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Abstract
There is an increasing availability of complete or draft genome sequences for microbial organisms.These data form a
potentially valuable resource for genotype^phenotype association and gene function prediction, provided that
phenotypes are consistently annotated for all the sequenced strains. In this review, we address the requirements
for successful gene-trait matching.We outline a basic protocol for microbial functional genomics, including genome
assembly, annotation of genotypes (including single nucleotide polymorphisms, orthologous groups and prophages),
data pre-processing, genotype^phenotype association, visualization and interpretation of results. The methodolo-
gies for association described herein can be applied to other data types, opening up possibilities to analyze tran-
scriptome^phenotype associations, and correlate microbial population structure or activity, as measured by
metagenomics, to environmental parameters.
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INTRODUCTION
The ‘function’ of a gene or protein is a complex

concept that consists of several layers, such as mo-

lecular function, cellular component and biological

process (phenotypic function) [1,2]. Deciphering the

function of microbial genes often involves the use of

molecular biological techniques to establish function

at the molecular level, or knock-out studies to spe-

cify cellular or phenotypic annotations. Since (near)

complete microbial genomes started becoming avail-

able, comparative genomics has been used to priori-

tize candidate genes for further laboratory testing [1],

minimizing the costs of experimental research. The

best-known example of functional annotation by

comparative analysis is the transfer of functional an-

notations between orthologous genes, but many

other associative methods have been developed [3]

including conservation of gene order [4,5] and

phylogenetic profiling [6,7]. The recent drop in

the cost of genome sequencing has enabled an in-

crease in the scale of comparative genomic analyses.

Several thousand bacterial genomes have been

sequenced thus far, opening up the potential for mi-

crobial genome-wide association studies (GWAS).

In human genomics, GWAS investigate the cor-

relation of genetic variants with phenotypic traits

across different individuals [8,9]. These genetic vari-

ants mostly consist of simple nucleotide polymorph-

isms (SNPs) [10], i.e. either point mutations or small

insertions or deletions (indels) in the genome

sequence. In the first GWAS study to be published,

1133 affected individuals versus 1006 controls were

tested for SNPs linked to myocardial infarction [11].

A total of 92 788 SNPs were genotyped, revealing
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one SNP that was strongly associated to the disease.

Because such a correlation does not prove causality,

further experimental testing confirmed that the SNP

induced several cell-adhesion molecules and

enhanced the transcription of lymphotoxin-� [11].

Thus, GWAS can be a useful tool for bioinformatic

prioritization of candidate SNPs for further research.

A comparable approach is possible for the associ-

ation of bacterial genes to phenotypes. When the

first complete microbial genomes emerged, ‘differ-

ential genome analysis’ of the gene content of related

microbes shortlisted gene candidates responsible for

certain phenotypes [12,13]. In that study, candidate

genes were selected based on a genome-wide com-

parison of Helicobacter pylori to its close relatives

Haemophilus influenzae and Escherichia coli. It was pro-

posed that the genes that were differentially present

or absent might be responsible for H. pylori’s
species-specific features, including the ability to col-

onize host cells in highly acidic environments.

Currently, gene-trait matching or genotype–pheno-

type association is a more commonly used term for

similar analyses.

The concept of correlating phenotypes to the

presence or absence of genes in bacterial genomes

was scaled up with the introduction of comparative

genome hybridization (CGH) microarrays that mea-

sured genotypes with high throughput [14,15].

These microarrays were spotted with probes that

map to the genes present in a single genome

(CGH arrays) or in a number of strains of the same

species [16,17], coined pan-genome arrays [18]. The

arrays could then be hybridized with fluorescently

labeled genomic cDNA to determine the gene con-

tent of a query strain [19,20]. For both single

genome CGH arrays and the pan-genome arrays,

the genes in the query genome can only be deter-

mined in terms of the reference sequences, provided

that they are sufficiently similar to the probes on the

array [20,21]. There are only a few studies describing

CGH-based gene-trait matching. In part, this is be-

cause consistent trait annotations have been lacking.

To correlate the gene content of the selected strains

to their phenotypes, consistent phenotyping is

required, i.e. the phenotypes should be determined

under the same conditions for all the strains that are

genotyped.

