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Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are
involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral
drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase.
However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural
products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and
efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides
that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These
peptides are known as “carbohydrate-mimetic peptides (CMPs)” because they mimic carbohydrate structures. Compared to
carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various
derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes
that are conjugated with adjuvant for vaccination.

1. Introduction

A variety of glycoconjugate carbohydrate structures on the
cell surface are important for biological events [1]. Carbo-
hydrate structures on the cell surface change according to
cell status, for example, during development, differentiation,
and malignant alteration. Several glycoconjugates, including
stage-specific embryonic antigen (SSEA)-3, SSEA-4, and
tumor-rejection antigen (TRA)-1-60, are used as molec-
ular makers of pluripotency to control the quality of
induced pluripotent stem (iPS) cells [2]. Carbohydrate-
protein interactions are the first cell surface events in cell-cell
communication, following which processes such as infection
and signal transduction occur. However, the reasons for the
changes in carbohydrate structures on the cell surface are
not clear. In addition, most receptors for glycoconjugates
have not been identified. To investigate the biological roles of
carbohydrates, sets of carbohydrates and their corresponding
carbohydrate-binding proteins are required.

Carbohydrate-binding proteins such as plant lectins,
bacterial toxins, and anticarbohydrate antibodies are avail-
able for studying carbohydrate-protein interactions [3, 4].
However, the repertoire of carbohydrate structures recog-
nized by these proteins is limited and insufficient to cover
the majority of structures. In addition, because carbohy-
drates are ubiquitous components of cell membranes and
bio(macro)molecules, the immune response stimulated by
glycoconjugates is negligible [5, 6], that is, high affinity
carbohydrate-specific IgG-isotype antibodies are not easily
obtained. Even if anticarbohydrate antibodies are generated,
IgG comprises no more than 28% of the antibodies (74 IgGs
in a total of 268 antibodies, with the remainder being IgMs)
[7]. Therefore, while anticarbohydrate antibodies of the
IgG isotype are preferred for carbohydrate research, IgM-
antibodies with low affinity have been often used. Moreover,
obtaining pure and homogeneous carbohydrates (or glyco-
conjugates) is very difficult. This is because regioselective
protection of the hydroxy groups of the monosaccharide is
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required. Programmable one-pot oligosaccharide synthesis is
widely performed using protected monosaccharides and/or
oligosaccharides [8–10]. Enzyme-catalyzed oligosaccharide
synthesis has been also developed [10–12]. Several oligosac-
charides such as KH-1 antigen (nonasaccharide of LeY-LeX),
globo-H hexasaccharide, and the core pentamannosides have
been prepared by automated solid-phase oligosaccharide
synthesis [8]. However, due to the complicated procedures
of carbohydrate preparation, a general methodology for their
chemical synthesis is not yet established.

To compensate for the lack of synthetic carbohydrates
and to overcome their inherent weak immunogenicity,
short peptides that bind to carbohydrate-binding proteins
have been identified from phage-display libraries (Figure 1).
These peptides mimic carbohydrate structures [13] and are
called “carbohydrate-mimetic peptides (CMPs)” or “peptide
mimotopes.” It is predicted that CMPs, as well as carbo-
hydrates, are recognized by carbohydrate-binding proteins.
Small molecules such as biotin and carbohydrate mimotope
(Glycotope) mimicking peptides have been frequently iden-
tified, and a number of reviews focusing on different aspects
of their properties and uses have been published [14–16]. In
this paper, recent studies on the selection and application
of CMPs are surveyed and summarized according to the
classification of target carbohydrate-binding proteins.

2. Peptide Selection from Phage Display
Libraries

Phage display is an efficient selection (and screening) system
for the identification of target-specific peptides and proteins
from a large number of candidates [20–22]. A filamentous
virus (M13 and fd, etc.) that infects E. coli is frequently used
in phage display technology. When DNA encoding foreign
sequences is inserted into the coat protein (pIII or pVIII)
region in the virus genome (M13 phage vector, etc.), the
corresponding sequence is fused with the coat protein of
the viral particle (Figure 2(a)) [20]. The foreign sequence is
“displayed” on the viral particle and is able to interact with
various types of target molecules.

