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Irrigation of industrial effluents may end in the bioaccumulation of various toxic metals and consequent
genetic changes in contaminated food crops. To test this hypothesis and extent of genetic modifications,
Allium cepa test was performed to food crops viz. tomato (Lycopersicum esculentum) and chili (Capsicum
annum) as Allium cepa test is a useful tool to assess genetic variations in plants. Prior to A. cepa test, the
plants were exposed to various metal concentrations 125–1000 mg/L in the synthetic wastewater. The
extracts of harvested plants were used to grow the root of A. cepa following its standard method. The root
tips were fixed, stained and examined under compound microscope (almost 300–400 dividing cells) to
check the extent of chromosomal variations during various stages of mitosis. The results revealed various
chromosomal abnormalities including laggards, stickiness, vagrant chromosomes, binucleated cells,
nuclear lesions, giant cells and c-mitosis at different level of treatment. On the whole, aberrations were
increasing with the increasing doses along the positive control. In comparison, chili crop had higher level
of aberrations depicting the higher chromosomal changes. Lower mitotic index (MI) with increasing level
of doses was also describing the hampered cell division due to increased metal stress. The study is show-
ing that the cell division was ceased with increasing metal stress thus increasing the rate of cell
aberrations.
� 2019 Published by Elsevier B.V. on behalf of King Saud University. This is anopenaccess article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over last decades, the environmental pollution of soils with
toxic metals has become a global issue owing to the rapid urbaniza-
tion and industrialization (Sharma et al., 2012). Noxious metals and
metalloids pose detrimental effects to ecosystems and also affect
human health owing to their toxic, non-degradable nature and easy
bioaccumulation (Li et al., 2018; Ngole-Jeme and Fantke, 2017;
Nriagu, 1990; Yi et al., 2011); and therefore, could be a potential risk
for food security (Lei et al., 2015; Zhang et al., 2015). Metal accumu-
lation in various edible plants may be harmful for human health
(Hussain et al., 2013; Roy and McDonald, 2015; Singh et al.,
2010). Numerous anthropogenic sources, including mining and
metal-ore processing, industrial effluents, vehicle emissions and
agricultural activities may result in metal contamination of soils
(Dietrich et al., 2019; Luo et al., 2015). However, contamination of
food plants is quite common due to wastewater irrigation now a
day (Chary et al., 2008; Iqbal et al., 2016; Khan et al., 2008).

Freshwater scarcity and economic demands have compelled
wastewater irrigation practices, particularly in arid areas of the
globe (Hamilton et al., 2007; Wiener et al., 2016). One tenth of
the global human population depends on food grown from
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wastewater irrigation (Corcoran, 2010). According to another esti-
mate, 200 million farmers practice various forms of wastewater
irrigation on 20 million ha of land around the world (Harvest,
2001; Raschid-Sally and Jayakody, 2009; Scott et al., 2004).
Although wastewater possess considerable amount of valuable
plant nutrients that can reduce the need for addition of artificial
fertilizers (Jiménez and Asano, 2008; Schwartz and Boyd, 1994;
Siebe, 1998), long-term wastewater irrigation could result in metal
accumulation and bio-magnification which cause potential health
hazards (Christou et al., 2017; Farahat and Linderholm, 2015).
Alterations in genetic material like chromosomal aberrations,
ploidy and point mutations may be anticipated as a consequence
of metals accumulation (Haq et al., 2017; Silveira et al., 2017). Pre-
viously, different techniques have been developed to evaluate the
ecotoxicological effects of environmental pollutants (Baderna
et al., 2011). Among these, Allium cepa test is widely employed
and is very sensitive assay to explore chromosomal aberrations
caused by various chemical toxins (Grant, 1999; Maluszynska
and Juchimiuk, 2005; Timothy et al., 2014). The test has a long his-
tory in scientific literature i.e. developed and described by Levan
(1938) and later modified for environmental monitoring
(Fiskesjö, 1985; Rank, 2003). A. cepa has low number of chromo-
somes (2n = 16) which is handy to assess the genetic changes at
chromosomal scale appearing after plants are exposed to toxic ele-
ments. This test has been employed to investigate the harmful
effects of toxins on normality of cellular division. The test is a con-
venient technique to promote the intricate knowledge on how
toxic substances alone or in mixture bring chromosomal alter-
ations (Andrade et al., 2010; Palmieri et al., 2014; Aragão et al.,
2015; Freitas et al., 2016).

