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Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, are
chronic, relapsing intestinal inflammatory disorders. Although the molecular mechanisms
governing the pathogenesis of IBD are not completely clear, the main factors are
presumed to be a complex interaction between genetic predisposition, host immune
response and environmental exposure, especially the intestinal microbiome. Currently,
most studies have focused on the role of gut bacteria in the onset and development of
IBD, whereas little attention has been paid to the enteroviruses. Among of them, viruses
that infect prokaryotes, called bacteriophages (phages) occupy the majority (90%) in
population. Moreover, several recent studies have reported the capability of regulating the
bacterial population in the gut, and the direct and indirect influence on host immune
response. The present review highlights the roles of gut phages in IBD pathogenesis and
explores the potentiality of phages as a therapeutic target for IBD treatment.
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INTRODUCTION

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are
chronic disorders characterized by persistent inflammation in the gastrointestinal tract (Abraham
and Cho, 2009). In recent years, the incidence of IBD has increased year by year, with a significant
burden on the global economy and public health (Molodecky et al., 2012; Kaplan, 2015). Current
drugs can only relieve symptoms, but can’t cure this disease. Therefore, it is urgent to uncover the
specific etiology of IBD, and explore effective treatment strategy.

The specific etiology of IBD is complicated and remains unclear so far. However, researches have
demonstrated that the genetic factors, the host immune system, and the environmental factors (e.g.,
intestinal microbiota) are associated with the initiation and development of IBD (Maloy and Powrie,
2011; Geremia et al., 2014; Ananthakrishnan et al., 2018; Turpin et al., 2018). In particular, the roles
of gut microbiota in the pathogenesis of IBD has gained a lot of attention. Accumulating evidence
has demonstrated that IBD is accompanied with the dysbiosis of intestinal bacteria (Ni et al., 2017;
Sartor and Wu, 2017; Vemuri et al., 2017; Guan, 2019). However, except for the bacterial
components, abundant viruses, especially prokaryotic viruses (phages) reside in the human gut
(Reyes et al., 2010; Minot et al., 2011). More precisely, 90% of all enteroviruses are phages, and the
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remaining 10% are plant and animal viruses (Breitbart et al.,
2003). It is estimated that the human gut contains approximately
1015 phages in total (Dalmasso et al., 2014; Carding et al., 2017),
which outnumbering the gut bacteria (1014) by 10 folds (Qin
et al., 2010). In addition to occupy the huge population, the gut
phages can also shape the bacterial community structure by
lysing and killing the host bacteria, modulate the immune
response, and mediate the anti-inflammatory response (Ogilvie
and Jones, 2015; Łusiak-Szelachowska et al., 2017; Gogokhia and
Round, 2021). Hence, further understanding of the alterations of
gut phage community, and interactions between gut phages and
host immune system are helpful for elucidating the underlying
molecular mechanisms of pathogenesis in IBD.

So far, the current traditional medical drugs (e.g.,
aminosalicylates, corticosteroids, and immunosuppressive
agents) and surgical operations for IBD treatment focused
mostly on the relief of clinical symptoms and the disease’s
secondary effects (Anand B. Pithadia, 2011; Magro et al.,
2020). More recently, with the deep understanding of
microbiota-related pathogenicity in IBD development, the
advent of biological agents opens up a new era for the
management of IBD. Moreover, the treatment goal has also
evolved from control of intestinal inflammation toward
mucosal healing, including a restoration of mucosal barrier
function (Mao and Hu, 2016). Apart from probiotics,
prebiotics, synbiotics and fecal microbiota transplant, phage
therapy has also been considered as a potential tool for
microbiota modification (Oka and Sartor, 2020).

In this review, we provide an overview of the biology of
phages, interactions between phages and their host bacteria, the
gut phages community in healthy individuals, the alterations of
gut phages in IBD patients and experimental models, and the
underlying molecular mechanisms (e.g., immune and
inflammatory regulation) that involved in the initiation and
progression of IBD. Besides, phage-based therapeutic
approaches for IBD treatment will also be discussed.
PHAGE BIOLOGY AND INTERACTIONS
WITH BACTERIAL HOST

