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A B S T R A C T

Celiac disease poses a significant health challenge for individuals consuming gluten-containing foods. While the
availability of gluten-free products has increased, there is still a need for therapeutic treatments. The advance-
ment of computational drug design, particularly using bio-cheminformatics-oriented machine learning, offers
promising avenues for developing such therapies. One promising target is Transglutaminase 2 (TG2), a protein
involved in the autoimmune response triggered by gluten consumption. In this study, we utilized data from
approximately 1100 TG2 inhibition assays to develop ligand-based molecular screening techniques using
ensemble machine-learning models and extensive molecular feature libraries. Various classifiers, including tree-
based methods, artificial neural networks, and graph neural networks, were evaluated to identify primary sys-
tems for predictive analysis and feature significance assessment. Boosting ensembles of perceptron deep learning
and low-depth random forest weak learners emerged as the most effective, achieving over 90 % accuracy,
significantly outperforming a baseline of 64 %. Key features, such as the presence of a terminal Michael acceptor
group and a sulfonamide group, were identified as important for activity. Additionally, a regression model was
created to rank active compounds. We developed a web application, Celiac Informatics (https://celiac-informat
ics-v1–2b0a85e75868.herokuapp.com), to facilitate the screening of potential therapeutic molecules for celiac
disease. The web app also provides drug-likeness reports, supporting the development of novel drugs.

1. Introduction

Celiac disease is a prominent gluten-related disease that is prevalent
in about 1 % of the world’s population [1]. However, the pathogenesis
and the role of a target protein in these diseases were not understood
until advanced in vitro methods for target discovery and cell culture
analysis emerged [2]. Samuel Gee constructed the first clinical
description of celiac disease in 1887, detailed dietary treatment, and
described the best method of managing patient symptoms. Willem Carel

Dicke [3] developed the first formal wheat-free diet in the 1940s [4].
Thereafter, the focus has shifted to gluten as a key factor in pathogen-
esis, leading to diets excluding wheat, barley, and rye. The gluten-free
diet (GFD) became the main treatment for celiac patients, but its
long-term sustainability is questioned. Strict adherence requires vigi-
lance, and the prevalence of gluten in essential foods makes it even more
challenging. Many of those on GFDs experience a decline in well-being,
with two-thirds not fully recovering. 80 % of GFD patients also end up
mistakenly consuming gluten when on the diet and the diet itself has

Abbreviations: TG2, Transglutaminase 2; TG3, Transglutaminase 3; GFD, Gluten-free diet; HLA-DQ2, Human leukocyte antigen DQ2; QSAR, Quantitative
structure-activity relationship; LBDD, Ligand-based drug design; IC50, Half-maximal inhibitory concentration; SMILES, Simplified molecular input line entry system;
AdaBoost, Adaptive Boosting; XGBoost, Extreme Gradient Boosting; LightGBM, Light Gradient Boosting Machine; MLP, Multi-layer-perceptron; NumSaturatedRings,
Number of saturated rings; NumSaturatedHeteroycles, Number of saturated heterocycles; SMR_VSA6, substitution matrix representation of van der Waals surface
area (VSA); VSA_Estate3, sum of VSA values for a certain E-state (Electrotopological state); BCUT2D_CHGHI, highest BCUT (derived from Burden matrix) value
considering atomic charges; SlogP_VSA2, highest BCUT (derived from Burden matrix) value considering atomic charges.; BCUT2D_CHGLO, lowest BCUT (derived
from Burden matrix) value considering atomic charges; PEOE_VSA12, partial Equalization of Orbital Electronegativities effect on Van der Waals Surface Area;
BCUT2D_MRHI, highest BCUT value considering molecular refractivity (MR), representing the polarizability of molecule; PEOE_VSA8, partial Equalization of Orbital
Electronegativities effect on Van der Waals Surface Area.; SVM, Support Vector Machine.
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proven to be quite ineffective when reaching the phase of refractory
celiac disease [5]. Therefore, pharmacological treatment is essential for
managing disease progression and helping patients obtain a healthier
lifestyle, both physically and psychologically.

Studies on the human leukocyte antigen DQ2 (HLA-DQ2) gene led to
the discovery of the role of tissue transglutaminases [6] in gluten-related
diseases. The autoimmune response that leads to the symptoms experi-
enced by celiac patients is primarily driven by Transglutaminase 2
(TG2), which catalyzes the cross-linking or deamidation of glutamine
residues in gluten. Inhibition studies in search for novel drug-like mol-
ecules with high binding affinity to TG2 have been conducted using the
traditional methods [7] of in vitro screening [8] through preclinical and
clinical trials. Issues have arisen with targeting TG2 due to its important
role in cell function processes [9]. Furthermore, the cost and time
required for traditional laboratory techniques have compounded the
challenges of conducting trials on promising molecules that inhibit the
catalytic mechanism. It is noted that TG3 is also a novel target in
dermatitis herpetiformis, an autoimmune skin condition associated with
celiac disease [10].