In the case of peptide libraries, the length of the peptides
is often 5–20 amino acids. There are two types of peptide
library: linear peptide libraries and cyclic peptide libraries
(Figure 2(b)). The randomized region of cyclic peptide
libraries is surrounded by two cysteines (e.g., CX7C) to
restrict the peptide conformation via disulfide bonds. The
diversity of a peptide library is often 108-109, which is
sufficient to cover a combination of hexapeptide libraries
(X6; 206 = 6.4 × 107). Several kinds of peptide libraries
(e.g., Ph.D. Phage Display Peptide Library Kits, New England
Biolabs) and customizable phage vectors (Ph.D. Peptide
Display Cloning System) are commercially available.

To isolate phage clones that have high affinity for a
target molecule, a set of procedures called “affinity selection
(biopanning)” is performed (Figure 2(c)). First, the target
molecule is incubated with the phage library in order
to bind to specific peptide sequences. After removal of
excess phages by washing, the bound phages are eluted by

incubation with a known ligand for the target or an acidic
buffer. The phages are amplified by infection of hosts (E.
coli), and the phage pool is subjected to another round of
biopanning. By repeating these steps, target-binding phages
are enriched, and, finally, phage clones are obtained. The
peptides with high affinity for the target molecule are iden-
tified by DNA sequencing of individual phage clones. Huang
and coworkers established a mimotope database MimoDB
(http://immunet.cn/mimodb/) that contains the results of
biopanning experiments including the phage libraries used
and the peptide sequences identified [23, 24]. This database
will help in the development of therapeutic molecules
and the identification of superior peptide mimotopes for
vaccination.

3. CMPs against Lectins

3.1. Monosaccharide-Mimetic Peptides. Most lectins recog-
nize monosaccharides and disaccharides [4]. Concanavalin
A (ConA) is a lectin from jack-bean (Canavalia ensiformis)
that binds to α-mannose (α-Man) and α-glucose (α-Glc).
ConA is a famous lectin that is commercially available for the
biological investigation of glycoconjugates. The first CMPs
were selected from a random peptide library against ConA
simultaneously by Oldenburg et al. (octapeptide library)
[25] and Scott et al. (hexapeptide library) [13] (Table 1).
Peptides containing the consensus sequence, Tyr-Pro-Tyr
(YPY), showed high affinity for ConA with a dissociation
constant (Kd) of 46 μM, and the Kd for methyl α-Man was
89 μM. The peptides are considered to mimic the structure
of carbohydrates because the ConA-peptide interaction was
inhibited by α-Man.

To obtain Man/Glc-mimetic peptides, Yu et al. used three
lectins, including ConA, Lens culinaris agglutinin (LCA)
from lentil, and Pisum sativum agglutinin (PSA) from pea
[31]. Two cyclic peptides, CNTPLTSRC and CSRILTAAC,
were selected from a cyclic heptapeptide library, but these
peptides did not contain the YPY motif. Docking simulation
of the peptide-lectin interaction suggested that the cyclic
peptides bound to an alternative binding site, not to the
sugar-binding site that is recognized by YPY-containing
peptides. In another screen using monosaccharide-binding
lectins, Eggink and Hoober identified a GalNAc/Gal-mimetic
dodecapeptide, VQATQSNQHTPR, that was selected against
Helix pomatia (HPA) lectin [32]. A tetrameric dendrimer
of the peptide, [(VQATQSNQHTPR)2 K]2 K, was synthesized
chemically (Figure 3), which was shown to stimulate the
secretion of interleukin (IL)-8 and IL-21 from human
peripheral blood mononuclear cells (PBMCs).

3.2. Disaccharide-Mimetic Peptides. The Galα1-3Gal disac-
charide is recognized by Griffonia simplicifolia I-B4 (GS-
I-B4) and Bandeiraea simplicifolia isolectin B4 (BS-I-B4)
(Figure 4). The Galα1-3Gal structure is a major carbohydrate
antigen recognized by human anti-pig antibodies, and
inhibitors of human natural antibodies may be useful in pig-
to-human xenotransplantation. Kooyman et al. identified
a peptide sequence, SSLRGF, that binds to GS-I-B4 lectin

http://immunet.cn/mimodb/
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protein.
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peptide libraries. (c) Schematic representation of the procedure for affinity selection (biopanning). The phage library is incubated with target
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isolated and used for DNA sequencing.

from a hexapeptide library [27]. Zhan et al. identified a
peptide, NCVSPYWCEPLAPSARA, by selection with BS-I-
B4 lectin [28]. These peptides, SSLRGF and NCVSPYW-
CEPLAPSARA, inhibited the agglutination of pig red blood
cells (RBCs) by human serum. Two peptides, FHENWPS
and FHEFWPT, that inhibit the agglutination of RBCs
were identified by selection against anti-Gal antibody by
Lang et al. [42]. However, the peptides identified from three
selections contained no obvious consensus sequence.