Phages are viruses that infecting prokaryotic cells (e.g., bacteria
and archaea), couldn’t reproduce without the host cellular
machinery. Just like eukaryotic viruses, phages are either
DNA- or RNA-based viruses, and the vast majority (96.3%) of
them belong to the double-stranded DNA (dsDNA) viruses
(Ackermann and Prangishvili, 2012).The host range of phage is
defined as the strains or species of bacteria that a phage is able to
infect (Hyman and Abedon, 2010). Most phages are only capable
of infecting a narrow range of bacteria that are closely related.
This specific selection depends on various factors, such as the
specificity of phage’s host binding proteins, biochemical
interactions during infection, presence of related prophages or
particular plasmids, and bacterial phage-resistance mechanisms
(Weinbauer, 2004; Diaz-Munoz and Koskella, 2014; Letarov and
Kulikov, 2017).
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The life cycles of phages encompass four patterns: lytic,
lysogenic, chronic, and pseudolysogenic cycles (Weinbauer,
2004). In general, obligatory lytic phages (e.g., phage T1, T4 or
T7) replicate through the lytic cycle. They bind to specific host-
cell receptors, penetrate and infect host cell, hijack host cell’s
replication and translation machinery to produce virions,
produce lytic enzymes to lyse host cell, and finally release
virions into the surrounding environment (Fernandes and Sao-
Jose, 2018). Different from lytic phages, temperate phages (e.g.,
phage l, P1 or P2) replicate through the lysogenic or lytic cycle.
In a lysogenic cycle, they do not kill host cell and produce virions,
but instead integrate the phage genome into the host’s
chromosome or maintain as a plasmid, replicate with the
bacterial host, and transmit to its progeny at each cell division
(Carding et al., 2017). However, under some environmental
stressors, such as DNA damage response, changes in nutrients,
PH or temperature, exposure to antibiotics, hydrogen peroxide
or foreign DNA, the temperate phages can be activated and
switched to the lytic cycle (Howard-Varona et al., 2017).

Compared with the lytic and lysogenic cycle, the chronic cycle
and pseudolysogeny remain poorly described. The chronic life
cycle occurs in archaeal viruses or some filamentous phages (e.g.,
phage M13), which is characterized by continuously releasing the
newly formed virions and affecting the growth rate of the
infected host cell without causing the cell lysis (Munson-
McGee et al., 2018; Stone et al., 2019). However, in a
pseudolysogenic cycle, the phage genome neither integrates
into the host cell’s chromosome nor propagates to produce
newly virions. This phenomenon can be observed in poor
nutritional conditions that limited bacterial DNA replication
or protein synthesis (Cenens et al., 2013; Mirzaei and
Maurice, 2017).
CHARACTERISTICS OF GUT PHAGES IN
HEALTHY INDIVIDUALS

It has been confirmed that the first colonization and initiation of
intestinal microbiota begins during the delivery process (Fanaro
et al., 2003; Salazar et al., 2014). Accumulating evidence suggests
that the gut bacteria is relatively simple in the beginning of life,
then it changes rapidly within the first few days after birth, and
then ultimately becomes more diverse and stable over time
(Sakata et al., 2005; Klaassens et al., 2007; Yatsunenko et al.,
2012; Pilar Manrique et al., 2016). But whether gut phages follow
this pattern or not?

The gut phage consists of two elements, the temperate phage
located within bacterial genomes and the free virions or virus-
like particles (VLPs) (Sutton and Hill, 2019).The first study
describing the infant gut phage community was conducted in
fresh fecal samples (collected from one week to three months of
age) by Breitbart et al. in 2008 (Breitbart et al., 2008). Direct
epifluorescence microscope (EFM) counts showed that the
meconium (the first fecal excretion of a newborn) couldn’t
detect any VLPs. However, about 108 VLPs per gram wet
weight of feces were detected by the end of the first week.
November 2021 | Volume 11 | Article 755650
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Moreover, the following metagenomic sequencing analysis
demonstrated that the identifiable sequences were dominated
by dsDNA phage groups, such as Sipho-, Podo-, and Myoviruses.
In addition, they also found that the diversity of the infant fecal
viral community was extremely low and dynamic. This finding is
consistent with previous studies, that low microbial diversity in
infant guts (Magne et al., 2006; Breitbart et al., 2008). Later in
2015, another two studies also showed high dynamics of gut
phages community during the first 2 and 2.5 years of life,
respectively (Lim et al., 2015; Reyes et al., 2015). In addition to
phages from the Caudovirales order (Siphoviridae, Inoviridae,
Myoviridae and Podoviridae families), Lim et al. also described
the presence of Microviridae family (single-stranded DNA
genome) in the dominated phages, and a shift of phage
community from Caudovirales-dominated to Microviridae-
dominated composition by 24 months of age (Lim et al., 2015).
Moreover, they also found that the richness and diversity of gut
phages was greatest in the first 4 days of life, and then decreased
with age (Lim et al., 2015).

