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Abstract: Sarcopenia is a geriatric condition characterized by a loss of strength and muscle mass,
with a high impact on health status, functional independence and quality of life in older adults.
To reduce the effects of the disease, just the diagnostic is not enough, it is necessary more than
recognition. Surface electromyography is becoming increasingly relevant for the prevention and
diagnosis of sarcopenia, also due to a wide diffusion of smart and minimally invasive wearable
devices suitable for electromyographic monitoring. The purpose of this work is manifold. The first
aim is the design and implementation of a hardware/software platform. It is based on the elaboration
of surface electromyographic signals extracted from the Gastrocnemius Lateralis and Tibialis Anterior
muscles, useful to analyze the strength of the muscles with the purpose of distinguishing three
different “confidence” levels of sarcopenia. The second aim is to compare the efficiency of state
of the art supervised classifiers in the evaluation of sarcopenia. The experimentation stage was
performed on an “augmented” dataset starting from data acquired from 32 patients. The latter
were distributed in an unbalanced manner on 3 “confidence” levels of sarcopenia. The obtained
results in terms of classification accuracy demonstrated the ability of the proposed platform to
distinguish different sarcopenia “confidence” levels, with highest accuracy value given by Support
Vector Machine classifier, outperforming the other classifiers by an average of 7.7%.

Keywords: sarcopenia; surface EMG; machine learning; ageing

1. Introduction

According to the United Nations report published in 2019 [1], the largest growth in the
world population in terms of numerical terms is occurring in the age group 65 and over.

Aging is a multifactorial process that is associated with numerous changes in body
composition, including bone mass, muscle mass and adipose tissue composition. Muscle,
being the largest organ in the body constituting 40% of body mass, shows a progressive
reduction in size and number of muscle fibers (up to 30%) in an age-dependent manner from
25 to 80 years of age [2]. This loss of muscle mass and strength may result in “sarcopenia”.

The term “sarcopenia” was first introduced by Rosenberg [3] and it is derived from
the Greek words, “sarx” meaning flesh and “penia” meaning loss. This type of disorder
is mainly observed in advanced stages in the elderly, but it is known that individuals
start losing muscle from about 40 years of age or even younger and the rate of muscle
loss accelerates with age [4]. In addition, the study reported in [5] shows that about
5–13% of people aged 60–70 years are sarcopenic, and among people aged 80 years and
older, the prevalence has been estimated to be up to 50%. Although there is little data on
the economic burden of this type of disease, its impact on national health services and
hospitalized individuals is expected to be high [6]. In a study [7] published in 2004 and
conducted in America on a sample of adults over 60 years of age, it was reported that
the estimated health care cost attributable to sarcopenia was $18.5 billion ($10.8 billion in
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men, $7.7 billion in women). Furthermore, in more recent studies published in 2013 and
2015, an increase in costs from sarcopenia observed through computed tomography was
shown [8,9]. Sarcopenia is not easily diagnosed. Moreover, the treatment of sarcopenia
is still challenging because it is not easy to evaluate the time course of its three basic
components, which are (1) muscle mass, (2) physical performance (such as walking speed),
and (3) muscle strength. Many different methods have been adopted for the prevention of
the disease, but exercise and physical activity are considered the most effective [10].

Currently, both muscle mass and strength are assessed by various invasive gold
standard techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography
(CT) or Dual Energy X-ray Absorptiometry (DXA) [11–13]. These clinical examinations,
although widely used, seem to be poorly utilized in this setting due to high equipment
costs and lack of portability. In addition, the equipment/devices involved in these types of
clinical examinations require highly trained medical personnel.

To overcome this limitation and extend the number of devices useful for sarcopenia
assessment, smart sensors are becoming increasingly popular in recent years. For exam-
ple, wearable devices, mobile apps, and embedded systems are frequently considered in
healthcare and their use can undoubtedly be of support in providing early diagnosis and
monitoring of sarcopenia patients.

Electromyography (EMG) is a reliable method of monitoring muscle fatigue and
assessing the function and efficiency of muscles, which is done by identifying their electrical
potentials. There are two types of electromyography analysis: the superficial measurement
method (sEMG) and the intramuscular technique. The first one is less invasive since it uses
non-invasive surface electrodes on the skin [14].

Several papers in the literature have focused on the use of EMG signals in the medical
context [15–19]. In [17], for example, the potential clinical value of sEMG-based tech-
niques in rehabilitation medicine with a focus on neurorehabilitation has been addressed.
Yu et al. [18] developed a wireless medical sensor measurement system, including EMG,
motion detection and muscle strength, to detect fatigue in multiple sclerosis patients.