Influenza virus hemagglutinin (HA) recognizes sialyl-
galactose structures (Neu5Ac-Gal) in glycoproteins and

glycolipids on the cell surface in the initial stage of the
infection process (Figure 4). Matsubara et al. identified
CMPs from a pentadecapeptide library by selection with
HAs of the H1 and H3 subtypes [17]. A HA-binding
peptide, ARLSPTMVHPNGAQP, was identified from the
first selection, and mutational sublibraries were prepared. A
secondary selection was performed to improve the binding
affinity for HAs, and the peptide was matured to pep-
tide s2, ARLPRTMVHPKPAQP. The peptide was modified
with a stearoyl group, and a molecular assembly of the
alkylated peptides inhibited the infection of Madin-Darby
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Figure 4: Oligosaccharide structures of carbohydrate antigens that are mimicked by peptides.

canine kidney cells by influenza virus (Figure 3). Finally, a
pentapeptide fragment from the N-terminal of s2, ARLPR
[s2(1–5)], was found to show the highest inhibitory activity.
A docking study of the interaction between the peptide
s2(1–5) and HA suggested that the peptide is recognized
by the Neu5Ac-Gal receptor-binding pocket (Figure 5(a)).
The figure indicates that three side chains of H3HA (Ser
136, Asn137, and Glu190) have the potential to interact with
the peptide instead of Neu5Ac, and hydrophobic residues
(Leu194, Leu226, and Trp222) are close to the peptide
(Figure 5(b)).

4. CMPs against Oligosaccharide-Binding
Antibodies

4.1. Oligosaccharide-Mimetic Peptides for Inhibition. Glyco-
proteins and glycosphingolipids have unique oligosaccha-
ride structures at their nonreducing termini [1]. Cell-cell

communication is performed by oligosaccharides that are
recognized by families of cell adhesion proteins such as
selectins and sialic acid-binding immunoglobulin- (Ig-) like
lectins (siglecs). Pathogenic viruses, toxins, and bacteria also
recognize oligosaccharide structures [3]. Because an abun-
dant variety of oligosaccharide structures relates to many
carbohydrate-protein interactions, oligosaccharide-mimetic
peptides mediate many kinds of inhibitory activities.

The sialyl-LewisX (sLeX) structure, Neu5Acα2-3Galβ1-
4(Fucα1-3)GlcNAc, is recognized by E-selectin and is a
famous carbohydrate antigen (Figure 4). sLeX-mimetic pep-
tides were identified by selection against E-selectin [29, 30]
and anti-sLeX antibody [36] (Tables 1 and 2). Martens
et al. identified the HITWDQLWNVMN peptide and fur-
ther optimized the sequence as DITWDQLWDLMK using
a mutagenesis library [29]. The binding affinity of the
synthetic peptide for E-selectin was improved 100-fold by
this optimization (IC50 for sLeX binding to E-selectin; from
420 nM to 4 nM). The DITWDQLWDLMK peptide inhibited
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Figure 5: (a) Computer simulation of the interaction between peptide s2(1–5) and HA. A docking pose of the s2(1–5)-HA complex (left)
and schematic diagram of the binding site of HA (right). The peptide is thought to be recognized by the Neu5Ac-Gal receptor-binding
pocket. The peptide is shown as a stick model. Three potential hydrogen bonds (green dotted lines) between H3 and s2(1–5) are proposed
(Glu190-Leu3, Ser136-Pro4, and Asn137-Arg5), which are similar to those in H3-Neu5Ac. Adapted from reference [17]. (b) Schematic
diagram of the binding site of H3HA (Protein Data Bank entry, 1HGG). Neu5Acα2–3Gal-Glc (sialyllactose) is shown in red. Modified
from [18]. (c) Comparison of the polar interactions shown in the oligosaccharide (O-antigen of S. flexneri serotype 2a) and peptide B1
(YLEDWIKYNNQK) complexes of monoclonal antibody F22-4. The peptide and oligosaccharide ligands are distinguished by carbon atoms
shown in cyan and pink, respectively (P, peptide; Rha, rhamnose). The carbon atoms of the F22-4 residues are shown in green (H, heavy
chain; L, light chain). Adapted from [19].