Today, sequencing has surpassed microarrays for

accurately determining the gene content of an or-

ganism. Advantages of sequencing include the direct

determination of transcripts by RNA sequencing,

and the fact that sequencing allows the discovery of

new genes, while the genomic diversity that can be

determined by microarrays is limited to the reference

sequences used for array probe design. Moreover,

sequencing increases the resolution of comparative

genomic analyses from gene content to individual

SNPs. Several high-impact studies have provided

draft genome sequences of many strains of the

same species [22–25], where genome alignments

allow the discovery of single nucleotide differences.

We argue that the greatest bottleneck for applying

GWAS to microbial datasets is the availability of ex-

perimentally consistent phenotypes or other annota-

tions, such as environmental parameters (metadata).

Both types of genotyping data introduced above,

CGH arrays and complete genome sequences, are

potentially of high value for gene-trait matching,

provided that the phenotypes of the strains are also

consistently annotated. There are some promising

examples, including a publication where 12 pheno-

types were determined for 42 Lactobacillus plantarum
strains [26], however, such datasets are scarce, in

part because consistent culturing is crucial to

reduce experimental noise. Thus, culturing studies

and underpinning microbial physiology are crucial

for making best use of the wealth of information

that will be available.

In this review, we will focus on genotype–pheno-

type associations for groups of bacterial strains of the

same species. First, it may be more likely that similar

traits have been annotated for strains, than for phylo-

genetically more divergent organisms. Second, the

genome sequences of different species are not easily

alignable due to the greater differences in gene con-

tent and in genome structure. As a result, we would

not be able to illustrate the use of SNPs as genotypic

characters. Nevertheless, the methods outlined

herein are equally suitable for genotype–phenotype

associations across different species. We conclude

with an outlook of the application of these methods

to other data types, including the use of transcrip-

tomic data across different experimental conditions

for linking genes to functions within a single species,

and the use of functional or taxonomic profiles across

metagenomes to link functions or taxa to environ-

mental parameters.

ASSEMBLYANDANNOTATION
Understanding the functional potential encoded by a

given genome starts with an accurate genome
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sequence and gene annotation. Next-generation

sequencing techniques are increasingly being used

to sequence the genomes of new microbial isolates

[27–30]. As read lengths of most sequencing plat-

forms are in the hundreds of nucleotides, it is im-

perative to assemble reads into larger contiguous

sequences (contigs) and to order and orient contigs

into larger scaffolds [31]. These larger DNA frag-

ments allow better prediction of open reading

frames (ORFs) and facilitate gene context analyses

with comparative genomic approaches. For SNP

typing of bacterial strains, the sequence quality of

the assembly is very important and there are several

strategies to correct the assembly for sequencing

errors, including the detection of frameshifts by

comparative genomics, and the correction of SNPs

in an assembly using Illumina reads [32,33].

Genome annotations often start with submitting a

genome sequence to an online annotation service

[34,35]. This results in ab initio predicted ORFs con-

sisting of start and stop positions, as well as a pre-

dicted function. Start and stop codon prediction is

usually performed by ORF calling software imple-

mented in these annotation engines, such as

GLIMMER [36], GeneMark [37,38] or Prodigal

[39]. It is crucial to use the same ORF prediction

method for the different strains of interest, as differ-

ences in the ORF predictions could influence down-

stream analyses, including determining orthologs (see

below). It should be mentioned that sequencing of

transcripts now enables direct measurement of

ORFs, which may be more accurate than automated

ORF predictions.

Functional annotation of the predicted ORFs

may involve many steps including homology

searches to annotated databases, such as RefSeq

[40], Genbank [41] and SwissProt [42] using

BLAST [43], or hidden Markov model screenings

with Pfam [44]. Annotation engines generally pro-

vide reasonably accurate automated function anno-

tations for proteins, although they may show

deficiencies in genotype–phenotype extrapolation

[45–47]. Specifically, they are suited for annotating

core metabolic genes, while for genes that are not

widely conserved, manual curation remains an im-

portant step in identifying function [48]. The time

necessary for the curation of gene functions can be

reduced by (i) performing the function curation for a

representative member of an orthologous group

(OG) (see below) instead of for all members; (ii)

concentrating curation efforts on the molecular

functions of interest and (iii) by examining gene

function predictions for targets resulting from the

genotype–phenotype matching. The DNA se-

quences with putative ORFs and their annotations

are then ready for comparative genomics and deter-

mining structural variations (SVs), single nucleotide

polymorphisms (SNPs) and small insertions or dele-

tions (indels).