Just like gut bacteria, the gut phage community is relatively
stable in adults compared with infants (Lawrence et al., 2019).
Studies have indicated that the gut phage community is
dominated by temperate phages, and unique to individuals
regardless of the genetic relatedness (Reyes et al., 2010). The
extreme interpersonal diversity of human enteroviruses derives
from two sources, i.e., persistence of a small portion of the global
virome within the gut of each individual and rapid evolution of
some long-term virome members (e.g., Microviridae) (Samuel
Minot et al., 2013). Additionally, another recent research
characterized the gut phage community as a mixture of three
classes, including a core shared by more than 50% of individuals,
another core found in 20-50% of people, and a set of phages that
are rarely shared or unique to a person (Pilar Manrique et al.,
2016). Furthermore, another study also reported the temporal
stability and inter-individual diversity, and the predominance of
virulent crAss-like (infecting bacteria of the order Bacteroidales)
and Microviridae phages in the gut (Shkoporov et al., 2019).
Significantly, the crAss-like phages are the most abundant
viruses in the human gut, that accounting for up to 90% of the
reads from human fecal viral metagenomes, and about 22% of
the reads in the total metagenome (Dutilh et al., 2014; Yutin
et al., 2018; Shkoporov et al., 2019). It is estimated that
approximately 1015 phages exist in the intestine, which
outnumber the commensal bacteria by 10-fold (Lozupone
et al., 2012; Carding et al., 2017; Neil and Cadwell, 2018; Lin
and Lin, 2019; Matijasic et al., 2020). However, about 108 -109

VLPs were detected in a gram of wet weight feces by direct
counting with microscopy (Breitbart et al., 2008; Kim et al., 2011;
Hoyles et al., 2014).

In general, current methods for studying the gut virome are
dependent on direct observation and counting of VLPs by using
EFM and transmission electron microscopy (TEM), isolation of
individual phages infecting specific host bacteria strains by
culturing, and the newly booming high-throughput
metagenomic sequencing and bioinformatics technology
(Shkoporov and Hill, 2019). Given that most of the viral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
metagenomic data can’t be found in the public databases,
studies for the gut phage composition and function are just
beginning (Reyes et al., 2012; Aggarwala et al., 2017).
ROLES OF GUT PHAGES IN IBD
PATHOGENESIS

As described above, the gut phage community maintains
dynamic equilibrium under normal physiological conditions,
whereas this balance can be disturbed by various factors, such
as diet, lifestyle modification or pathological status (Minot et al.,
2011; Coughlan et al., 2021; Marongiu et al., 2021). Advancing
evidence has demonstrated that dysbiosis of gut phages may
stimulate the development or aggravate the course of diseases,
such as periodontal disease, Parkinson’s disease, type 2 diabetes,
cancer or gastrointestinal disease (Azeredo et al., 2016; Manrique
et al., 2017; Ma et al., 2018; Tetz et al., 2018; Santiago-Rodriguez
and Hollister, 2019; Maronek et al., 2020). Up to now, a number
of studies have been conducted in clinical samples and
experimental models to demonstrate the relationship between
gut phage homeostasis and the development and progression of
IBD (Norman et al., 2015; Duerkop et al., 2018; Clooney et al.,
2019). According to their experimental results, we concluded
that gut phages may contribute to IBD pathogenesis through the
following three pathways: alteration of gut phage diversity,
regulation of gut bacterial population, and modulation of pro-
inflammatory action and local immune response.

Alterations of Gut Phage Community in
IBD Patients and Experimental Models
Different from bacteria or fungi, there is no universal marker
gene that can be utilized to identify viruses, and the majority of
obtained sequences do not exist in publicly available databases
(Roux et al., 2015; Krishnamurthy and Wang, 2017). As for the
changes of enteric phage community, most current studies are
based on metagenomic sequencing of fecal samples and intestinal
biopsies. Differences have been found between healthy
individuals and IBD patients or experimental models (Table 1).