the adhesion of HL-60 cells and reduced neutrophil rolling
on lipopolysaccharide- (LPS-) stimulated human umbilical
vein endothelial cells. Qiu et al. designed WRY-containing
peptides from the sLeX-mimetic peptide sequences, but these
peptides cross-reacted with anti-LewisY antibody. Octameric
multiple antigen peptides (MAPs) were conjugated with
QS-21 adjuvant, which resulted in cytotoxic IgM and IgG
antibodies (Figures 3 and 6). MAPs, in which peptides are
attached to an octabranched amino acid backbone, are used
to generate antibodies against a synthetic peptide, which is
useful for the design of vaccines [94]. Katagihallimath et al.

selected a cyclic CSRLNYLHC peptide against anti-LeX anti-
body [37]. The trisaccharide LeX structure is known as CD15
or SSEA-1, and this structure is expressed in the developing
and adult murine central nervous system. The LeX mimetic
peptide inhibited CD24-induced neurite outgrowth.

Neutral glycosphingolipid Lc4Cer-mimetic peptides
showed unique activity [46] (Table 3). Lc4Cer contains
Galβ1-3GlcNAcβ1-3Galβ1-4Glc tetrasaccharide that is
linked to ceramide (Figure 4), and Jack bean β-galactosidase
digests a nonreducing terminus β-Gal to give Lc3Cer.
The Lc4Cer-mimetic peptides inhibited digestion by
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Table 1: Summary of the selection of CMPs with lectins.

Target lectins
(abbreviations)

Peptide
library

Peptide motif or
representative sequences

(peptide name)

Lectin-binding
carbohydrate structures

References Notes∗

Concanavalin A (ConA) X8, X6 YPY motif Man; Glc
[13, 25,

26]
Inhibition of Man binding

Griffonia simplicifolia
I-B4 isolectin (GS-I-B4)

X6 SSLRGF Galα1-3Gal [27]
Inhibition of RBC
agglutination

Bandeiraea simplicifolia
I-B4 isolectin (BS-I-B4)

XCX15 NCVSPYWCEPLAPSARA Galα1-3Gal [28]
Inhibition of RBC
agglutination

E-selectin

X12 DITWDQLWDLMK
Sialyl LewisX

[Neu5Acα2-3Galβ1-
4(Fucα1–3)GlcNAc]

[29]
Inhibition of cell adhesion,
reduction of neutrophil
rolling, and so forth

X7
IELLQAR [30]

Octameric MAP, inhibition
of HL-60, and B16 cell
adhesion

Concanavalin A (ConA);
Lens culinaris agglutinin
(LCA); Pisum sativum
agglutinin (PSA)

X12, CX7C CNTPLTSRC; CSRILTAAC Man; Glc [31]
Inhibition of Man binding;
docking study

Lectin from Helix
pomatia (HPA)

X12 VQATQSNQHTPRGGGS
O-linked α-GalNAc;

Galβ1-3GalNAc;
α-GlcNAc

[32]

Tetrameric dendrimer,
stimulation of IL-8, and
IL-21 secretion

Lipopolysaccharide
(LPS) binding protein
(LBP); CD14

X12 FHRWPTWPLPSP (MP12) Lipopolysaccharide [33]
Inhibition of LPS-induced
INF-α expression

Influenza virus
hemagglutinin (HA)

X15
ARLPRTMVHPKPAQP
(s2); ARLPR [s2(1–5)]

Neu5Acα2-3Gal [17]
N-stearoyl peptide;
inhibition of flu infection

∗
RBC: red blood cell; IL: interleukin; INF: interferon.