ORTHOLOGOUSGROUPSOF
GENES
Comparing the genes in a selection of genome

sequences depends on a reliable annotation of ortho-

logs. Coined by Fitch in 1970, orthology is an evo-

lutionary concept that describes the relationship

between genes that diverged following a speciation

event [49]. Conversely, paralogy refers to genes that

diverged following a gene duplication (Figure 1).

A frequent misinterpretation of the concept of orthol-

ogy is the idea that it signifies functional equivalence.

Indeed, orthologs may be likely to represent func-

tional equivalents because of their evolutionary def-

inition, but the original definition per se contains no

statement about conservation of function [49].

It is relatively straightforward to identify the

orthologous genes or proteins for pairs of species

by reciprocal homology searches [50]. Comparative

genomics of more than two genomes requires an

annotation of group orthology [51,52]. OGs of

genes can be interpreted as gene families, and consist

of all the genes that have descended from a single

ancestral gene in the last common ancestor (LCA) of

the species considered. Thus, the resolution of a set

of OGs depends on which group of species is con-

sidered (Figure 1). If the group shares an ancient

LCA, say the ancestor of all bacteria (or Bacilli in

Figure 1), the single ancestral genes will have had

ample time to evolve and diverge, resulting in large

and inclusive OGs that may have many representa-

tives in each genome (paralogs). Conversely, a very

recent LCA, say for a group of strains of one bacterial

species (or the order Lactobacillales in Figure 1) leads

to smaller, higher resolved OGs with one or a few

paralogs in each of the genomes.

There are several methods and tools available that

assign genes to OGs for a given set of genomes.

These can be divided into methods that construct

de novo OGs and methods that map proteins to exist-

ing OGs by using sequence similarity (both

approaches are elaborated in the paragraphs below).
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Methods that map proteins to existing OGs are more

practical to use than de novo reconstruction of OGs,

but have several disadvantages. For example, the

resolution of the existing OGs may not be optimal

for the selection of species under consideration: the

resolution may either be too low (if OGs were re-

constructed for a more ancient LCA), or too high,

leading to arbitrary subdivision of proteins into dis-

tinct OGs, that actually belong in the same OG be-

cause they share a single ancestral gene. Moreover,

genes that are specific to the newly sequenced

genome will not be mapped.

For construction of new OGs, it is imperative that

complete genome sequences are available with ac-

curate gene predictions, so that any paralogy rela-

tionships can be identified. Given that we are

currently within the era of short-read shotgun

sequencing, it should be noted that paralogs may

accidentally be collapsed by short-read assemblers if

they are very similar, e.g. when creating a genome

assembly by mapping the sequencing reads to a clo-

sely related reference genome [53]. Established tools

for de novo OG reconstruction include InParanoid/

Multiparanoid [50,54] and OrthoMCL [55]. These

programs do not rely on phylogenetic

reconstruction, which is computationally expensive

and becomes increasingly prohibitive with larger

datasets. Finally, orthologs may not necessarily be

more similar in sequence [56], and additional infor-

mation including gene neighborhood (operon struc-

ture) can be used to refine their definition.

As sequence databases become more comprehen-

sive, the mapping methods gain in resolution and

form a viable alternative to de novo OG reconstruc-

tion methods. A simple approach is to provide the

proteins in the database with OG annotations, and

after searching this database with the query genes,

assign each to the OG of its highest scoring hit.

This works well if the query genome is a close rela-

tive of genomes in the database, and the speed of the

RAST server (Rapid Annotations using Subsystems

Technology [35]) in part depends on this approach.

For genomes that do not have reliably sequenced

close relatives, the top hit approach might be more

likely to spuriously yield distant hits from a different

OG. In these cases, Cognitor [57] provides an ex-

tension of the simple top-hit rule, by assigning genes

to an OG if the majority of the top scoring proteins

map to the same OG. Note that proteins belonging

to different OGs may occur as fused genes, in which

case the Cognitor rule should be applied separately

to each of the fused regions. The Signature webser-

ver [58] automatically performs these steps, assigning

proteins or protein regions to the OGs from the

STRING database [59]. Alternatively, the

EggNOG webserver [60] also allows the assignment

of protein sequences to OGs.