In addition, the research activity on fatigue/muscle strength analysis is continuously
evolving. In [20] the authors calculated the muscle strength of the biceps brachii using
trained and untrained subjects in static contraction (isometric contraction). This work
analyses the time-frequency response of muscle contraction obtained from the analysis of
raw signals, captured by bipolar surface electrodes placed on the belly of the biceps brachii.
In [21] an EMG patch was designed and developed, which could be worn on the lower
leg (gastrocnemius muscle), to detect muscle fatigue in real-time during exercise. They
also designed and developed an app to display muscle fatigue levels and end-user riding
information. In this context, good performance was obtained using supervised Machine
Learning (ML) schemes. The study reported in [22] investigated the disorder of atrophy
by analyzing the recorded sEMG signals, considering the biceps for detecting atrophy and
evaluating three different classifiers (Linear Discriminant Analysis, Quadratic Discriminant
Analysis and Support Vector Machine—SVM) to separate the samples into two atrophic and
normal classes using different sets of extracted features. The results showed that Quadratic
Discriminant Analysis was the most suitable classifier for detecting this specific disorder.

In [23] the authors introduced two new architectures based on Recurrent Neural
Networks to overcome the difficulties typically encountered in real-time classification of
EMG signals. The performance of these architectures outperformed a number of state-of-
the-art methods by achieving a classification accuracy of 96% while reducing the delay
time to the value of 600 ms. In addition, the work discussed in [24] investigated the
feasibility of a specific ML classifier (SVM) for identifying upper limb intention from sEMG
signals by developing a novel human-machine interface for self-rehabilitation training of
stroke patients.

As highlighted by the state of the art introduced above, sEMG is widely used for the
analysis of specific pathologies but very few works in the literature have focused on the
use of sEMG for the assessment of sarcopenia or its monitoring over time. For example,
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the study proposed in [25] compared the muscle strength of seventy-one hip fracture
patients based on the presence of sarcopenia after surgery and correlated the measured
values between sEMG and dynamometer in the postoperative measurement of muscle
strength. After the trial, the authors concluded that dynamometer and sEMG values were
highly correlated, although no statistically significant difference in muscle strength with or
without sarcopenia was evidenced. On the other hand, the primary purpose of the research
reported in [26] was to examine whether age-specific effects could be observed in the sEMG
representation of healthy individuals engaged in cyclic back extension exercise, seeking to
develop new biomarkers that could be used to screen for very early forms of sarcopenia.

Motivated by the goal of assessing sarcopenia, the primary objective of this research is
the design and implementation of a new platform that integrates smart sEMG technology
and a software module as a Decision Support System (DSS) for healthcare personnel.
The developed system can provide additional information useful for assessing the user’s
muscle condition during physical performance evaluation (typically performed via sit-to-
stand testing and gait speed) in a cost-effective and non-intrusive manner. In addition,
a minimally invasive and easy-to-use DSS that can also be used in nursing homes (or at
home) may facilitate more frequent monitoring than hospital-based surveys. Thus, it can
provide risk indices for sarcopenia or muscle decay, even in the prevention phase. Then,
more in-depth, and invasive, but more accurate, analysis may be required in the clinical
setting. Finally, this type of DSS can also monitor disease progress. In this study, ML,
a sub-branch of artificial intelligence that allows a model to learn automatically from data,
was used. Specifically, the efficiency of eight ML classifiers that enjoy great popularity
in this research area was compared, as there is no predefined and validated model that
guarantees good performance with any type of test data. The integrated platform was
included in an initial validation in a hospital ward to demonstrate the effectiveness of
the platform.

2. Materials and Methods

The sEMG-based platform detailed in this work is a DSS for specialized medical
personnel as well as caregivers, since the entire system is user-friendly in terms of its func-
tionality and output analysis. The proposed platform is made up of two main components:
a hardware system for collecting sEMG signals and a software tool for processing raw EMG
data and extracting sarcopenia-related features. Figure 1 shows a high-level overview of
the platform.

Figure 1. Schematic overview of the proposed sEMG platform.
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Figure 2 shows the positioning of the electrodes on the muscles of the leg involved
in the experimentation (left side) and the interface of the acquisition software with the
highlighted waveforms of the signals acquired (right side).