IBD Patients
Dysbiosis of intestinal bacteria has been implicated in the
initiation and deterioration of IBD, but what is the origin of
dysbiosis? Phages outnumber bacteria by a factor of 10, and exert
a strong influence on bacterial diversity and population
structure. In order to ascertain whether bacterial imbalance in
IBD is related to gut phages, Lepage et al. conducted the first
study in 2008 to measure the total viral community in CD
patients (Lepage et al., 2008). Biopsy samples were obtained to
detect VLPs in the mucosa by using EFM and TEM. Viral
abundance was compared between healthy individuals and
patients with CD, and also between the ulcerated and non-
ulcerated mucosa of these patients. They found that CD patients
harbored significantly more VLPs than healthy individuals
(2.9×109 vs. 1.2×108 VLPs/biopsy), whereas CD ulcerated
November 2021 | Volume 11 | Article 755650
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mucosa contained less VLPs than non-ulcerated mucosa
(2.1×109 vs. 4.1×109 VLPs/biopsy) (Lepage et al., 2008). More
recently, another study described the mucosa virus in patients
with UC. Results showed a high abundance of Caudovirales
phages, but decreased diversity, richness and eveness of mucosa
Caudovirales in UC patients compared with healthy controls
(Zuo et al., 2019). Moreover, they also found that abundance of
Escherichia phage and Enterobacteria phage was significantly
higher in the mucosa of UC patients than heathy controls.

In addition to changes of phage population on the mucosa,
alterations in fecal samples and colonic tissues between IBD patients
and healthy controls or between different disease types (CD and
UC) also have been reported. A metagenomics analysis of gut tissue
and wash samples has characterized a large abundance of phages
when compared with pediatric CD patients and control individuals
(Wagner et al., 2013). Moreover, they also found that the largest
proportions of sequences were Bacteroides phage B10-8 and phage
B124-14, and the Mycobacterium phage composition was different
in ileum tissue samples between CD patients and controls (Wagner
et al., 2013). A recent virome sequencing study conducted with the
proximal and distal colonic wash samples from pediatric CD
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
patients demonstrated high interpatient diversity and low but
significant intra-patient variation between different sites (Yan
et al., 2020). In another study, the differences of bacterial and
viral communities in different type of samples from adult CD
patients at different stages were investigated (Perez-Brocal et al.,
2015). They found that phages were more abundant in feces (3
folds) than in biopsies, and the bacterial community reflects the
disease status of individuals more accurately than the viral
communities. Moreover, numerous viral biomarkers specifically
associated with CD disease were identified, that phages infecting
bacterial orders Alteromonadales and Clostridiales, including
bacterial species Clostridium acetobutylicum and Retroviridae
family were increased in subjects with CD (Perez-Brocal et al.,
2015). Another metagenomics analysis of colonic biopsies has
demonstrated that nearly half of the phages were associated with
bacterial strains identified in the colon samples (Wang et al., 2015).
Additionally, a recent study has investigated the dynamics of stool
virome in very early onset (VEO) IBD, which is defined as onset of
IBD before 6 years of age (Liang et al., 2020). Results showed that
there is no significant different of total number of VLPs between
VEO-IBD and healthy controls, but the VEO-IBD subjects exhibit a
TABLE 1 | Overview of gut phage community alterations in IBD patients and animal models.

Subjects Samples Results Reference

CD patients
(n=19)

Biopsies More VLPs in CD patients than healthy individuals on the mucosal level. Less VLPs in CD ulcerated mucosa than
non-ulcerated areas.

(Lepage
et al.,
2008)

UC patients
(n=91)

Rectal mucosa Increased abundance, but decreased diversity, richness and evenness of Caudovirales phages in UC mucosa. More
abundant Escherichia phage and Enterobacteria phage in UC mucosa.

(Zuo et al.,
2019)

CD patients
(n=6) Pediatric

Ileal biopsies;
colonic biopsies;
gut wash
samples

Increased abundance of Phage composition in CD patients than control individuals. The largest proportion of
sequences were Bacteroides phage B40-8 and phage B124-14.

(Wagner
et al.,
2013)

CD patients
(n=5) Pediatric

Colonic wash
samples

The mucosal-luminal interface virome is subject specific. (Yan et al.,
2020)

CD patients
(n=20) at
different stage

Stool samples;
Biopsies

Increased abundance of Phage composition in CD patients than control individuals. Phages in fecal samples were 3-
fold more than in biopsies. Alteromonadales and Clostridiales phages were increased in CD subjects.

(Perez-
Brocal
et al.,
2015)

IBD patients
(n=10)

Colonic biopsies The majority of DNA Viruses within the virome were phages. Nearly half of the phages were associated with bacterial
strains identified in the colon samples.

(Wang
et al.,
2015)

IBD patients
(n=54) VEO

Stool samples The VEO-IBD subjects have a higher ratio of Caudovirales versus Microviridae compared to healthy controls. (Liang
et al.,
2020)

CD patients
(n=18); UC
patients (n=42)

Stool samples A significant expansion of Caudovirales phages in IBD patients, and the virome of CD and UC patients were disease-
and cohort- specific.