PHAGES
Prophages and mobile elements are the most variable

fraction of microbial genomes and often encode

functions related to interaction with the changing

environment [61], including pathogenicity genes

[62]. Moreover, they may contain genes that help

bacteria cope with adverse environmental conditions

like sub-lethal concentrations of antibiotics or with-

standing osmotic, oxidative and acid stresses, as well

as increasing growth and influencing biofilm forma-

tion [63]. Prophages often contribute the biggest dif-

ference between strains and may account for many

kilobases of divergent sequence. For example, Sodalis
glossinidius strain ‘morsitans’ contains 26 prophages

that together cover 956 349 bp of this 5MB

genome [64]. In general, prophages encode three

types of genes: (i) genes required for the phage cell

Figure 1: The resolution of an OG depends on the age
of the LCA for the studied species. The dark back-
ground tree indicates the evolutionary history of the
included Bacilli; colored lines indicate the evolutionary
history of the genes. Gene family A in the Bacilli dupli-
cated in the LCA of the Lactobacillales to form the
paralogs X and Y. When constructing OGs for all
Bacilli, all the homologs A, X and Y will be united in
one OG, where X and Yare called ‘in-paralogs’. If only
Lactobacillales are taken into account, X and Y are
placed in separate OGs because they had different an-
cestral genes in the more recent LCA. Note that when
species are compared in pairs, paralogs may be mista-
ken for orthologs due to differential loss of paralogs,
e.g. the Lactococcus lactis gene X and the L. plantarum
geneY. Orthology can be inferred at different levels of
resolution by analyzing speciation events and gene du-
plication events in phylogenetic trees [119].
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cycle including phage entry, DNA integration and

excision, DNA replication, packaging, and cell lysis,

and the expression regulation of those genes; (ii)

genes that inhibit the cell cycle of other phages

(super-infection exclusion) and (iii) auxiliary meta-

bolic genes that generate energy in the cell and pro-

mote viral replication. Thus, we expect prophage

and mobile element content to be important for ex-

plaining phenotypic differences between closely

related strains.

Phage genes can be identified by similarity to

known homologs in a relevant database of viral pro-

teins, such as Phantome (http://www.phantome.

org/). However, because viruses mutate rapidly

[65] and are under-represented in the databases

[66], this may not always be sufficient to identify

all prophages in a newly sequenced genome.

Moreover, it should be noted that prophages often

contain homologous sequences inserted at different

loci around the genome, hindering sequence assem-

bly efforts. Prophages have specific characteristics,

including protein length, transcription strand direc-

tionality, AT/GC skews, phage-specific oligo-

nucleotides and phage insertion points (even

though different strains can have different prophages

inserted at the same chromosomal integration site),

that can be used for identification. Recently, the tool

PhiSpy [64] has been developed that uses combin-

ations of these characteristics, as well as homology, to

identify prophages in bacterial genome sequences.

Once phages have been identified, they can be

mapped between strains using orthology and gene

content.

MUTATIONS
It is possible that the differential presence of OGs,

functions, mobile elements or phages cannot explain

a given phenotype, if mutations such as SNPs or

indels are responsible for gain- or loss-of-function.

One famous example is the presence of point muta-

tions in the E. coli fimH gene that alters its host spe-

cificity [67,68]. Another recent example in fungi is

that of very recently diverged Aspergillus fumigatus
strains that have acquired resistance to toxic azole

compounds by a mutation in the transcription

factor subunit HapE [69], but have an otherwise

identical genetic background. Such small mutations

can also be included into the list of genotypic fea-

tures, and associated to phenotypes in the same way

as presence/absence patterns of OGs or phages

(above). For brevity we will refer to these mutations

as SNPs, which could stand for simple (instead of

single) nucleotide polymorphisms [10]. In microbial

genomics, the state of the art for SNP detection be-

tween strain variants consists of mapping the reads to

a reference sequence and identifying variants in the

conserved regions [23]. Although this will miss larger

SV, it will suffice for our purpose, as differences in

OG or phage content are already identified with the

approaches above.

PHENOTYPES
Phenotypes are here defined as the observable char-

acteristics of an organism. For bacteria, these pheno-

types often consist of growth on specific media, for

example, containing different carbon sources [26].