Since 26% of vegetables grown in Pakistan originate from
wastewater irrigation of agricultural lands (Ensink et al., 2004),
the risk of metal bioaccumulation is very high. Wastewater irriga-
tion practice is widespread in the whole world. Water scarcity,
mismanagement of freshwater resources, relaxation mode and
illiterate farmers in Pakistan has led to extensive use of wastewater
irrigation. Soil pollution with heavy metals (HMs) due to discharge
of untreated urban and industrial wastewater is a major threat to
ecological integrity and human well-being. Heavy metals are natu-
rally occurring in the earth’s crust but anthropogenic and indus-
trial activities have led to drastic environmental pollutions in
distinct areas. Although, HMs are natural elements of soils and
occur naturally in the environment but yet, is of major concern
worldwide due to their excessive concentrations. When wastewa-
ter originates from industrial estates, it have toxic substances like
heavy metals, recalcitrant organics and other undesirable pollu-
tants which may deposit in the edible parts of food crops and pose
serious threats to the human life. Trace metals, such as arsenic,
cadmium, lead, chromium, nickel and mercury are important envi-
ronmental pollutants, particularly in urban areas.

Therefore, we hypothesized that vegetables (i.e., tomatoes and
chilies) irrigated with industrial wastewater can accumulate heavy
metals. Further, metal accumulation may cause genetic changes,
and subsequently the food safety can be affected. The present
investigation was aimed at assessing the chromosomal aberrations
in onion root tips caused by metals accumulation from wastewater
irrigation of tomatoes and chilies using A. cepa tests.
2. Methodology

2.1. Treatment and plant extract

The plant materials viz. tomato (Lycopersicum esculentum) and
chili (Capsicum annum) were taken after the metal’s exposure
throughout their life cycle. The plants were grown with the syn-
thetic wastewater having known concentrations of metals includ-
ing Cr, Cd, Fe, Pb and Ni. The metal concentrations were given
during active growth period of plants under investigation. All the
desired agronomic practices were applied to raise these plants
(Gurmu and Mano, 2016). The metals concentrations were set
according to the observed values in accordance with the field sam-
ples collected adjoining to the Hattar Industrial Estate. There are
around 117 operational unit in Hattar that are mainly composed
of food and beverage, textile, crockery, paper printing, cement,
publishing, chemical, rubber and leather products, etc. The lab
experiment was conducted in the greenhouse under controlled
conditions. The plant samples (leaves) were collected from differ-
ent treatments, washed and pat dried with tissue napkins. Before
reducing to powder form, the samples were air dried first and later
dried in oven at 50 �C for 72 h. A grinder accomplished grinding of
the dried samples. Approximately, 400 mL of methanol was used to
extract 100 g powder through maceration at constant agitation for
four days. Later, a muslin cloth filtered the mixture prior to filter-
ing it twice with Whatman filter paper No.1. The rotatory evapora-
tor concentrated the filtrate further in vacuum at 50 �C and oven
accomplished drying at 60 �C in the glass petri dish. Almost 17%
of crude extract was obtained and subsequently placed in the
Petri-dishes sealed with parafilm in a dark cupboard. The extract
was used later by dissolving in methanol to get the desired
concentrations.

2.2. Allium cepa test

Average sized (purple) healthy, young A. cepa bulbs were
obtained from local bazaar in Abbottabad. The outer dead scales
of the bulb were removed without damaging the root primordia
to promote the growth of new roots. The bulbs were grown for
3 days at 25 �C in the nutrient solution of known composition
given by Feretti et al. (2007) in darkness. Within 3–4 days, the
roots grew up to a length of 2–4 cm and were ready to treat with
crude extract of known metal concentrations (i.e., 125, 250, 500,
1000 lg/mL) as a positive control. The metal exposure was based
on the metal concentrations found in various types of real indus-
trial wastewaters. A parallel experiment was also conducted in
dimethyl sulfoxide (DMSO) with same concentrations (i.e., 125,
250, 500, 1000 lg/mL). Additionally, A. cepa was also grown in
water as a negative control (Yuet Ping et al., 2012). All experiments
were conducted in darkness and the beakers were completely cov-
ered with aluminum foil to protect from light.