(Norman
et al.,
2015)

CD patients
(n=27); UC
patients (n=42)

Fecal sample A healthy core of virulent phages is replaced by temperate phages in IBD. (Clooney
et al.,
2019)

CD patients
(n=7); UC
patients (n=5)
Pediatric

Fecal samples The relative abundance of Caudovirales was greater than that of Microviridae phages in both IBD and healthy
controls. Caudovirales phages were more abundant in CD than UC but not controls. The richness of viral strains in
Microviridae but not Caudovirales was higher in controls than CD but not UC cases.

(Fernandes
et al.,
2019)

CD patients
(n=65)
UC patients
(n=38)

Stool samples Phage community compositions were highly specific to each individual. Different abundance of temperate phages
was identified between IBD and non-IBD patients. In active UC patients, temperate phages infecting Bateroides
uniformis and Bacteroides thetaiotaomicron were over-represented in comparison with non-IBD patients.

(Nishiyama
et al.,
2020)

C57BL/6 mice
(n=3)

Fecal samples A decrease in phage community diversity, and an expansion of subsets of phages in animals with colitis. Abundance
of Clostridials phages decreased during colitis.

(Duerkop
et al., 2018)
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higher ratio of Caudovirales versus Microviridae compared to
healthy controls (Liang et al., 2020).

As mentioned above, differences of gut phages population
between CD and UC patients have also been investigated. A
metagenomics analysis of stool samples from CD and UC
patients demonstrated that Caudovirales phages significantly
increased in IBD patients compared with healthy cohorts.
Moreover, the gut phage community of CD and UC patients
were disease- and cohort-specific (Norman et al., 2015). Later,
Clooney et al. reanalyzed the above published dataset of healthy
and IBD gut virome. Evidence has been found to prove that a
healthy core of virulent phages is replaced by temperate phages in
CD patients (Clooney et al., 2019). In another study, Fernandes et al.
investigated the fecal virome in children with CD, UC and age-
matched healthy controls. Results indicated that the relative
abundance of Caudovirales was greater than that of Microviridae
phages in both IBD and healthy controls, and the Caudovirales
phages were more abundant in CD than UC (p=0.05) but not
controls, and the richness of viral strains in Microvioridae but not
Caudovirales was higher in controls than CD (p=0.05) but not UC
cases (Fernandes et al., 2019). Another recent study demonstrated
the ecological structure of the human gut temperate phage
community by using publicly available whole-metagenome
shotgun sequencing data (Integrative, 2014; Lloyd-Price et al.,
2019; Nishiyama et al., 2020). Consistent with previous reports,
they found the compositions of temperate phage community were
highly specific to each individual and the abundance was different
between IBD patients and non-IBD patients. In addition, temperate
phages infecting Bacteroides uniformis and Bacteroides
thetaiotaomicron were over-represented in active UC patients,
whereas their hosts were under-represented in comparison with
non-IBD patients (Nishiyama et al., 2020).

Animal Experiments
Apart from researches conducted in IBD patients, animal
experiments have also been an important pathway to explore the
roles of enteric phages in IBD pathogenesis. A recent metagenomics
study indicated that the intestinal phage population altered and
transited from an ordered state to a stochastic dysbiosis in a mice
model with colitis (Duerkop et al., 2018). Interestingly, these
alterations are similar to those observed in human IBD patients
(Norman et al., 2015). Additionally, they observed a decrease in
phage community diversity, an expansion of subsets of phages and a
decrease of certain phages number (e.g., Clostridiales phages) during
colitis (Duerkop et al., 2018).