Pharmaceutical companies have developed potential treatments by
targeting inhibition with small molecules, gluten-breaking enzymes,
octapeptides, and monoclonal antibodies [11]. However, many of these
candidates were discontinued during clinical trials due to limited subject
availability, insufficient protection, or lack of potential for optimized
treatment [12]. Specific candidates designed for direct inhibition of TG2
have proven particularly promising in pre-clinical trials as they target
the pathogenic process of the disease [13]. One TG2 inhibitor,
GSK3915393, designed by GlaxoSmithKline [14], was discontinued in
phase 1 of clinical trials after the decision to drop studies on celiac.
Nevertheless, inhibition of the TG2 target has continued as the most
widespread method for pharmacologists, highlighting the need to
develop drugs against the protein.

Computational drug design has led the way in accelerating drug
screening, utilizing various analytical frameworks to train machine
learning algorithms. Machine learning has been widely used for quan-
titative structure-activity relationship (QSAR) [15] modeling, a
computational approach that relates molecular structure and activity
using supervised statistical methods. The bioactivity of a molecule can
be measured by its ability to inhibit (categorical) or its inhibitory con-
centration (numerical). Ensemble learning and deep learning have been
at the forefront of this shift, often being combined to create algorithms
that leverage the strengths of both approaches. Certain weighted
ensemble machine learning models like gradient and adaptive boosting
classifiers can possibly prove promising when working with smaller
bioassay datasets. These models can be implemented with weak
learners, classifiers that generally perform slightly better than random
guessing, to optimize speed while still achieving high accuracy [16,17].

In this study, we will use machine-learning approaches to facilitate
the hit identification phase (Fig. 1A). Two machine-learning models will
be developed to predict the bioactivity and potency of a new molecular
candidate for inhibiting TG2 (Fig. 1B). Molecular fingerprints and de-
scriptors will be extracted as features for the training data. The bioac-
tivity model will be a binary classifier trained on a wide variety of active,
inactive, and inconclusive molecules from lab bioassay data while an
IC50 ranking model will be trained on molecules below a certain po-
tency to obtain an algorithm that can be used to compare two candidates
based on a ranking correlation coefficient. Feature importance analysis
will be conducted to provide insight into the molecular features that
either influence bioactivity positively or negatively. Researchers can
prioritize the most promising candidates by effectively utilizingmachine
learning for activity prediction and potency estimation, leading to a
faster and more efficient drug development process. Ultimately, these
models will play a crucial role in designing more targeted and effective
therapeutics during lead optimization and clinical trials, benefiting pa-
tients with gluten-related diseases.

2. Methods

2.1. Data preprocessing

Inhibitory data for transglutaminase 2 was obtained from the Pub-
Chem NCBI database’s bioassay-derived bioactivity reports on Protein-
glutamine gamma-glutamyltransferase 2 [18] containing 1130 compounds
(as of August 2023), including duplicates (See Supporting Information).
In addition to identifiers and assay descriptions, each molecule con-
tained fields pertaining to its performance, including potency values, a
three-class uncertainty metric, and its classification. The ligands were
listed as either active, inactive, unspecified, or ’’inconclusive’’. Around
55 % of molecules were active, while the majority of the remaining data
was unspecified. Duplicates were removed based on the PubChem CID
identifier, reducing the working dataset to 672 molecules. By slicing the
active and inconclusive datasets based on the IC50 potency metric
provided for these candidates, 336 molecules were selected for classi-
fication model development. Active molecules were sliced to only allow
for molecules under a certain IC50 value while inconclusive molecules
were sliced to accommodate those that had potencies closer to the
inactive molecules in the original dataset. Each qualifying class was
graphically analyzed via a histogram of the frequency of half-maximal
inhibitory concentrations (IC50 [μM]) values within each subinterval.