β-galactosidase at a high concentration of enzyme, whereas
the peptides enhanced the digestion of Lc4Cer at lower
concentration of enzyme. This unique activity of the
peptides was also shown in the digestion of nLc4Cer. This
group also identified WHW-containing peptides such
as WHWRHRIPLQLAAGR by selection with anti-GD1α

antibody [47]. The ganglioside GD1α is cell adhesion
molecule of murine metastatic large cell lymphoma
(RAW117-H10 cells) that binds to endothelial cells.
GD1α-mimetic peptides inhibited the adhesion between
RAW117-H10 cells and hepatic sinusoidal endothelial (HSE)
cells. Furthermore, the metastasis of RAW117-H10 cells to
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lung and spleen was completely inhibited by the intravenous
injection of the peptide. Subsequently, WHW was found
to be a minimal sequence that mimics the GD1α structure
[48]. To modify the liposome surface with the WHW
peptide, the WHW tripeptide was conjugated to alkyl groups
such as palmitoyl or stearoyl groups (Figure 3). Coating
of liposomes with peptides is often performed in drug
delivery systems. The WHW-modified liposomes inhibited
the adhesion between RAW117-H10 cells and HSE cells.

Tryptophan/tyrosine-containing tripeptides (YPY for
ConA, WRY for sLeX(Y), and WHW for GD1α) may com-
prise a key sequence that mimics oligosaccharide struc-
ture. Although Gb3 (Galα1-4Galβ1-4Glc trisaccharide) is
dissimilar to the disaccharide (Galβ1-3GlcNAcβ) structure
of Lc4 at the nonreducing terminus, Miura et al. identified
a WHW-containing peptide (WHWTWLSEY) that mimics
the Gb3 structure [60]. Gb3 is well known as a receptor
for Shiga toxin (Stx). The Gb3-mimetic peptide showed
neutralization activity against Stxs (Stx-1 and Stx-2) in a
HeLa cell cytotoxicity assay. The binding affinity of the Gb3-
mimetic peptide for Stx-1 was also investigated by surface
plasmon resonance analysis (Kd = 1.4 nM).

4.2. Oligosaccharide-Mimetic Peptides for Vaccination. The
immunogenicity of oligosaccharides is weak because
oligosaccharides are ubiquitous components of cell
membranes in tissues throughout the human body. When
antioligosaccharide antibodies are generated, they attack
these tissues and cause the risk of autoimmune disease.
For example, lipopolysaccharides of Campylobacter jejuni
isolated from GBS patients contain ganglioside-like epitopes
such as GM1, GM1b, GD1a, and GalNAc-GDla, and these
epitopes induce Guillain-Barre syndrome [95]. However,
this low immunogenicity interferes with the preparation
of antioligosaccharide antibodies that are useful for the
investigation of glycoconjugate function.

To improve the binding affinity, specificity and cyto-
toxicity of antibodies, oligosaccharide-mimetic peptides are
applied as peptide mimotopes of carbohydrate antigens for
vaccination (Figure 6). Oligosaccharide-mimetic peptides
were identified by selection against LeX(Y) [34, 35, 37],
sLeX(Y) [36, 50], GD2 [36, 50–56], GD3 [36, 50, 59],
lipooligosaccharide (LOS) [38, 39], β-1,2-oligomannoside
[40], N-acetylglucosaminyl-β1,4-N-acetylmuramyl-alanyl-
d-isoglutamine (GMDP) [43], and high-mannose oligosac-
charide (Man9GlcNAc2 for HIV-1 gp120) [45]. The
oligosaccharide-mimetic peptides were chemically synthe-
sized and conjugated with adjuvant. To enhance the
immunogenicity of the peptides, MAPs were prepared and
resulted in dimeric, tetrameric, and octameric dendrimers
(Figure 3). The peptide-adjuvant conjugates were vaccinated,
with the adjuvants used being keyhole limpet hemocyanin
(KLH) [39, 40, 53, 54], QS-21 [36, 50, 54], diphtheria
toxoid (DT) [38], ovalbumin (OVA) [43], or very small size
proteoliposomes (VSSP) [59] (Figure 6, Tables 2 and 3). In
some cases, DNA vaccination was also performed [55, 56].
The CMP-induced antibodies are able to bind to peptide
mimotopes and carbohydrate antigens.

5. CMPs against Polysaccharide-Binding
Antibodies

Most polysaccharide-mimetic peptides to be applied for
vaccination are identified as peptide mimotopes of car-
bohydrate antigens (Figure 6). Capsular polysaccharides of
microorganisms are carbohydrate antigens, and it is known
that these polysaccharides cause meningoencephalitis in
immunocompromised patients, particularly those with AIDS
(polysaccharide from Cryptococcus neoformans), pneumonia
and bacteremia (Streptococcus pneumoniae), bacterial menin-
gitis (Neisseria meningitidis), cholera (Vibrio cholerae), tuber-
culosis (Mycobacterium tuberculosis), and so forth (Table 4).
These peptide mimotopes are potential antigens for safe
vaccination and are expected to produce highly cytotoxic
antibodies.