In conclusion, current researches are focused on describing fecal
andmucosal phage communities by usingmetagenomic sequencing
and bioinformatic analysis. Most of the studies demonstrated the
increased abundance and decreased diversity of Caudovirales
phages both in CD and UC in comparison with health controls.
However, another recent study showed no significant difference of
gut phage number between IBD and healthy controls (Liang et al.,
2020). Some of the experiments also showed alterations of certain
phages, such as increased Escherichia phages and Enterobacteria
phages in UC mucosa, decreased Clostridials phages during colitis,
and increased Alteromonadales and Clostridiales phages in CD
subjects (Figure 1).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Phages Affect IBD Through Bacterial
Modulation
Virulent phages that are capable of lysing host bacteria were
commonly found in the gut of patients with IBD (Clooney et al.,
2019). It has been shown that phage invasion affected host
bacteria, resulting in changes in bacterial abundance of specific
species (Reyes et al., 2013). Researches have reported the
dysbiosis of gut bacteria both in CD and UC patients, with a
decreased diversity, expanded potentially pathogenic
proteobacteria (e.g., E. coli, Fusobacteria) and reduced
potentially protective Firmicutes (e.g., Faecalibacterium
prausnitzii, Rumininococci and Clostridium clusters IV and
XIVa) (Frank et al., 2007; Hoarau et al., 2016; Lloyd-Price
et al., 2019). Nishiyama et al. have demonstrated an increased
abundance of phages infecting Bacteroides uniformis and
Bacteroides thetaiotaomicron, and a decreased abundance of
their host bacteria (Nishiyama et al., 2020). Combining the
above two information, we can infer that there is a certain
relationship between the phage number and its host bacteria
population. Germ-free (GF) animals, without any microbial
colonization in their intestines, are perfect model systems for
gut microbiota related studies (Uzbay, 2019; Qv et al., 2020). A
recent study investigated in GF mice models showed that phage
predation directly impacts susceptible bacteria, leading to
cascading effects on other bacterial species, with consequences
on the gut metabolome (Hsu et al., 2019).

Except for virulent phages, temperate phages can also
influence bacterial fitness and diversity (Brussow et al., 2004).
Phages substantially contribute to the genetic variability of
bacteria by horizon gene transfer and increasing of the
mutation rate (Abeles and Pride, 2014; Janka Babickova, 2015).
Prophages carrying genes encoding antibiotic resistance may
provide evolutionary advantages to pathogenic or probiotic
bacteria. Besides, stress-induced activation of a prophage
dormant in commensal or pathogenic bacteria might lead to
the activation of its lytic cycle, thereby reduce the amount of the
host bacteria. A metagenomic study showed a higher prevalence
or abundance of phages infecting Faecalibacterium prausnitzii in
stools of IBD patients than in those of healthy controls
(Cornuault et al., 2018). Since less Faecalibacterium prausnitzii
has been reported in IBD patients, they suggested that phages
could trigger or aggravate Faecalibacterium prausnitzii depletion.
But how or whether these phages being activated into lytic cycle
in patients are not being described.

Overall, the current evidence is still limited,howphagesdirectly or
indirectly impact bacterial communities are barely unclear and
speculatively feasible. A recent review also proposed a theoretical
model of temperate phages inmediating the gut bacteria community
(Lin et al., 2019). Further experimental studies are needed to reveal
the complicated phage-bacteria interactions in IBD.

Phages Affect IBD Through Immune
Modulation
It is well acknowledged that IBD is associated with the imbalance of
immune response and inflammatory reaction. Studies have showed
a relief of enteric viruses (rotavirus) in gut inflammation via toll-like
receptor (TLR) 3 and TLR7-mediated interferon-b (IFN-b)
November 2021 | Volume 11 | Article 755650
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production (Yang et al., 2016). While phages do not infect
mammalian cells, several studies have demonstrated the direct
and indirect influence of these prokaryotic viruses on host
immune system (Hodyra-Stefaniak et al., 2015; Bollyky and Secor,
2019; Gogokhia and Round, 2021). Indeed, phages have been
suggested to be a key element that helps to shape innate, humoral
and cell-mediated immunity (Duerkop and Hooper, 2013).

First, phages act as a prominent defender of the mucosal
barrier against bacteria. In vitro studies have showed that phages
can adhere to mucus layer, thereby reduced microbial
colonization and pathology. The adherence of phages was
mediated by interactions between displayed immunoglobulin
(Ig)-like domains of phage capsid proteins and glycan residues,
such as those in mucin glycoprotein (Barr et al., 2013a).