2.2. Molecular descriptor & fingerprint calculation

Structure features were extracted from RDKit [19] fingerprint and
descriptor modules to perform QSAR modeling. To obtain the SMILES

Fig. 1. A. Machine learned-based hit identification workflow pipeline. Data preprocessing, model training, and post-evaluation procedures B. Transglutaminase 2
structure and its catalytic triad responsible for the protein’s significant process and facilitation.
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representations of all molecules in the dataset, the PubChem Rest API
(PubChempy) was utilized. Four molecular fingerprint libraries pro-
vided by RDKit were tested (Avalon, MACCS Keys, Morgan, RDKit) [20]
on various general binary classifiers and sequential artificial neural
network models. The RDKit Chem, AllChem Avalon, and rdMolDesrip-
tors modules provided the functions necessary for swiftly calculating
these fingerprints.The use of Avalon and RDKit fingerprints had the best
testing set performances but RDKit distinguished itself in providing se-
lective representations of the substructures associated with each
fingerprint bit vector allowing for further investigation of feature
importance. 457 fingerprints and 210 descriptors were calculated and
added to the training set. Feature elimination on the generated finger-
prints was conducted by elimination of fingerprints with variance
threshold ≤ 0.1 (Eq. 1) and groups of fingerprints with Pearson corre-
lation coefficient ≥ 0.9 (Eq.2) before the final dataset was normalized
with a standard scaler (Eq. 3).

σ2 = 1
n
∑n

i=1
(xi − x)2 (1)

r =
Σ(xi − x)(yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(xi − x)2Σ(yi − y)2
√ (2)

Xʹ
i =

Xi − μ
Xstd

(3)

x: average value of x

xi: ith value of x

Xstd: standard deviation of X

2.3. Tanimoto similarity analysis

To evaluate the training potential of the biological assay and the
complex diversity of molecules in the dataset, a comprehensive simi-
larity analysis was performed on all molecule cross-relationships using
the fingerprint bit vector-based Tanimoto chemical similarity coefficient
[21] (Eq. 4), a widely used metric in the field of cheminformatics. The
coefficient determines how similar two molecules A and B are based on
their molecular fingerprint bit vectors. For instance, a Tanimoto coef-
ficient of 0.85 indicates that the molecules are 85 % similar in structure.
RDKit’s DataStructs module was used to acquire tools for similarity
calculations. Typically, the number of clusters of highly similar mole-
cules should be limited for training to ensure a potential model can
generalize on a large variety of inputs. The results were visualized, and it
was determined that the dataset was sufficiently chemically diverse to
train an efficient supervised classification model.

TA,B =

∑n
j=1xjAxjB

∑n
j=1

(
xjA

)2
+
∑n

j=1
(
xjB

)2
−
∑n

j=1xjAxjB
(4)

2.4. QSAR ensemble model architecture

Binary classifiers from scikit-learn 1.2.2 encapsulated into the lazy
predict classifier and also external boosting algorithms were evaluated
on the initial testing set to obtain a highly tunable model that can be
optimized with hyperparameter tuning. Some of the boosting packages,
like CatBoost 1.2.2 & XGBoost 2.0.3, came from external libraries, but
the highest-performing boosting model, AdaBoost (adaptive boosting),
was chosen for hyperparameter optimization. After testing numerous
weak learners for the adaptive boosting algorithm, including tree-based
methods and simple deep learning models, a multi-layer-perceptron
deep learning adaptive boosting ensemble and a low-depth random
forest ensemble were built, tuned, and finalized as deployable models.

For comparison, Chemprop’s message-passing graph neural networks
were trained and tuned as well. 5-fold cross-validations were performed
over 50 trials for each type of model. The imbalanced dataset required
that a stratified split be performed. Classification performance metrics
[22], including Precision, Recall, F1, Accuracy, MCC, and AUC-ROC
(Eqs. 5–9), were recorded and visualized.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 =
2(Precision)(Recall)
Precision+ Recall

(7)

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

MCC =
TPTN − FPFN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (9)

TP : True Positives

TN : True Negatives

FP : False Positives

FN : False Negatives

2.5. Graphical feature importance analysis

A random forest was utilized to determine important fingerprints and
descriptors responsible for predicted bioactivity. Pair plots and corre-
lation matrices, along with 3D plots, were used to evaluate QSAR ele-
ments. The substructures represented by the top fingerprint bit vectors
and descriptors with the highest feature importance were analyzed for
structure-descriptor-activity correlations. Each fingerprint’s respective
substructure was analyzed to establish molecular properties necessary
for TG2 inhibition.

2.6. Spearman coefficient IC50 ranking study

To allow for comparison between two potential candidates for
further study, a model for the prediction of IC50 of molecules with
prioritization on the correct ranking of candidates. The Spearman co-
efficient ranking coefficient (Eq. 10) was chosen to evaluate the per-
formance of testing set predictions. A new training set was constructed
from the original unbalanced data set using molecules with potency ≤

10 µM to generalize the model on primarily active molecules. A 0.2
variance threshold, low-depth random forest feature importance, and
recursive feature elimination were used to cut features from the dataset
to 200. Models that exist in the regressor package of lazypredict (lazy-
regressor) were utilized to train scikit-learn models and external
boosting algorithms were trained. The metrics recorded were the
Spearman rank correlation coefficient (Eq. 10), root mean squared error
(Eq. 11), mean absolute error (Eq. 12), and the coefficient of determi-
nation (R-squared) (Eq. 13).