Phenotype microarrays [70,71] are a relatively

straightforward way of assessing many conditions in

parallel, as exemplified by a study of the soil bacter-

ium Sinorhizobiummeliloti [72]. Another example of a

phenotype is the resistance to certain antibiotics, such

as measured for the progeny of sexual crossing ex-

periments of A.fumigatus [69], or for different bacteria

isolated from patients at intensive care units [73]. In

the latter study, the observed resistance correlates

with geography or other differences in the patient

populations. Other phenotypes include: (i) survival/

growth under different experimental conditions or

presence in ecological niches [74–81]; (ii) the ability

to perform a specific molecular function

[26,76,82,83] and (iii) metabolomic fingerprints [84].

To perform comparative studies encompassing

many strains, it is imperative that phenotypic anno-

tations are consistently performed across the strains.

A standard in the description of the environment

(metadata including sampling point and habitat)

and the actual nucleic acid sequence of individual

strains has been launched by the Genomic

Standards Consortium, coined the Minimum

Information about a Genome Sequence [85]. We

recommend that this minimal standard be followed,

also when large collections of strains are sequenced

simultaneously. Moreover, we imagine that exten-

sions to this standard, that describes the environment

and the sequence, may be formulated for the further

phenotypic description of specific taxonomic clades

or species. An example could be running a standard

phenotype microarray for every sequenced strain and

one that measures specific properties for the taxo-

nomic group in question. Optimally, the availability

370 Dutilh et al.

http://www.phantome.org/
http://www.phantome.org/


of consistent phenotypic information about

sequenced microbial strains will allow the application

of gene-trait matching approaches, such as those

described below, even to bacterial strains sequenced

and phenotyped by different research groups. It

should be noted that this is not always possible. For

example, genome sequences are increasingly being

produced from organisms that are not grown in

pure culture or even from single uncultured cells.

Phenotype data may be noisy due to several fac-

tors, including inaccuracies in the measurements.

Moreover, phenotypic measurements assessed on a

continuous scale are often converted to categorical

values such as ‘Yes’ or ‘No’. However, it might be

difficult to categorize some measurements accurately,

resulting in ambiguous categories (or phenotypes)

such as ‘Maybe’ or ‘Mild’. In association analysis,

samples with ambiguous phenotypes are preferably

discarded to increase statistical power. For example,

some cases that are annotated as ‘Maybe’ may in fact

be a ‘No’ or a ‘Yes’, and to prevent noise from

obscuring the association signal we recommend

excluding such cases from the analysis.

ASSOCIATIONANALYSIS
Association analysis is a multi-step process that links

the individual elements of the genotype (e.g. genes,

phages, SNPs) to specific phenotypes (e.g. growth on

different media, antibiotic resistance; see Figure 2).

Depending on the experiment and the association

approach, different pre-processing steps will be ne-

cessary for the genotype and phenotype data. Below

we will describe these steps in more detail.

Large p small n
Many statistical and classification methods are suited

for datasets including few measurements (e.g. geno-

typic variables) for many samples (e.g. strains).

Conversely, the number of variables measured in

high-throughput experiments is often much larger

than the number of samples (genomes). This is

referred to as the large p small n problem. With

few samples, each individual sample has a relatively

high importance, and there is a high risk of over-

training the data to individual samples. In such situ-

ations, machine learning methods are more suitable

than classical statistical methods [86]. Accuracy of a

machine learning algorithm can be improved by

pre-processing input data, which could also decrease

the number of variables significantly. A valid

question is how many strains are necessary for a

good signal in genotype–phenotype association stu-

dies. In general, more samples yield a better statistical

power. While we have been able to extract mean-

ingful links with as few as five positive and five nega-

tive cases (see also the section on ‘Visualization’

below), it has been stated that statistical issues can

arise when sample sizes drop below 30 subjects.

Such a small sample lacks heterogeneity (i.e.

diversity) and does not approximate the normal

distribution [87]. If possible, we recommend using

at least 30 genomes in the association analysis, pro-

vided that matching phenotypic data is available.

Data filtering
When using data from high-throughput platforms

that simultaneously assess many variables for many

samples (e.g. next-generation sequencing technolo-

gies or phenotype microarrays), it is often necessary

to apply some kind of pre-processing to filter for

intrinsic noise [70,88]. Moreover, separately

observed variables may contain redundant

Figure 2: Flow diagram for genotype^phenotype as-
sociation analysis. Genomic and phenotypic data are
collected for microbial strains. Phenotypes can be
determined by, e.g. phenotype microarrays or analytical
profile indices. Both the genotypic and phenotypic data
are then preprocessed before genotype^phenotype as-
sociation analysis. In the association analysis, correl-
ations between genotype and phenotype are
determined and visualized.
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information for association analysis, for example, if

two genes are in the same operon they will likely

show the same presence/absence pattern across

strains, and it might be better to collapse them.