In addition to provide a non-host-derived immunity, phages
can also provide an acquired antimicrobial immunity, and help
to control local inflammatory and autoimmune reactions in the
gut (Górski and Weber-Dabrowska, 2005; Barr et al., 2013b). A
recent study showed that both induction of innate and adaptive
immunity was upregulated in phage-treated animals (Gogokhia
et al., 2019). Results showed that the percentage of CD4+ and
CD8+ T cells in the mesenteric lymph nodes (MLNs) were
significantly increased. Besides, the proportions and numbers
of CD4+ T cells within the Peyer’s patches (PP) were higher in
GF mice that treated with phages compared with GF mice
(Gogokhia et al., 2019). And in vitro experiments suggested
that dendritic cell recognition of phage DNA can stimulate
IFN-g production through a TLR-9 dependent pathway, which
functioned to exacerbate the intestinal inflammation and
contribute to disease severity (Gogokhia et al., 2019).
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Last but not least, just like bacteria, phages can pass the
intestinal wall and migrate to lymph, peripheral blood and
internal organs, and then directly modulate the host immune
system (Górski et al., 2006). Besides, results have demonstrated
that bacterial translocation from the gut to tissue induces
inflammation and development of metabolic disease (Burcelin,
2016). Phages could limit bacterial translocation by directly
eliminating sensitive bacteria, thereby indirectly inhibit gut
inflammation that caused by bacterial translocation. Moreover,
phages may downregulate gut immune cells such as dendritic
cells and prevent pro-inflammatory action of these cells (Górski
et al., 2012; Górski et al., 2016).

In conclusion, the current available data concerning the
influence of gut phages on IBD by immune modulation is
limited. The idea we came up above is based on the immune
disorders in IBD and the regulation of immune response showed
in phages. Further studies focused on the interactions between
gut phages and immune response in IBD patients or animal
models are urgently needed.
USE OF PHAGES FOR IBD TREATMENT

Due to the relapsing inflammatory disorders in IBD patients,
controlling of intestinal inflammatory is the primary target of
treatment. Currently, traditional therapies includes 5-
aminosalicylic acid derivatives (e.g., sulfasalazine and
mesalazine), corticosteroides (e.g., prednisone, hydrocortisone,
bud e s on i d e , p r e dn i s o l on e , d e x ame th a s on e ) and
immunosuppressive agents (e.g., azathioprine, methotrexate,
FIGURE 1 | Characteristics of gut phage community and phage associated immune modulation in IBD. Compared with healthy gut, more caudovirales phages are
found in the intestinal lumen and mucus layer. Moreover, some specific phage community changes have been demonstrated in CD and UC. In CD, an increased
abundance of temperate phages and phages infecting bacterial order Alteromonadales, Clostridiales, Retroviridae family and Clostridium acetobutylicum, and a
decreased abundance of Microviridae phages have been reported. In UC, numbers of phages infecting Escherichia, Lactobacillus and Bacteriodes (e.g., Bacteroides
uniformis and Bacteroides thetaiotaomicron) and Enterobacteria phages increased, whereas Clostridiales phages decreased. It should be noted, however, some of
the above results are just concluded from a single experiment, and that can’t be compared with each other, due to different samples and methods are used.
Additionally, impaired epithelial barrier in IBD lead to increased intestinal permeability, that lead to the migration of many phage particles into the lamina propria or
even the circulation. In vitro experiments showed that recognition of phage DNA via TLR9 on dendritic cells stimulated the production of IFN-g, thereby aggravated
intestinal inflammation.
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mycophenolate, cyclosporine, tacrolimus, 6-mercaptopurine)
(Moja et al., 2015; Wang et al., 2016; Matsumoto et al., 2016;
Bots et al., 2018; Sokollik et al., 2018; Damiao et al., 2019; Nielsen
et al., 2020; Antunes et al., 2021). Although these therapies have
been proved effective in IBD patients, severe adverse events with
impaired quality of life can’t be ignored (Quezada et al., 2018).
Recent compelling evidence has demonstrated the crucial roles of
resident microbiota in driving immune dysfunction and
inflammation in IBD, thereby microbial-targeted therapies are
being studied for IBD treatment (Oka and Sartor, 2020).
Probiotics, prebiotics and fecal microbiota transplant are
commonly used for microbiota-targeted therapies, which have
been proved to be safe and potentially effective for correcting the
dysregulated immune response (Derwa et al., 2017; Laurell and
Sjoberg, 2017; Gagliardi et al., 2018; Zuo and Ng, 2018; Cohen
et al., 2019). Besides, phage therapy, as another effective method
for restoring gut microbiome homeostasis (Dixit et al., 2021), has
also been proposed as a therapeutic target for IBD treatment.

Indeed, phages has long been used as a therapy to treat bacterial
infectious diseases (e.g., cholera and bacillary dysentery), due to
their function of lysing host bacteria (Summers, 1993; Ho, 2001). In
particular, with the increasing emergence of multi-drug resistance
bacteria, phages are being explored in targeting and killing specific
infectious bacteria that associated with intestinal infection, such as
Clostridioides difficile in colitis (Park et al., 2019) and Fusobacterium
nucleatum in colorectal cancer (Machuca et al., 2010). In addition to
their antibacterial activity, current phage therapy also focused on the
immunomodulating properties.