ρ = 1 −
6Σd2i

n(n2 − 1)
(10)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n

i=1

(
yʹ
i − yi

)2

n

√

(11)

MAE =
∑n

i=1

⃒
⃒yʹ

i − yi
⃒
⃒

n
(12)
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R2 = 1 −
Σ
(
yʹ
i − yi

)2

Σ(yi − y)2
(13)

2.7. Web app deployment

Using a Flask backend and HTML/CSS/JS frontend, a web app (Ce-
liac Informatics) was constructed to aid the classification of potential
TG2 inhibitors, and the features associated with novel potency. The app
was built to take the input of a molecule in its SMILES format and output
the following four analytics: the predicted bioactivity of the molecule
against TG2, a summary of its important fingerprints of descriptors, a
short evaluation of its drug-likeness with five of the most conventionally
used rules, and the relative IC50 ranking for active molecules. For the
drug-likeness score, Lipinski’s rule of 5 states that oral drugs should have
less than or equal to 5 hydrogen bond donors [23], a molecular weight
less than or equal to 500 Da, a logP less than or equal to 5, and less than
or equal to 10 hydrogen bond donors. Ghose requires a molecular weight
and logP in the inclusive domains of [160,480] Da and [− 0.4, 5.6] Da,
respectively. It also allows for a relative molecular mass in [40,130]
inclusively and no more than 70 atoms and no less than 20 atoms in the
molecule [24]. Egan’s rule is more flexible with concrete structural
properties and only requires a logP less than or equal to 5.88 and a to-
pological polar surface area less than or equal to 131.6 [25]. Muegge’s
rule [26] is the most conservative, with requirements in nine categories.
Its molecular weight and logP ranges are [200,600] and [− 2, 5],
respectively. In addition to requiring a topological surface area less than
or equal to 150 and no more than 7 rings, the molecule must have at
least 5 carbon atoms and 2 heteroatoms as well no more than 15
rotatable bonds. It should also have less than or equal to 10 hydrogen
bond acceptors and 5 hydrogen bond donors. Heroku was used to deploy
a web service for the application: https://celiac-informatics-v1–2b0a

85e75868.herokuapp.com.

3. Results & discussion

3.1. IC50-based data slicing & Tanimoto similarity evaluation

The goal of this exploratory data analysis was to obtain a moderately
balanced training set by evaluating the potencies of molecules by the
four classes: active, inactive, unspecified, and inconclusive. The incon-
clusive class was deemed unfit for this analysis due to the lack of
recorded potency values and error metrics in their respective lab assays.
Out of 424 potential active inhibitors and 177 unspecified inactive
candidates, we performed slicing based on their IC50 values. Molecules
with an IC50 ≤ 1 µM are typically the most potent and suitable for
further drug development [27]. The active dataset was created by
applying an IC50 threshold of less than 0.6 µM, based on their distri-
bution, as illustrated in Fig. 2A. This refinement resulted in approxi-
mately 50 % of all active molecules being selected. As a result, 216
active molecules were selected, along with 75 unspecified molecules
(see Fig. 2B). These unspecified molecules were combined with 45
documented inactive molecules to create a training set comprising 120
inactive molecules. This allowed for a desirable ratio between the active
and inactive classes, providing a baseline performance of approximately
0.64 accuracy and 0.50 AUC for model training. To ensure the potential
model can be trained to make generalized predictions on various sam-
ples from molecular databases, the molecular similarity was analyzed
using the Tanimoto coefficient (Fig. 2C). The generated molecular
fingerprint bit-vector strings of each molecule were quantitatively
compared to generate a heatmap to visualize the prominence of high
similarity clusters. The dataset was determined to be sufficiently diverse
and could be split using stratification.