The most straightforward way to remove redundant

variables is by using a correlation metric and com-

bining strongly correlated features [26]. Finally, vari-

ables could be non-informative: i.e. a variable has the

same or similar values across all samples, for example,

a housekeeping gene that is present in every genome.

Because these noisy, redundant or non-informative

observations will not add relevant information about

the different phenotypes, they need to be excluded

from the association analysis [89,90].

Biased sampling of phenotypes
In addition to noise, the number of samples for each

phenotype also affects the association analysis. In par-

ticular, an imbalanced distribution of samples across

phenotypes decreases the accuracy of classification

algorithms [91]. Due to overtraining of the algorithm

toward the largest phenotypic group, strains from

relatively rare phenotypic groups will often be clas-

sified into the more frequent phenotypic groups, as

this is a ‘safe bet’ for the classifier. The effect of this

phenotype imbalance can be decreased by bagging,

where each bag contains an equal number of ran-

domly selected samples, or by assigning reversely

proportional weights to phenotypes [91,92].

Genotype^phenotype association
Here, we describe three approaches for genotype–

phenotype association (Figure 3): statistical tests, cor-

relation analysis and machine learning. Note that

although these methods are often used, they are

merely examples that illustrate a range of possibilities.

Comparison of means
One of the most straightforward ways of detecting

genotype–phenotype associations is by using a statis-

tical test to compare the mean values of the geno-

typic variables between different phenotypes. It is

important to know the distribution of the data, be-

cause it determines which tests can be used. For nor-

mally distributed data, (parametric) the Student’s

t-test (two phenotypes) [93] and ANOVA (two or

more phenotypes) [94] are used, for other data the

respective non-parametric (rank based) counterparts

can be used, i.e. the Mann–Whitney U (two pheno-

types) [93] and Kruskal–Wallis tests (two or more

phenotypes) [95]. After multiple testing correction,

these statistical tests supply the user with a P-value

for each variable, which indicates the probability that

the distributions of the different phenotypes do not

differ significantly. As each genotypic variable is

tested individually, no combinatorial dependencies

between variables can be detected.

Correlation tests
Thus far, we have only discussed discrete genotypic

variables (e.g. presence/absence of OGs, SNPs or

phages). However, in some cases, it may be possible

to assign continuous values (e.g. gene copy number

or percent sequence identity). Similarly, some

phenotypes may also be better represented as con-

tinuous values rather than dividing them into groups.

In such cases, it is more appropriate to correlate the

genotypic and phenotypic values. Similarly as for the

comparison of means tests, the distribution of the

data is an important factor in determining which

method to use. For normally distributed data, the

Pearson’s chi-squared test [96] can be applied. The

other two methods listed in Figure 3, the Kendall tau

rank correlation coefficient (tau) [97] and Spearman’s

rank correlation coefficient (rho) [98] are both

non-parametric, which means that they do not rely

on a specific distribution in the data. On average, rho

gives a higher correlation value than tau, while more

severely penalizing individual samples that correlate

badly [99]. As for the comparison of means tests, each

genotypic variable is tested individually, and no

combinatorial dependencies can be detected.

Machine learning
Machine learning methods, including random forest

(RF) [100] and support vector machines (SVMs)

[101] use training data to create a classifier (predictor)

to classify phenotypes of new samples. These meth-

ods can generate an importance score for each of the

genotypic variables for distinguishing the phenotypes

(this is a native feature of RF; SVM requires an add-

itional module such as the R module caret). Using

this importance, variables can be removed that do

not significantly contribute to the classification or

improve the prediction accuracy [26,102,103]. The

advantage of machine learning methods is that they

build decision models that encompass multiple vari-

ables at once, allowing the prediction of phenotypes

based on combinations of genotypic variables, i.e.

two variables that contain no information on their

own, but are predictive when assessed together (see

Figure 3D) [104–106]. These interactions are
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implicitly modeled in current implementations of

RF and SVM. However, there is no explicit import-

ance measure for interactions between variables.

Using machine learning methods allows the selection

of the most important variables for further visualiza-

tion (see below), interpretation and follow-up ex-

periments in the laboratory.