The typical methodology for vaccination uses a CMP-
conjugated adjuvant. Valadon et al. identified CMPs that
bind to anticryptococcal polysaccharide (glucuronoxylo-
mannan, GXM) monoclonal antibody 2H1 [64]. The CMPs
shared four motifs, for example, (E)TPXWM/LM/L and
W/YXWM/LYE, and the dodecapeptide, GLQYTPSWMLVG
(PA1) was found to bind 2H1 with a Kd of 295 nM [64].
The three-dimensional structure of 2H1 has been solved in
a complex with PA1 [65]. The peptide PA1 was improved
by selection from a PA1-based sublibrary, which identified
the peptide P206-1 (FGGETFTPDWMMEVAIDNE) [66].
The affinity of peptide 206-1 for 2H1 was 80-fold higher
than that of PA1 (Kd of 3.7 nM). Immunization of mice
with P206-1-tetanus toxoid (TT), but not PA1 or P601E
(DGASYSWMYEA), induced an anti-GXM response [66,
67].

Although antibodies against the capsular polysaccharide
of the same species (e.g., Neisseria meningitidis serogroup B)
were used, the CMPs identified were different and shared
no consensus motif [73, 75–80] (Table 4). This may be due
to the different antibodies used (HmenB3, 9-2-L3, 30H12,
Seam3, or 13D9), different primary peptide libraries (CX6C,
X9, CX9C, X12, or X15), or different selection conditions.
Harris et al. also concluded that the CMPs identified by
each antibody possessed distinct consensus motifs [72]. A
variety of peptide-conjugating adjuvants such as KLH, TT,
BSA, OVA, proteasome, and thyroglobulin have been used. In
some cases, phage particles were directly used for vaccination
[80, 86, 88], and a high level of the IgG2a subtype in the
response against CMPs was shown [80].

Theillet et al. clarified the structural mimicry of O-
antigen oligosaccharide by CMPs [19]. Figure 5(c) shows
a structural representation of the antibody-peptide com-
plex in which the sugar chains were replaced by amino
acids. Glc and GlcNAc were replaced by Tyr or Asp,
and one or more hydrogen bonds are indicated. On
the other hand, high-mannose oligosaccharide-mimic pep-
tide (2G12-1 peptide) binds to a neighboring pocket
of the oligosaccharide (Table 2) [45]. The binding site
for the DVFYPYPYASGS peptide, which was selected
against ConA, was different from the mannose/trimannose-
binding site [26]. However, the peptide inhibits α-
mannopyranoside binding to ConA [25], indicating that this
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peptide shows functional mimicry rather than structural
mimicry.

6. Conclusion

Anticarbohydrate antibodies are necessary for clarifying
the biological functions of carbohydrates, the detection of
carbohydrates during etiological diagnosis, and therapy for
carbohydrate-related diseases [7, 96]. Due to the difficulty in
obtaining homogeneous glycoconjugates and carbohydrate-
binding proteins, phage display libraries have been applied
for the identification of peptide mimotopes. In this paper,
the selection of CMPs was classified according to the types
of target carbohydrates. The first selection was performed
against lectins, and then the selections were performed
against anticarbohydrate antibodies. To apply the peptide
mimotopes for vaccination, this methodology is becoming
more widespread.
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in, Guillain-Barré and Fisher syndromes,” Lancet Infectious
Diseases, vol. 1, no. 1, pp. 29–37, 2001.

[96] T. Feizi, “Demonstration by monoclonal antibodies that
carbohydrate structures of glycoproteins and glycolipids are
onco-developmental antigens,” Nature, vol. 314, no. 6006, pp.
53–57, 1985.


	Introduction
	Peptide Selection from Phage DisplayLibraries
	CMPs against Lectins
	Monosaccharide-Mimetic Peptides
	Disaccharide-Mimetic Peptides

	CMPs against Oligosaccharide-BindingAntibodies
	Oligosaccharide-Mimetic Peptides for Inhibition
	Oligosaccharide-Mimetic Peptides for Vaccination

	CMPs against Polysaccharide-BindingAntibodies
	Conclusion
	Acknowledgment
	References