Fig. 2. Histograms of IC50 values of the candidate molecules against TG2. A. The active candidates graphed in the main figure range from 0 to 5 μM. The inset
illustrates a histogram of molecule potency < 1.0 μM. Most active molecules lie in the range displayed by the inset, and within this domain, 0.6 µM is a suitable place
to slice. B. Unspecified candidates range from 10 to 1000 μM (only those < 300 μM are shown in the figure; the unspecified set was sliced at this point). C. Tanimoto
coefficient molecular similarity distribution.
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3.2. The performance of MLP & low-depth random forest boosting
ensembles

The top-performing models using the default hyperparameters on an
initial testing set are shown in Table 1 (the full list can be found in
Table S1). The training-to-testing set ratio was 75:25. Boosting models
like AdaBoost and LightGBM outperformed tree classifiers, support
vector machines, and other sophisticated methods for the initial task of
finding an algorithm for hyperparameter tuning. AdaBoost was imple-
mented with the conventional stump-based decision tree; it performed
with an average accuracy of 96 % on the initial testing set, as a result of
its effective use of a chain of weak learners and weight resampling. The
use of weak learners in ensemble learning methods and its self-
correcting philosophy were instrumental to its performance (Fig. 3)
[28,29].

Bioactive molecules possess synergistic features that relate to their
binding affinity and interactions with target proteins. The base learner
in a boosting ensemble is designed to use a chain of weak estimators,
hence the term "weak learner." A stump is a version of a weak learner
that predicts outcomes based on a single feature. However, a stump
estimator can be extended into a small, low-depth tree or even a forest of
such trees, known as a low-depth random forest. This method can effi-
ciently predict bioactivity by leveraging numerous fingerprint-
descriptor relationships, making it more effective than using a simple
stump alone. Additionally, a multi-layer perceptron can serve as a deep
learning weak learner if it is constrained to a few hidden layers, thus
preserving its intended weakness and maintaining quick estimator per-
formance. A base learner algorithm can be integrated as the base esti-
mator into the adaptive boosting pipeline (Fig. 3).

Two models were set up, one with a random forest base learner, and
another with a multi-layer-perceptron base learner. Their hyper-
parameters were tuned using Bayesian optimization based-package
Optuna [31,32] on a few of the parameters of the base learner as well
as some general parameters from the adaptive boosting algorithm itself.
For example, the random forest max depth and minimum sample split
were the tuned hyperparameters. For the multi-layer perceptron with
one hidden layer, the hyperparameters tuned were: the number of hid-
den layer neurons, the activation function, the initial learning rate, and
the maximum number of iterations. The adaptive boosting-specific pa-
rameters that were tuned in the methods were the number of estimators
and the learning rate. The parameters for each model that optimized the
accuracy were selected for final evaluation.

The final adaptive boosting models were constructed and evaluated
using stratified 5-fold cross-validation to determine whether they could
maintain their performance when trained on 5 different subsets of the
original cleaned dataset. A random forest [33] with a maximum depth of
3 and 3 minimum sample splits was constructed as the base estimator in
one adaptive boosting method which had 442 estimators and a learning
rate of about 0.996. It performed at an average of ~92 % accuracy
during the sample 5-fold cross-validation (Table 2). Furthermore, a
multi-layer-perceptron (MLP) [34] was also implemented as a weak
learner for the second adaptive boostingmethod and it had the following
parameters: one hidden layer containing 50 neurons, a relu activation
function, an initial learning rate of 0.001, and 1000 maximum itera-
tions. The adaptive boosting pipeline had 279 estimators and a learning
rate of about 0.0230. Its backpropagation system, along with adaptive
boosting weight resampling, allowed for the increase in performance on
initially incorrectly predicted samples; its cross-validation average

accuracy was ~93 % (Table 2). For comparison, Chemprop’s
message-passing graph neural networks [35,36] were also
cross-validated and achieved an accuracy of ~89 %, exhibiting long
testing times and difficulty within its trials (See Table S2 for full results).
The multi-layer perceptron adaptive boosting ensemble was selected as
the final model for the web app.

3.3. Individual molecular fingerprint and descriptor importance analysis
yields structural significance

Through feature importance analysis from a random forest estimator
trained on a comprehensive dataset of 336 molecules, we identified
essential molecular descriptors & fingerprints for bioactivity. These
descriptors encompassed the count of saturated heterocycles, saturated
rings, and properties associated with Van der Waals surface area con-
tributions, surface molecular recognition, orbital electronegativity, and
charge distribution. Due to the distinct nature and dependencies of each
descriptor, it was essential to identify specific substructures highlighted
by RDKit fingerprints that were prevalent in active molecules. Most
essential fingerprints were in the RDKit fingerprint domain of 300–500
(See Fig. 4A & 4C); 6 were identified by the feature importance algo-
rithm as potential drivers in activity classification. The frequency of
specific substructures, represented by the nine fingerprints with the
highest importance, was analyzed across all molecules in the dataset.
This analysis helped identify whether each fingerprint was more
prominent in active or inactive molecules, thereby determining their
respective associations. Furthermore, the most important descriptors are
illustrated in Fig. 4D, while the correlation between these descriptors
and bioactivity is summarized in Fig. 4B.