We note that the steps outlined earlier can be

applied to answer many different types of research

questions that aim to find relations between

large-scale datasets. Advanced users may choose to

perform all the data processing steps using R and a set

of specific modules. As an alternative, web tools are

available such as PhenoLink [26] that uses RFs, and

Figure 3: Choosing an approach for genotype^phenotype association. (A) Dataset consisting of phenotypes
(e.g. growth rates on different carbon sources) and genotypes (e.g. gene content) for 10 bacterial strains (rows).
(B) Nine possible methods (four comparison of means statistical tests, three correlation analyses and twomachine learn-
ingmethods) for detecting genotype^phenotype associations.The compatibility with specific data types and applicability
in microbial GWAS is shown. (C) Hypothetical example of a linear genotype^phenotype relation. Green strains grow
on D-glucose; red strains do not.The presence of gene 8 is predictive of the growth on D-glucose. (D) Hypothetical ex-
ample of a combinatorial genotype^phenotype relation. All six strains that grow on D-fructose contain gene 9 and
gene 3. In other words: the interaction between gene 9 and gene 3 is predictive of the growth on D-fructose.
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automatically performs many of the steps outlined

above. Such automated pipelines allow for rapid,

in-depth analysis of large amounts of data.

VISUALIZATION
Mining very large datasets, like the collections of

genotypic variables described above, may yield

many significant associations. Although these geno-

type–phenotype associations are selected on the basis

of their statistical significance, some associations might

make more biological sense than others. For instance,

the absence of a gene could have a high correlation

with growth on a given carbon source, but if there is

no function known for that gene (e.g. the gene could

be a regulator repressing an operon required for

growth on that sugar) a meaningful explanation for

the statistical association might be difficult to predict.

The integration of additional biological descriptors

can help to formulate a meaningful interpretation of

the results and to select the most promising associ-

ations for follow-up experiments.

Visualization allows us to integrate multiple infor-

mation sources, including biological descriptors, and

facilitate distinguishing relevant from irrelevant links.

An optimal visualization would allow a general over-

view of the data, while simultaneously providing the

possibility for in-depth examination of specific asso-

ciations. To allow the inclusion of different sources of

information, the visualization may require using mul-

tiple dimensions, each dimension representing a dif-

ferent source of information. Network graphs are an

often used visualization that allows the incorporation

of data from different sources [107]. However, such

graphs can quickly become complex and often very

large for many associations. Moreover, incorporating

information from different sources is cumbersome

when they are inter-dependent. For instance, visua-

lizing a link between a gene and a phenotype based on

their co-occurrence across a selection of strains could

illustrate why this specific gene is predicted to be im-

portant. While visualization of such a three-way re-

lationship (gene-strain-phenotype) is straightforward

for a single gene, it is not easy for hundreds of genes

and multiple phenotypes. Thus, color-coded tables

(Figure 4) can be used to represent information

using two different views: (i) a general figure that

shows the relationships between all selected variables

and their related classes and (ii) a detailed figure that

shows the relationships between variables and samples

for only a few classes. Similarly, multiple scales can be

achieved in graph-based visualizations by interactive

visualization of associations, initially showing a gen-

eral view and also allowing interactive browsing of

specific relations [108].

To illustrate the different possible visualizations,

we show the results of a genotype–phenotype asso-

ciation analysis of 42 L. plantarum strains performed

using PhenoLink [26]. All three visualizations show

the same genes (genotype) selected for their import-

ance in predicting one of the phenotypes (growth or

non-growth on several sugars). The first visualization

of these data comes from PhenoLink, using

color-coding as an additional dimension of informa-

tion to visualize the relations between 54 genes and

17 phenotypes (Figure 4). This figure highlights: (i)

relations between genes that are relevant to similar

phenotypes; (ii) relations between phenotypes that

share a similar set of related genes and (iii) relations

between individual genes and phenotypes. The

second visualization, made with the graph-based

visualization tool STRING [3], shows proteins as

nodes and predicted pairwise interactions as edges

(Figure 5). This graph shows additional links that

have been mined from publicly available literature

and experimental datasets. The third visualization

(Figure 6) was made with iPath [109], and highlights

the proteins in a global map of metabolic pathways,

placing the selected genes in the context of their

biological system.