After a growth period of another couple of days, root tips of
plants were harvested, fixed in the Carnoy’s fixative (1:3 acetic
acid: alcohol) for 24 h and subsequently stored at 4 �C for several
days before the observation of abnormalities (Nefic et al., 2013).
These fixed roots were then placed in the petri dish and hydrolyzed
with 1 N HCl and later heated in an oven at 60 �C for five minutes,
intermittently, in order to dissolve the cell wall (Rajneet et al.,
2014) and washed with distilled water thrice and stored
(Odeigah et al., 1997). The roots were transferred on a glass slide
and a small section of each root (1–2 mm) was separated by cut-
ting with a surgical blade and then dipped in a drop of 2% acetoor-
cein for 2 min. The roots tips are then a glass rod squashed the root
tip by adding another drop of acetoorcein for at least 2 min. The
slide cover was carefully placed over the slide by avoiding the
entry of air bubbles. Finally, pressed the section of slide containing
stained root tip by thumb pressure by wrapping the slide with
blotting paper which helped to absorb extra stain. The edges of
slide cover glass were sealed with clear nail varnish for preserva-
tion (Grant, 1982; Sharma, 1983; Yuet Ping et al., 2012).

For every treatment, 6 slides were prepared and, on every slide,
almost 1000 cells including 300–400 dividing cells, were observed
in all the slides at 1000� magnification for different phases of cell
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divisions and the chromosomal aberrations using the trinocular
microscope Euromax (Euromex Microscopen Spain) and the pho-
tomicrographs were also taken from the attached digital camera.
The mitotic index and the chromosomal aberrations were calcu-
lated according to the standard method described by (Bakare
et al., 2000; Fiskesjö, 1985) whereby the total number of aberrant
cells per total number of cells of each treatment was calculated.
The mitotic index was obtained as follows (Eq. (1)):

mitotic index ¼ Number of dividing cells
Total number of cells

X100 ð1Þ

The percentage of aberrant cells can be calculated by eq. (2).

% of aberant cells ¼ Number of aberrant cells
Total Number of cells

X100 ð2Þ
3. Results

3.1. A. cepa assay

The results suggested that all the leaf extracts of the of L. escu-
lentum and C. anuum containing metal concentrations caused sig-
nificant abnormalities in cell division in comparison to negative
control and positive control. The quantitative analyses of various
chromosomal aberrations were shown in Table 1.

It is evident that MI for tomato and chilies was in the range of
16–20 and 12–19 for the concentration of 125–1000 mg, respec-
tively. Further, the MI gradually decreased with increasing metal
exposure in the growth medium (Table 1). At the highest metal
concentration (1000 mg), the MI for chilies was recorded as 12;
whereas, at same concentration of metal exposure tomato was less
affected with MI value of 16. Cytological analysis showed various
types of abnormalities which included chromosomal bridges, lag-
gards, stickiness, vagrants, binucleated cells, nuclear lesions, giant
cells and c-mitosis. The range of chromosomal bridges was 2–7 in
DMSO treated cells. For chilies and tomatoes, the chromosomal
bridges were in range of 2–5 and 2–10, respectively (Table 1).
The number of laggard chromosomes increased with increasing
concentration of the metal extract and ranged from 4 to 15. The
majority of laggards were observed in chilies (3–7). Similarly, the
stickiness character also increased with increasing concentration
of metal concentration and recorded in range of 2–26 in tomatoes,
2–10 in chilies and 2–8 in DMSO respectively. Binucleated cells
were also recorded highest for tomato extract at 1000 mg (i.e., 8)
followed by chilies (i.e., 7) at maximum treatment affecting the
cytokinesis. The number of giant cells gradually increased with
increasing metal concentration for chilies and tomatoes. For toma-
toes, C-mitosis was recorded as 17 and 19 at concentration of 500
and 1000 mg respectively. In case of chilies and DMSO, it was 16
Table 1
Cytogenetic analysis of A. cepa root tips exposed to different concentrations of DMSO, chi

Concentration Bridges Lagging Stickiness Vagrant Binu

DMSO-125 1.8 (0.7) 2.6 (1.14) 1.6 (0.5) 3.2 (0.8) 0.8
DMSO-250 4.8 (0.8) 6.2 (1.15) 3.8 (0.6) 3.8 (0.9) 1.6
DMSO-500 1.8 (0.9) 8 (1.16) 4.8 (0.7) 2 (0.1) 3.2
DMSO-1000 7 (0.1) 9.4 (1.17) 7.6 (0.8) 6.2 (0.11) 5.6
Chili-125 4.8 (0.11) 4.4 (1.18) 2.2 (0.9) 3.8 (0.12) 2.2
Chili-250 1.8 (0.12) 6.6 (1.19) 3.8 (0.1) 4.8 (0.13) 3 (0
Chili-500 2.6 (0.13) 9.6 (1.2) 6.8 (0.11) 2.8 (0.14) 4.6
Chili-1000 10.2 (0.14) 15 (1.21) 10 (0.12) 4.8 (0.15) 7.2
Tomato-125 1.8 (0.15) 3 (1.22) 2.2 (0.13) 4.8 (0.16) 2.2
Tomato-250 3.8 (0.16) 3.6 (1.23) 3 (0.14) 1.4 (0.17) 4.4
Tomato-500 4.4 (0.17) 5.8 (1.24) 21.4 (0.15) 3.6 (0.18) 3.4
Tomato-1000 9.2 (0.18) 7 (1.25) 26 (0.16) 4.2 (0.19) 7.8
and 13 respectively at highest concentration. Similarly, the highest
aberrant cells were observed for tomato extract. The decreased MI
also showed a strong trend of inhibition of the cell division along
higher metal concentration in the L. esculentum and C. anuum
(Table 1).