The fingerprint with the highest feature importance, fingerprint 495
(see Fig. 4C), is the Michael acceptor group (see Fig. 5A). Michael
acceptor groups are key components in many covalent inhibitor drugs
[37]. They facilitate the Michael addition reaction, which is a key
chemical process that occurs when the molecule binds to its target. This
reaction involves the addition of a nucleophile to an α,β-unsaturated
carbonyl compound, resulting in the formation of a new covalent bond.
The presence of a Michael acceptor group in a terminal position en-
hances its ability to form strong interactions with biological targets via a
Michael addition reaction [38], thereby increasing its binding affinity
and bioactivity. Therefore, fingerprint 495 could be considered an
essential component of a molecule that could inhibit TG2. There are 180
active molecules that contain fingerprint 495 while only 31 inactive
molecules have it (Fig. 4A). We found that the position (terminal or
non-terminal) of the Michael acceptor group could possibly explain the
difference between some active and inactive molecules. For example,
Fig. 5A illustrates an active molecule featuring a Michael acceptor group
in a terminal position. In contrast, Fig. 5B shows an inactive molecule
where the Michael acceptor group is in a non-terminal position. Both
molecules exhibit fingerprint 495; however, the inactive molecule
demonstrates insufficient binding affinity due to the non-terminal po-
sition of the Michael acceptor group. Notably, 14 out of the 31 inactive
molecules with fingerprint 495 either have a slightly different sub-
structure or feature aMichael acceptor in a non-terminal position, which
may affect their binding efficacy.

3.4. Multi-feature correlation and synergism analysis

The fingerprint and descriptor features could have synergistic effects
on bioavailability. The first important relationship is between the
number of saturated rings and heterocycles (Fig. 6A). Most active mol-
ecules had one saturated heterocycle and one saturated ring, and most of
them had the same substructure. Adding more rings does not necessarily
decrease the molecule’s bioactivity as shown in the plot. In addition, the
data supports that adding more saturated rings when maintaining a
single heterocycle can maintain bioactivity. However, drug-likeness
must also be considered when designing a molecule, for instance, the

Table 1
Top performing bioactivity classification algorithm on the initial testing set.

Model Accuracy AUC F1 Score Precision MCC

Stump-Based Adaptive
Boosting Ensemble
(AdaBoost)

0.96 0.96 0.95 0.96 0.92
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maximum seven-ring requirement of Muegge’s rule. The structure-
activity relationship can be further investigated using a pair plot.
From Fig. 6B, there is a certain range (50− 250) for the descriptor
SlogP_VSA2 that exhibits a higher chance for a molecule to be bioactive
when the number of heterocycles is ≥ 1.

Some molecular fingerprints tokenize varieties of substructures that
influence the values of certain count-based properties like the number of
recorded saturated rings and heterocycles, and also chemical property
descriptors [39]. BCUT2D partial charge descriptors highly influence the
potential for stronger intermolecular forces between the molecule and
the binding site [40]. By observing pair plots of these relationships,
generally, a molecule is more likely to be active if it has more hetero-
cycles and a lower BCUT2D_CHGLO or higher BCUT2D_CHGHI value
(Fig. 6C-D). BCUT2D_CHGLO and BCUT2D_CHGHI have a negative
correlation (− 0.52) (Fig. 4B).

QSAR analysis can be further enhanced by searching for fingerprints

that have some relationship with structural and/or chemical property
descriptors. From Fig. 7A-B, it can be observed that the presence of
pivotal molecular fingerprints, 193 and 263, combined with more
negative BCUT2D_CHGLO or more positive BCUT2D_CHGHI and the
number of saturated heterocycles yields more active molecules. This
may result from the fact that many of the substructures represented by
these fingerprints contain a heteroatom that is part of a saturated het-
erocycle. For example, piperazine rings, which are commonly present as
substructures in small pharmaceutical compounds (Fig. 8A), contain two
nitrogen atoms in a six-membered cyclic structure. The ring contains
solely single bonds giving it the “saturated” characterization, but it also
has strong pharmacokinetics properties specifically in the fields of oral
bioavailability and solubility. Particularly, when a nitrogen atom in
these rings is connected to another non-carbon atom like sulfur, it can
have more substantial medicinal effects [41]. The substructure repre-
sented by fingerprint 193 and 263 in Fig. 8A is a sulfenamide group and
the active molecule contains the oxidized form (sulfonamide) [42]. This
can explain why fingerprints like 193 or 263 represent some sub-
structures that are not necessarily heterocycles but merely contain a
heteroatom bonded to a substantial element or functional group. A
single molecular fingerprint bit does not need to represent a unique
substructure for all molecules, but it can constitute a broad structural
property present in all molecules. Furthermore, when combined with
another important structural descriptor like the number of saturated