Figure 2. (a) Positioning of the electrodes on Gastrocnemius Lateralis and Tibialis Anterior muscles;
(b) software interface developed for raw sEMG data acquisition and elaboration.
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Wearable sEMG probes are integrated into the proposed system for raw signals collec-
tion. A commercial product was employed in the final version of the platform. The em-
ployed probes are part of the FREEEMG1000 system, produced by the BTS Bioengineering
situated in Garbagnate Milanese, Italy [27]. In addition to the hardware platform, BTS
Bioengineering provides software libraries for developers (written in the C# programming
language) that also consent to full access to the raw data collected by the probes. The system
is entirely based on wireless technology, and it can use up to ten lightweight, minimally
invasive wireless EMG probes (dimensions are 41.5 × 24.8 × 14 mm and the weight is
about 13 g). The probes are clipped to the pre-gelled Silver/Silver Chloride (Ag/AgCl)
electrodes, providing for a rapid, simple and stable mounting for the user’s movements at
the highest level of usability. The active electrodes permit us to amplify the signals, digitize
them on board and communicate with a USB receiver connected directly to an elaboration
unit (embedded PC in our case). An added value of the proposed hardware is the absence
of wires permitting the end-user to use a full range of motion during task execution without
any restriction and allowing at the same time a quick patient preparation. Furthermore, it
is possible to stream and record raw signal up to 6 h thanks to the rechargeable batteries.

Probes were placed on two muscles of the lower limbs that were involved throughout
the execution of the activities to obtain raw EMG data. These muscles are commonly used
during the execution of exercises that are typically employed to assess physical perfor-
mance for sarcopenia evaluation. In other works, concerning the assessment of muscle
behaviour during walking, good performance in literature was achieved by analysing the
Gastrocnemius Lateralis and Tibialis Anterior muscles [16,28,29]. For this reason, also in
this work these muscles were monitored. One probe was placed on each muscle on both
legs; thus, a total of 4 probes and channels were considered. The probes are placed along
the approximated direction of muscle fibres, with the inter-electrode distance of about
20mm to obtain the maximal surface EMG amplitude. The electrodes for Tibialis Anterior
muscles are applied at about 1/3 of the distance between the tip of the fibula and the tip of
the medial malleolus. As for Gastrocnemius, the electrodes are placed at about 1/3 of the
line head of fibula on the most prominent bulge of the muscle.

From the software point of view, a real-time application has been implemented. The in-
terface design is user-friendly so that it could also be used by medical professionals or
caregivers. The main functions offered are: (1) display of the connection status of the probes
(and relative battery life), (2) entry of the end-user fiscal code to associate the acquisition
session with the user, (3) setting and pairing of the probes, (4) graphic display of the trend
of the raw signals, (5) start and stop of acquisition for any sub-session, (6) buttons for
feature processing and classification of sarcopenia confidence level, (7) visual label with
indication of the confidence level.

The algorithmic pipeline designed for the acquisition, processing, elaboration of the
raw EMG signal and classification of sarcopenia confidence level consists of three main
blocks. In the first block, signal pre-processing techniques have been integrated (such as
filtering and/or normalization of the signals) with the aim of formatting the data for the next
step of extracting the features. The next block of the pipeline implements feature extraction
methodologies, and it is followed by a further logic block designed for the selection of
the most effective set of EMG features for evaluation of the considered pathology. Finally,
a module for the classification of sarcopenia confidence level was implemented. Each block
of the pipeline is detailed in the following. An overview of the platform with a block
diagram representation is shown in Figure 3.
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Figure 3. Overview of the proposed algorithmic pipeline designed and implemented for the distinc-
tion of different confidence levels of sarcopenia. The pipeline reports within the classification block
the supervised classifiers compared in our work.

2.1. DATA Acquisition & Augmentation

A data collection was carried out to test the system’s performance. A total of 32 patients
(19 males, with an average age of 63.95 ± 5.54 years old and 13 females, with an average
age of 65.62 ± 7.30 years old) were recruited from Casa Sollievo della Sofferenza Hospital
in San Giovanni Rotondo (Foggia, Italy). All patients were considered at risk or suffering
from sarcopenia. A larger number of patients were initially planned for testing, but due to
the COVID-19 emergency, the initial 6-month testing phase was reduced to about 2 months.
Testing was performed considering: (a) the SARC-F questionnaire, (b) the muscle strength
analysis through the hand grip-strength test and (c) the functional performance evaluation
by means of sit-to-stand and gait speed tests.