Various cytological observations were shown in Figs. 1–3. Fig. 1
demonstrated normal stages of mitotic division. Fig. 3a�c showed
various kinds of chromosomal aberrations observed in onion root
tip cells after metal exposure.
4. Discussion

Onion has been considered as apposite material for genotoxicity
investigations. It offers many advantages like clarity of mitotic
phases, visible, diverse and low chromosome number, stability of
karyotype; quick reaction to the toxic materials etc. (Therefore, A.
sepa assay is well documented to determine effects of various
genotoxic materials. This is the pioneer study which evaluated
the effects of metal bioaccumulation in tomato and chili and their
subsequent A. cepa test. The onion root tips which are undergoing
growth may offer a good plant portion which can be investigated
for the genotoxic effects of pollutants like metals. Onion plant is
useful in studying genotoxic effects such as chromosomal aberra-
tions (CA), effects on karyokinesis and cytokinesis, nuclear alter-
ations, disorders in the mitotic cycle, and the existence of
micronuclei in meristem cells.

The results showed that mitotic index (MI) for tomato extracts
decreased from 20 to 16 while for chilies extracts it decreased from
19 to 12 for the concentration of 125–1000 mg. It implied that MI
in chili extracts was significantly affected by metals exposure as
compared to tomato extracts. The decrease in the MI of A. cepa
meristem cells indicated that the presence of high concentrations
of heavy metals in the soil caused cytotoxic effects in both plants
under investigation (Nefic et al., 2013). CAs includes changes either
in chromosomal structure or in chromosomal number. Alterations
in the chromosomal structure can be caused by breaks of DNA,
DNA synthesis inhibition and modification in the DNA replication.
Clastogenic action is indicated by various CA including chromoso-
mal breaks and bridges. Aneuploidy and polyploidy are numerical
CA caused by abnormal chromosomal segregation (adherence, C-
metaphases, delays, chromosome losses and multipolarity) under
the influence of aneugenic agents or spontaneously. In the absence
of telomeres, chromosomes turn out to be ‘‘sticky” which may join
to other fragmented chromosomal ends (Nefic et al., 2013). Cyto-
toxic effects are mainly responsible for the altered MI in compar-
ison to control whereby karyokinesis is affected (Leme and
Marin-Morales, 2009). C-mitosi (D’Amato1950) is characterized
by the advancement of metaphase to anaphase and therefore
leading to polyploidy.
li and tomato extracts.

cleated Nuclear Lesions Giant cell c-mitosis Aberrations (%)

(0.8) 2.8 (0.83) 3.4 (0.5) 2.6 (0.5) 7
(0.9) 4.2 (0.84) 4.2 (0.6) 6 (0.6) 12
(0.1) 4 (0.85) 5.2 (0.7) 8.6 (0.7) 15
(0.11) 9 (0.86) 2.8 (0.8) 15.6 (0.8) 48
(0.12) 2.2 (0.87) 1.6 (0.9) 2 (0.9) 10
.13) 4.4 (0.88) 5 (0.1) 3.6 (0.1) 13
(0.14) 4.2 (0.89) 6.8 (0.11) 4.4 (0.11) 21
(0.15) 8.6 (0.9) 9.4 (0.12) 12.8 (0.12) 50
(0.16) 2 (0.91) 2.8 (0.13) 1.4 (0.13) 8
(0.17) 5.6 (0.92) 3.6 (0.14) 3.2 (0.14) 12
(0.18) 6.8 (0.93) 5.8 (0.15) 17 (0.15) 23
(0.19) 7 (0.94) 9.2 (0.16) 19 (0.16) 38



Fig. 1. Different normal mitotic phases are shown here. a-b: prophase, c-d: metaphase, e: interphase, f: anaphase and g: telophase.

Fig. 2. Various types of chromosomal aberrations observed. (a) Sticky anaphase with chromosome fragments, (b) sticky anaphase, and (c) laggards.