Currently, phage therapy used for IBD treatment mainly
targeted to the adherent invasive Escherichia coli (AIEC).
Compared with healthy individuals, the AIEC strains were much
more common in CD patients (Lamps et al., 2003). Moreover,
studies have suggested the involvement of AIEC strain in
maintaining intestinal inflammation in IBD (Sartor and Wu,
2017; Carolina Palmela et al., 2018; Chervy et al., 2020). Several
researches have showed the effectiveness of phages in reducing
intestinal E. coli colonization (Vahedi et al., 2018; Yu et al., 2018).
Vahedi and his colleagues isolated specific phages against
enteropathogenic E. coli from hospital sewage, and proved that
single dose of phage cocktail (2×109 PFU/mL) was able to control
the bacteria infection (Vahedi et al., 2018). A recent study has tested
phage therapy against AIEC strain in a dextran sulfate sodium
(DSS) induced colitis mouse model (Galtier et al., 2017). Results
showed that a single day of oral treatment with phage cocktail
significantly decreased the colonization of AIEC strain LF82, with
reduced symptoms over a 2-week period. Additionally, in a double-
blinded, placebo-controlled crossover trial, administration of a
commercial cocktail of E. coli-targeting phages for 28 days
selectively reduced the fecal E. coli loads without globally disrupt
the gut microbiota community and increased anti-inflammatory
cytokines IL-4 (Febvre et al., 2019).

In addition to the in vivo animal models, in vitro models also
play vital roles in testing the therapeutic activity of gut phages. A
recent study has developed an intestinal epitheliummodel able to
produce mucus by co-culturing Caco-2 and HT29-MTX (4:1
ratio) cells (Nunez-Sanchez et al., 2020). This mammalian cell
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model will enable a better understanding of phage-bacteria
interactions and the protective effects of phage therapy.

Collectively, researches about the efficacy of phage therapy in
IBD treatment is scarce, either in clinical trials or animal
experiments. More further studies are needed to clarity the ability
of phages in modulate intestinal microbiota balance and immune
response. Although the purified formulation of phages has been
proved to be non-toxic (Divya Ganeshan and Hosseinidoust, 2019;
Dixit et al., 2021), the safety of phage therapy still needed to be taken
into consideration. Besides, researchers have also suggested the
timing of administration of phage therapy as a challenge in the
future studies (Janka Babickova, 2015).
CONCLUSIONS AND PERSPECTIVES

As a widespread and incurable enteric disease, it is urgent and
meaningful to reveal the pathogenic mechanisms of IBD. Studies
that exploring the roles of gut microbiome in IBD pathogenesis
should not focus solely on the bacterial composition, but neglect the
enteroviruses, especially gut phages, which are huge number and
closely related to the bacteria. The recent fast-growing in high-
throughput sequencing and bioinformatics technologies has
enabled major advances in human gut phageome researches.
Current scattered researches have uncovered an increased
abundance and decreased diversity of caudovirales phages in IBD
patients or experimental models in comparison with healthy
individuals. However, the majority of identified phage sequences
are not yet taxonomically classified, that is to say annotated
sequences do not exist in the public databases (Dalmasso et al.,
2014; Shkoporov and Hill, 2019). Therefore, insights based on viral
taxonomy require careful consideration. In the mucosa, CD patients
were found to have more phages than healthy individuals, whereas
the ulcerated mucosa had fewer phages than unaffected mucosa
(Lepage et al., 2008). This paradoxical result may be caused by the
incomplete databases. Moreover, methods that used in existing
studies vary, that can impede our ability to compare the outputs of
different studies. To be noted, whether an altered phageome is the
consequence or the cause of IBD is currently not fully understood.
Besides, the underlying mechanisms of phages affecting IBD
through bacterial modulation and immune regulation still needs
more experimental evidence.

Limited understanding of phage biology and disease
microbiology suppressed the usage of phage therapy. Current
phage therapy for IBD treatment mainly targeted the AIEC
strain. The discovery of gut bacteria that directly linked to IBD
development will accelerate the application of phage therapy.
Besides, the efficacy of phage therapy should also pay attention to
the influence of phages on immune response apart from the
antibacterial properties.

In conclusion, many key information about the human gut
phageome, phage-bacteria interactions, and phage-host interactions
remains unclear. In the future, further optimization of techniques
for phage isolation and identification may be required. Additionally,
more in vivo and in vitro studies are needed to elucidate the roles of
gut phages in IBD development and treatment.
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