The SARC-F may be considered a suitable tool for community screening for sarcope-
nia [30]. The questionnaire looks at the symptoms of sarcopenia that users have experienced,
such as weakness, the need for assistance when walking, difficulty getting out of a chair,
difficulties mounting stairs and falling. Each of the self-reported parameters is given a
score between 0 and 2 for its minimum and maximum values. SARC-F values ≥ 4 are
associated with the limitation of physical activities and risk of sarcopenia.

The hand grip-strength test was performed using a hand dynamometer with 2 trials
for each hand and alternating sides during the test. The maximum values measured during
all trials were considered for the analysis. As the criterion to define weak grip strength
was considered the cut-offs suggested by the reports of the European Working Group on
Sarcopenia in Older People (EWGSOP2) [12]: 27 kg for men and 16 kg for women.

Sit-to-stand and gait speed tests were performed as shown in Figure 4 and described in
the following. Participants stood up as fast as possible from a sitting position to a standing
position without help from their arms, which were held across their chest or extended to
their sides. After, they walked 5 m and their average speed was measured. Participants
wore sEMG sensors as described in the previous paragraph. The sit-to-stand phase was
used to acquire electromyographic data useful for evaluating lower body strength, while
gait speed was considered to analyse the physical performance of users. Slow gait speed
was defined using EWGSOP2 reference value of <0.8 m/s [12].



Sensors 2022, 22, 2721 7 of 17

Figure 4. Sit-to-stand and gait speed tests.

To reduce the interindividual variability of EMG signals among different users, Maxi-
mum Voluntary Contraction (MVC) values are calculated. For MVC evaluation, the mean
of data is estimated in the following three conditions: (1) the subject is in rest state for
a period of 5 s to obtain a baseline signal; (2) the subject performs plantar flexion of the
ankle against a fixed resistance and keeps it constant for 5 s to obtain the highest possible
sEMG signal, resulting from the contraction of the Gastrocnemius Lateralis muscle; (3) the
subject performs plantar flexion of the ankle against a fixed resistance and keeps it constant
for 5 s to obtain the highest possible sEMG signal resulting from the contraction of the
Tibialis Anterior muscle. The mean of the values thus acquired was used to normalize the
processed data.

To define the confidence level of sarcopenia in the patients under examination and label
the acquired electromyographic signals accordingly, the following criteria were applied:

• confidence level 1: if SARC-F ≥ 4;
• confidence level 2: if SARC-F ≥ 4 and hand grip-strength < cut-off values;
• confidence level 3: if SARC-F ≥ 4 and hand grip-strength < cut-off values and gait

speed < 0.8 m/s.

The guidelines in “EWGSOP2” were considered to define the sarcopenia confidence
levels, but the intrusive muscle mass assessment test was not done. The confidence levels
were calculated using the SARC-F questionnaire, muscle strength testing and a physical
performance evaluation (walking speed and sit-to-down test). Furthermore, it has been
considered that some more recent research work [31,32] reveals a low level of confidence in
the disease under investigation by only analysing the SARC-F questionnaire score.

As a result, 32 patients were separated into three groups: three with confidence
level 1, twenty-two with confidence level 2, and seven with confidence level 3. An over-
sampling strategy was used to avoid unbalanced data, which is a prevalent problem in
medicine. In particular, our dataset was pre-processed using a Synthesizing Minority Over-
sampling Technology (SMOTE) in combination with Edited Nearest Neighbours (ENN).
SMOTE+ENN [33] is a sampling method, combining SMOTE [34] and Wilson’s ENN [35].
Specifically, SMOTE is an oversampling method, generating new minority class examples
by interpolating between different minority class examples detected together. However,
this method can also generate noise and boundary samples. Therefore, to obtain better-
defined class clusters, ENN is used because it can remove any example whose class label
differs from the class of at least two of its three nearest neighbours. Thus, it was shown
that SMOTE+ENN reduces the potential overfitting in synthetic data.

2.2. Pre-Processing

The main steps of this phase are: (a) noise reduction, (b) EMG enveloping and (c) data
normalization. The purpose of the first step is to reduce baseline noise and signal artifacts
due to EMG electrode movements [36]. This was obtained by filtering the raw signals using
a 4th order Butterworth band-pass filter with a frequency from 20 Hz to 450 Hz.
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Subsequently, to make the signals comparable and suitable for further processing,
the linear signal envelope was computed through full rectification and low-pass Butter-
worth filtering (with a cut-off frequency of 10 Hz). Finally, the normalization step was
performed as described in Section 2.1.