Fig. 3a. Some other aberrations in onion root tips under the influence of metals, (a) prolong prophase and abnormal cytokinesis, (b) chromosome bridge and disturbance in
metaphasic spindle, (c) Nuclear lesions, (d) micronucleus in prophase and stickiness, and € stickiness.
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Variable numbers of chromosomal bridges were also observed
for various metal treatments. The chromosomal bridges result
when chromosomes become sticky and their separation is delayed;
chromosomes remain connected by bridges which move freely.
Chromosomal bridges mainly develop because of the non-
disjunction of sticky chromosome or breakage and reunion during
separation at anaphase (Feretti et al., 2007). The current study also
showed increased number of lagging chromosomes along higher
metal concentration in the extract (Table 1). Lagging chromosomes
arise when chromosomes fail to remain connected with spindle
fiber which may move to either of poles (Khanna and Sharma,
2013). Stickiness is caused by either increased contraction or



Fig. 3b. In this figure, (a–c) Giant cells, (d) stickiness and (e) sticky chromosomes.

Fig. 3c. In this figure, (a) Binucleated, (b) nuclear lesions, (c) bridge and laggard chromosome, (d) vagrant, c-mitosis, (e) giant nucleus, (f) multipolar anaphase and spindle
disturbance and (g) stickiness.
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condensation of chromosomes or DNA depolymerization and par-
tial dissolution of nucleoproteins. It reflects toxic effects which
are usually irreversible and might lead to cellular deaths. Our
results confirm previous findings dealing with the effects of vari-
ous on living systems (Türkoğlu, 2007).

A number of cells having c-mitosis and few vagrant chromo-
somes were also observed. The failure of the spindle apparatus
organization and its normal function is the cause of c-mitosis
and vagrant chromosomes (Levan, 1938). C-mitosis indicates the
presence of toxic chemicals in the growth medium of plants
(Bonciu et al., 2018). A number of cells with nuclear lesions were
found to be increasing with increasing extract doses in all the
treatments except in the control. The number of the nuclear lesions
had linear relation with the increasing extract concentration. The
mitotic index and the cell division were normal in the control cells.
The results also showed that the chromosomal aberrations in the
roots treated with the specific aqueous leaf extracts had showed
marked difference from the control. It was apparent that metals
caused genetic changes in the experimental plants which were
not observed in the control. The observation of cells with laggards,
chromosomal bridges, giant cells, c-mitosis and bridges indicted
that genetic changes occurred especially at higher metal concen-
trations. In vagrant chromosome/s, a chromosome moves ahead
of its associated chromosomal group toward poles and leads to
the unequal separation of chromosomes in the daughter cells.
Vagrant chromosomes have been observed by many workers in
different studies (Sondhi et al., 2008). An aberrant spindle division
during early anaphase or failure of cytokinesis after telophase cre-
ates binucleated cells. Giant cells are usually polyploid arising as a
consequence of endomitosis or endoreplication (Bonea et al.,
2018).

The number of giant cells gradually increased with the increas-
ing amount of metals in the extract. Endoreplication or endomito-
sis may result in polyploidy and giant cells which may be
polyploid. The CAs are categorized into clastogenic and aneugenic
based on a break occurring at the chromosomal level or any issues
with mitotic spindle affecting chromosomal separation along inhi-
bition of cytokinesis. The clastogenic CA include chromosome
breaks chromosome and bridges; C-metaphase, laggard chromo-
somes, chromosomal losses, multi- polar divisions and chromoso-
mal stickiness induced by aneugenic agents (Silveira et al. 2017).
Chromosomal bridges and breaks (clastogenic aberrations) are
the most significant ones to consider including chromosome loss,
delays, adherence, multi-polarity (Leme and Marin-Morales, 2009).

Thus, the chromosomal aberrations observed in the onion root
tip cells may be anticipated in the vegetable crops exposed to these
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metals. The consumption of genetically modified food crop
may behave like genetically engineered/modified GEM crops,
whose consumption is still debatable due to their potential
deleterious nature and undesirable consequences in human
consuming them.

5. Conclusion

The current study on the effects of plant extracts exposed to
various metal concentrations on chromosomal aberrations in onion
root tips revealed that variable nature of chromosomal abnormal-
ities were observed. The metals induced aberrations like chromo-
somal bridges, lagging chromosomes, vagrants, binucleated cells,
nuclear lesions, giant cells, and c-mitosis in onion root tips. The
presence of such abnormalities indicates the interference of metals
in the normal growth of plants exposed to industrial effluents.
Plants with such abnormalities may transfer altered genetic
makeup to not only to their offspring but also to human when con-
sumed as food thereby causing further complications.
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