CONCLUSIONSAND FUTURE
PERSPECTIVES
Recent technological advances, combined with

large-scale genotype–phenotype association studies,

hold a great promise for microbial functional gen-

omics. Specifically, next-generation sequencing

technologies have made DNA sequencing orders of

magnitude faster and cheaper [27], and advances

including the phenotype microarray [70,71] allow

high-throughput measurement of microbial pheno-

types. However, while bacterial genome sequences

are appearing faster than they can be analyzed, the

consistent measurement of phenotypes across the

sequenced strains is often still lacking. Some ex-

amples of available datasets involving lactic acid bac-

teria include growth on different carbon sources

[26,74,78]] organic acid production (measured in a

single L. plantarum strain grown under different fer-

mentation conditions [110]), adhesion to eukaryotic

cells (Saccharomyces cerevisiae [111]) and IL-10 and
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Figure 4: Different ways to visualize L. plantarum genes that were found to be important to predict growth or
non-growth on multiple sugars using PhenoLink [26]. Color-coded table of links between the 54 selected genes
and growth on different sugars using from PhenoLink. ‘Yes’ or ‘No’ suffixes in column names indicate growth and
non-growth, respectively. Asterisks (*) besides gene names (rows) indicate that the gene could not be mapped to
COGs (see Figure 6).The color scheme integrates the importance of genes to predict phenotypes, and their occur-
rence in strains with that phenotype: bright red/green indicates genes that are important to a phenotype and
present/absent in �75% of the strains with this phenotype; dim red/green indicates genes that are not important
to a phenotype but are present/absent in �75% of the strains with this phenotype; black indicates genes that are im-
portant to a phenotype but are not sufficiently present/absent (<75%) in strains with this phenotype; gray indicates
genes that are not important to a phenotype and are not sufficiently present/absent (<75%) in strains with
this phenotype.
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IL-12 response in human cell lines (measured for

42L. plantarum strains [112,113]).

The association methods described herein for dis-

covering genotype–phenotype associations can also

be applied to other types of data. For example, it

may be valuable to link metagenomic entities includ-

ing functions or taxa (operational taxonomic units)

observed across metagenomic samples to clinical

[114] or environmental [115] metadata. Indeed, dis-

covery approaches have been published for such

‘metagenome-wide’ association of environmental

parameters to metagenomic entities [115–117].

One of the disadvantages of the static measures of

genotype described in this review (e.g. presence of

OGs, phages and SNPs on the genome) is that they

do not take into account other levels of cellular regu-

lation, such as gene expression and protein abun-

dance. Although the presence of OGs, phages or

SNPs on a genome may have important conse-

quences for the functioning of an organism, the

question remains whether the gene product is actu-

ally present and functional. Addressing this issue, the

first transcriptome-trait matching studies have re-

cently been published [110,118], which are a

Figure 5: Different ways to visualize L. plantarum genes that were found to be important to predict growth or
non-growth on multiple sugars using PhenoLink [26]. STRING evidence graph [3] of all 53 genes important for
growth or non-growth on multiple sugars (all phenotypes combined). The gene lp_3111 did not encode a protein and
was omitted from this figure.
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particularly attractive way of comparing genotype

and phenotype, and designing testable hypotheses.

These studies determined the transcriptomes of a

single strain grown under different conditions.

Moreover, several phenotypes were measured in

each of these cultures, including the production of

organic acids, and the survival in the gastrointestinal

tract. These phenotypes were then linked to the

genes identified in the transcriptomes to discover

which gene products correlated best with each spe-

cific phenotype.

Future microbial genotype–phenotype association

studies will require the integration of consistent

genome annotations with consistent phenotypic data-

sets, available in a computer readable format. The

challenge does not lie in the generation of sequence

data or in the development of novel statistical tech-

niques, but rather in the generation, annotation and

databasing of phenotypic data about the genomes and

metagenomes that are being studied. Novel compu-

tational techniques, see for example [102], applied to

these large datasets will allow determining interacting

genes or SNPs that govern currently not understood

complex phenotypes. These findings in turn will fuel

the prediction of novel microbial properties for newly

sequenced strains.

Key points

� The growing number of (draft) genome sequences constitutes a
rich resource formicrobial functional genomics.

� Phenotypes should be consistently measured and documented
for the sequenced strains, so that computational tools can be
readily applied.

� Datasets of consistently measured phenotypes across a collec-
tion of sequenced strains are still rare.

� Visualization can turn the sometimes abundant statistically sig-
nificant genotype^phenotype associations into biological
interpretations.
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