Fig. 3. The architecture of the final adaptive boosting ensemble algorithm with a multi-layer perceptron weak learner [30]. This weak learner is the backbone of the
iterative algorithm, which is trained and tested successively throughout the run. Based on the performance of a particular estimator in the chain, new weights are
assigned to improve predictions on incorrect prediction samples. The learner error and the new weights must be calculated on each iteration. The final tuned model
contains a chain of estimators, and a weighted average of the prediction is calculated to determine the final classification.

Table 2
Final Optimized Model Performance (5-Fold Cross Validation over 50 Trials).

Model Accuracy AUC F1 Score

Multi-Layer Perceptron
Adaptive Boosting Ensemble

0.93 ± 0.02 0.91 ± 0.02 0.95 ± 0.02

DummyClassifier (Baseline) 0.64 0.50 0.50
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Fig. 4. A. Frequency distribution of the nine highest feature importance RDKit molecular fingerprints in classified molecules of the dataset. The fingerprints
represent certain substructures of a molecule that could be indicative of properties that support bioactivity B. Correlation matrix of ten highest feature importance
molecular descriptors (1. NumSaturatedRings, 2. NumSaturatedHeterocycles, 3. SMR_VSA6, 4. VSA_Estate, 5. BCUT2D_CHGHI, 6. SlogP_VSA2, 7. BCUT2D_CHGLO,
8. PEOE_VSA12, 9. BCUT2D_MRHI, 10. PEOE_VSA8) C-D. Visualized feature importance rankings for fingerprints and descriptors.

Fig. 5. A. An active molecule (2-[[(E,2S)− 1-[[(2S)− 1-[(2S)− 2-[[(1S)− 2-[[(1S)− 2-amino-1-cyclohexyl-2-oxoethyl]amino]− 1-cyclohexyl-2-oxoethyl]carbamoyl]− 4-
oxopyrrolidin-1-yl]− 3,3-dimethyl-1-oxobutan-2-yl]amino]− 7-methoxy-1,7-dioxohept-5-en-2-yl]carbamoyl]− 4-nitrobenzoic acid) with a Michael acceptor (495) in
a terminal position. B. An inactive molecule (Dihydroisoxazole, 2b) with a Michael acceptor (495) in a non-terminal position.
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Fig. 6. A. The frequency of the number of saturated heterocycles and rings in active & inactive molecules. B. Activity pair plots of the number of saturated het-
erocycles and SlogP_VSA2. C-D. Activity pair plots of the number of saturated heterocycles and two BCUT2D descriptors.

Fig. 7. Each axis represents one of the features in the model: a molecular fingerprint, which encodes the presence or absence of particular substructures; a structural
descriptor, which captures geometric and topological properties; a property descriptor, which reflects physicochemical properties. By plotting molecules in this 3D
space, clustering patterns can be observed to distinguish active molecules from inactive ones. This visualization aids in identifying key features associated with
molecular activity, highlighting regions in the descriptor space where active compounds are concentrated A-B. Activity triple-plots of structural RDKit fingerprints,
saturated heterocycle count, and BCUT2D descriptors.
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heterocycles, it can produce synergistic effect. Furthermore, it can
explain inactive points within the plot that happen to have a hetero-
cycle. The heteroatoms within the heterocycle(s) of such molecules may
only be connected to simply another carbon atom and hence do not
necessarily have the properties indicative of biological activity (Fig. 8B).
Inactive molecules with a heterocycle that do not fall under this char-
acterization may contain other driving substructures and properties, and
this would warrant the need for a more comprehensive investigation of
other important fingerprints.

3.5. Spearman coefficient Performance of predictive IC50 models

The boosting ensemble classification model is highly effective for
rapidly screening potential drug-like molecules. However, for
comparing candidates based on IC50 values, regression methods are
more suitable. Predicting IC50 values accurately can be challenging due
to the small-scale dataset. Nonetheless, mathematical coefficients like
the Spearman coefficient can help evaluate a model’s ranking capability.

Boosting ensemble regressors can be employed to develop a model
with a high Spearman coefficient. Traditional supervised models were
also evaluated, with gradient boosting ensembles and support vector
machines demonstrating the best performance in optimizing the
Spearman coefficient (see Table 3 for top models and Table S3 for the
full list).