2.3. Feature Extraction & Selection

The goal of the feature extraction phase is to extract relevant information from the
surface EMG signal that can be used to identify muscle problems. Several time domain
and time–frequency domain features utilized in medical and technical applications for
monitoring lower-limb muscles were investigated for this study [37–40]. The main features
that have been investigated are shown in Table 1.

Table 1. Mathematical equations of the tested features for an EMG signal segment of length N.

Features Name Formula

Integrated EMG (IEMG) IEMG = ∑N
i=1|EMGi |

Mean absolute value (MAV) MAV =
∑N

i=1 |EMGi |
N

Modified mean absolute value type 1 (MAV1)

MAV1 =
∑N

i=1 ki |EMGi |
N

ki =

{
1, if 0.25N ≤ i ≤ 0.75N
0.5, otherwise

Modified mean absolute value type 2 (MAV2)

MAV2 =
∑N

i=1 ki |EMGi |
N

ki =


1, if 0.25N ≤ i ≤ 0.75N
4i
N , if i < 0.25N
4(i−N)

N , otherwise

Root Mean Square (RMS) RMS =

√
∑N

i=1 EMG2
i

N

Variance (VAR) VAR =
∑N

i=1 ki EMG2
i

N−1

Average amplitude change (AAC) AAC = ∑N−1
i=1 |EMGi+1 − EMGi |

Zero Crossing (ZC)

ZC = ∑N−1
i=1 [sgn(EMGi × EMGi+1) ∩ |EMGi+1 − EMGi | ≥ 0]

sgn(EMG) =

{
1, if EMG ≥ thr
0, if EMG < thr

where threshold thr = 0.1 mV

Simple Square Integral (SSI) SSI = ∑N
i=1|EMGi |2

Slope Sign Change (SSC)

SSC = ∑N
i=2[ f [(EMGi − EMGi−1)× (EMGi − EMGi+1)]]

f (EMG) =

{
1, if EMG ≥ thr
0, if EMG < thr

where threshold thr=0.1mV

Willison Amplitude (WAMP)

WAMP = ∑N
i=1 f (|EMGi − EMGi+1|)

f (EMG) =

{
1, if EMG ≥ thr
0, if EMG < thr

where threshold thr = 0.1 mV

Averaged Istantaneous Frequency (AIF)

AIF = 1
tb−ta

∫ tb
ta

w(t) dt
[tbta] time window of calculation
w(t) is the instantaneous frequency of the signal

In this study, the size of the sliding window was set to 200 ms, with an incremental
window to 50 ms [41]. After segmenting the EMG data, twelve EMG features were extracted
from each EMG channel, so the feature dimensional vector is 48. To reduce the complexity
of the signal processing and increase the performance of the system, the Modified Binary
Tree Growth Algorithm (MBTGA) feature selection technique was applied to select the most
effective EMG feature subset. The MBTGA was adopted since it showed good performance
for the analysis of EMG signals [42].
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The MBTGA is an optimization of the Binary Tree Growth Algorithm (BTGA), devel-
oped to enhance performance in EMG feature selection.

The best subset of features, selected through the MBTGA, consists of the following
three features: Integrated EMG, Root Mean Square, Averaged Instantaneous Frequency for
all channels; so, the dimension of the feature vector is 12.

2.4. Classification

After feature extraction and selection, the data were labelled as different classes
according to the sarcopenia confidence level as previously described. Eight ML algorithms
were trained on this data for comparison: SVM, Decision Tree (DT), Random Forest (RF),
Logistic Regression (LR), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Multi-layer
Perceptron (MLP) and Extreme Gradient Boosting (XGB).

SVM [43] is a classification and regression method developed in the context of statisti-
cal learning theory. It has been shown to perform better in terms of accuracy than other
classifiers in different application domains, and, in addition, to be efficiently scalable for
large problems. SVM attempts to find a hyperplane in N-dimensional space (where N is the
number of features) distinguishing the data points so that the margin or distance between
each data set and the baseline for classifying the data is maximized. It identifies a set of
examples, called support vectors, which appear to be the most representative observations
for each target class. A kernel is used to implement SVM algorithms. Most commonly used
kernels are the linear kernel, polynomial kernel, and radial kernel. In our approach a linear
kernel was applied.

DT is a popular supervised ML algorithms [44]. Specifically, in DT, data are split
according to a certain parameter. In this algorithm, a tree is used as a predictive model
in order to traverse the observations about a feature (represented by the branches of the
tree) and to arrive at the feature’s target value (represented by the leaves); in particular,
the leaves represent the class labels and the branches represent the feature conjunctions
resulting in the class labels. In our tests the maximum tree depth is fixed to 10.

