7, Table S1). Although we did not specifically assay
circulating markers, elevation of Plaur and Lcn2 transcripts and co-implication of M1 pro-inflammatory
involvement are consistent with the hypothesis that the associated gene products could be used as
indicator markers.

Aside from those common features, the following signatures were noted in the PIRV-infected
liver dataset. Two genes, Pafah1b2 and Pla2g7, significantly elevated in PIRV infected hamsters,
encode inhibitors of the platelet activating factor (Paf ) that cleave it into an inactive form [52,53];
their expression may contribute to failure of platelet aggregation and explain, in part, the vascular
leakage and hemorrhage observed in arenavirus disease. Two additional genes, which result in
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inhibition of the clotting cascade, Tfpi and Tfpi2, may have similar effects. Several other transcripts
(Thbs1, Plaur, Serpine1) involved in coagulation were elevated in liver tissue and these genes likely
have a participatory role in the observed coagualopathy that occurs during PIRV infection. In addition,
a transcript for a Vwf accessory protein, von Willebrand factor A domain containing 8 (Vwa8),
was elevated in infected livers. The antiviral response of hamsters infected with PIRV showed
substantial signs of innate, interferon and ubiquitination pathway activation. Early events included
genes associated with pattern recognition receptor (PRR) sensing and signaling, including RLH, MDA
and ubiquitin pathway mobilization. Tlr2 expression was higher in infected hamster livers (Log2 FC 6.1,
FDR p = 3.0 × 10−7) and Tlr3 transcripts were present in all infected hamsters but absent in uninfected.
The TLR-2 pathway is targeted by pathogenic arenaviruses [34,54], therefore enrichment of Tlr2
is consistent with other reports. TLR-3 is not involved in cytotoxic T lymphocyte (CTL) mediated
responses to LCMV infections [55] and its elevated expression in PIRV infected hamsters may indicate a
viral and/or host species difference in responses. Further investigation will be required to address this.

Several transcripts associated with NK cell subsets and CTL activities were differentially expressed.
Some of these genes are shared by NK and T cells (e.g., Ifng, Cd3d, Cd3e, Cd3g, Cd49b, Perf, Gzma, Gzmb).
T-cell receptor α and β gene sequences were elevated in infected hamsters livers, suggesting T-cell
participation in the host response. In LCMV infection of laboratory house mice, T-cell responses occur
early and, depending on the strain of virus and mouse, have different outcomes, including disease
and clearance, or persistent infection [56]. Some LCMV clones induce immunosuppression [57–59] or
exhaustion of responding CTLs and these events are controlled by cell-surface interactions between
CTLs and other cells. Although Cd8a and Cd8b transcript counts were below our threshold cutoff
of 200, they were substantially higher in infected hamster livers than in uninfected livers, whereas
Cd4 transcripts were absent in all samples (Table S1). Together with the elevated TCRab transcript
data, this suggested CD8+ CTL infiltration of the livers in response to infection but that these cells
were likely ineffectual. An important feature associated with T-cell exhaustion is PD-1-induced
immunosuppression of CTLs, an event mediated by PD-1 ligands (PD-L) found on other cells [60–62].
Pdcd1, which encodes PD-1, was present in infected hamsters but absent in uninfected livers (Table S1).
In addition, transcripts associated with regulatory T cells (Cd226, Cd49b, Lgals9, Lag3) were elevated,
suggesting another negative impact on CTL activity. Genes expressed during MHC class I antigen
processing were highly elevated and we did not detect repression of any genes associated with this
pathway, suggesting it was functioning as expected. Future experiments could examine the role of
PD-1/PD-L by use of blocking antibodies that could restore functional CTL activities. It is unclear
if such antibodies exist for use in hamsters; however, several mouse- and rat-specific monoclonal
antibodies have been identified that are cross-reactive with hamster cells [63], and thus it may be that
cross-reactive PD-1/PD-L antibodies are already available for such studies in hamsters.

Of particular interest are the hamsters that survived infection. Syrian hamsters have limited
genetic homogeneity, and thus an explanation for why 30% survived without conspicuous signs of
disease could provide important clues about resistance, may point to novel approaches for mitigating
disease, and could provide prognostic indicators of infectious outcomes. The development of non-lethal
methods that provide meaningful data for serial sampling in hamsters will be required for future
studies in order to identify changes associated with disease progression and resistance.

5. Conclusions

Collectively, the data presented here are consistent with a robust antiviral innate immune response,
including signatures of pro-inflammatory M1 macrophage response, in Syrian hamsters infected with
PIRV, with concomitant CTL exhaustion and/or regulatory T-cell responses that may impair the
transition to adaptive immunity for successful control of the infection.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1999-4915/10/5/
232/s1. Table S1: Differential gene expression profiles of Syrian hamsters infected with PIRV.
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