CatBoost and support vector machine had spearman coefficients of
0.72 indicating solid preservation of ranking orders. At the same time,
their predictions need not be taken literally as seen from their poor
accuracy metrics but should be primarily used for the comparison of two
or more molecules. In essence, if the IC50 predictions for two molecules
from these models are being compared, the molecule with the lower
prediction will likely bemore potent and effective but their actual values
are not necessarily quantitatively related. CatBoost performs better in
terms of accuracy for molecules with low actual IC50 values, but its
performance declines as IC50 values increase (see Fig. 9A). On the other
hand, Support Vector Machine (SVM) predictions are generally lower

than the actual IC50 values, and this discrepancy becomes more pro-
nounced with higher IC50 values. This consistent underestimation by
SVM contributes to its poorer performance metrics, including higher
RMSE, MAE, and lower R-squared values, as shown in Fig. 9B.

3.6. Web application: celiac informatics

The web application predicts bioactivity classification for novel
molecules against TG2 using the multi-layer perceptron adaptive
boosting ensemble model as its backend and outputs important de-
scriptors or fingerprints using RDKit’s bit visualizations. On taking the
SMILES notation of a potential ligand, the algorithm is run within a few
seconds before redirecting to a page with a bioactivity report. To ensure
that the input molecules exhibit the qualities of a potential drug, it
checks the classification of the model as organic and sets a required
molecular weight of at least 60 Da. Additionally, a molecule’s bioac-
tivity is not predicted unless it is considered sufficiently drug-like as per
the 5 drug-likeness rules (Lipinski, Egan, Muegge, Veber, and Ghose).
Repeated violations of the pharmacokinetic properties detailed within
these rules may cast the molecule as “undrug-like" and not worthy of
bioactivity prediction. The molecule’s relative IC50 positional ranking is
also graphed in the scatterplot along with all the active molecules in the
original dataset to allow for comparison and evaluation of potency.

4. Conclusion

This study employed a combination of computational QSAR and
ensemble learning techniques to develop a high-accuracy model for
predicting drug bioactivity and analyzing key features of active mole-
cules targeting TG2 in celiac disease. Various methods, including
boosting, support vector machines, tree-based algorithms, and basic
deep learning techniques, were tested to create a robust model for mo-
lecular activity prediction. Boosting ensembles, such as adaptive
boosting and gradient boosting, demonstrated the highest performance
in activity classification tasks. The original adaptive boosting model was
refined by tuning the weak learner parameters, resulting in two efficient
algorithms: one using a multi-layer perceptron and the other a low-
depth random forest as base learners. Feature importance analysis
highlighted the role of terminal Michael acceptor groups and sulfon-
amide groups as critical components of TG2-bioactive molecules,
showing the high feature importance. A regression model, trained to
maximize the Spearman coefficient, was also developed to rank poten-
tial inhibitors when precise potency measurements were unavailable.
The cheminformatics web tool, Celiac Informatics (https://celiac-info
rmatics-v1–2b0a85e75868.herokuapp.com) encapsulates these
machine-learning algorithms, offering a user-friendly interface for
exploring statistical data and understanding the descriptors that influ-
ence a molecule’s performance in inhibiting TG2. The deployment of a

Fig. 8. A. An active molecule (N-[2-[4-[[5-(dimethylamino)− 1-naphthyl]sulfonyl]piperazin-1-yl]− 2-oxo-ethyl]prop-2-enamide (3 h)) with a heteroatom connected
to a sulfur atom, supporting its medicinal effect B. An inactive molecule ((2,3-dimethoxyphenyl)methyl (2S)− 2-[[(5S)− 3-bromo-4,5-dihydro-1,2-oxazol-5-yl]
methylcarbamoyl]pyrrolidine-1-carboxylate) with a heteroatom connected to a carbon.

Table 3
Performance of IC50 potency regression algorithms.

Model Spearman
Coefficient

Root Mean
Squared Error

Mean
Absolute
Error

R-
Squared

Ordered
Gradient
Boosting
Ensemble
(CatBoost)

0.72 2.36 1.49 0.31

Support Vector
Machine

0.72 2.73 1.54 0.08
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highly accurate boosting algorithm in a fast web application will assist
medicinal chemists in swiftly designing potential derivatives against
TG2 with drug-like properties.
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Fig. 9. A-B. IC50 Prediction Distribution of CatBoost & Support Vector Machine Models.
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are provided as Supporting Information. The Python notebooks for the
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final saved models are available at https://github.com/Lailabcode
/celiac-informatics. The Chemprop training code is available at
https://github.com/ibrahimwichka/Chemprop_model_testing. The Ce-
liac Informatics web app is available at https://celiac
-informatics-v1–2b0a85e75868.herokuapp.com.
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