RF algorithm, introduced by [45], constructs a set of predictors with a set of decision
trees that are randomly generated in datasets. It uses almost the hyper-parameters of a
decision tree. In particular, in order to classify the input vector, each classifier is generated
using a vector that is independent of the input vector, and each tree votes for the largest
number of classes. RF adds more randomness to the model while increasing the trees. It
detects the best feature in a random subset of features. In our approach the number of
estimators in the forest is fixed to 10, whereas the maximum tree depth is set to 10.

LR is a statistical method for converting binary classification problems into linear
regression ones. LR classifies values by applying a standard logistic function, known as
sigmoid functionand it can be found in many applications of biological, economic and
statistic fields [46]. In multiclass classification, such as the three classes in our approach,
LR applies the one versus the rest method. In detail, this method generates and trains LR
models for each class compared to the rest of the classes.

KNN is a popular classification method due to its easy implementation and high
classification performance. However, the idea of the algorithm is the assignment of a
sample to a category if most of the k nearest neighbor samples of the considered samples
belong to the same category. Usually, k is not greater than 20 [47]. The choice of k is
important because: if k is too small, the approach is sensitive to noise, while if k is too
large, the neighborhood may include samples from other classes. The selected neighbors
are those that have been correctly classified.

NB classifier is a popular algorithm due to its simplicity and linear run-time [48]. It
assumes that variables are independent of the given classes and that numeric attribute
values are normally distributed within each class, but in many real-world datasets the latter
condition is strongly violated.

MLP algorithm [49] uses back-propagation where input data are continuously trans-
mitted to the neural network and the output is compared with the desired output, allowing
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to estimate the error. Another step is a feedback process, where the error is returned to the
neural network. The algorithm is efficient if, in each iteration, the output of the considered
neural model is close to the desired output.

XGB [50] is designed to compensate for the drawbacks of gradient boosting. This algo-
rithm allows fast classification and very good prediction results. It also allows overfitting
regularization by internal cross-validation in each iterative step.

In Table 2 the optimal selected parameters for each ML model obtained through a grid
search technique [51] are shown.

Table 2. Parameters used for classification models.

Model Parameters

SVM decision_function_shape = ovo, max_iter = 100, kernel = linear, C = 0.1
DT criterion = gini, max_depth = 10
RF max_depth = 10, n_estimators = 10, criterion = gini
LR solver = newton-cg, max_iter = 50, multi_class = ovr, C = 0.001

KNN n_neighbors = 5, metric = minkowski, algorithms = auto, weights = distance
NB var_smoothing = 0.00001

MLP activation = identity, alpha = 0.0001, hidden_layer_sizes = (10, 10), solver = lbfgs
XGB learning_rate = 0.001, max_depth = 2, n_estimators = 214

3. Results and Discussion

To validate the proposed pipeline, a series of experiments were performed to verify the
effectiveness of the described approach and its operation in real-time. The dataset described
in Section 2.1, containing patients with three confidence levels of sarcopenia (1, 2 and 3), was
considered. Our EMG signal acquisition and processing system was developed through the
following steps: (1) raw signal acquisition through software routines implemented in C#,
(2) dataset balancing, data processing, feature extraction and classification using Python
language (3.7.1). Our experiments were performed on an embedded PC with the Intel Core
i5 processor and 8 GB of RAM. The classifiers’ performance has been evaluated using four
different metrics: accuracy, precision, recall, F1-score. For these metrics, some terms are
introduced in Table 3.

Table 3. Definition of the terms used in metrics.

Predicted Label Actual Label Definition

Positive Positive True Positive (TP)
Positive Negative False Positive (FP)

Negative Positive False Negative (FN)
Negative Negative True Negative (TN)

These metrics are defined by the following expressions:

Acc =
TP + TN

TP +TN + FP + FN
(1)

Pr =
TP

TP + FP
(2)

Re =
TP

TP + FN
(3)

F1-score =
2 ∗ TP

2 ∗ TN + FP+FN
(4)

In particular, accuracy is the ratio between all correctly classified samples and all
samples. Precision indicates how accurately the model predicts positive occurrences. Recall
shows how the model is able to detect positive cases using all positive cases. F1-score has a
greater impact on true positive cases than precision.
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Since in our study, a multiclass classification problem is discussed, metrics such as
accuracy, precision/recall or F1-score do not provide a complete overview of the compared
classifiers’ performance. So, as reported in literature [52], Cohen’s Kappa is another
essential performance indicator. In particular, Cohen’s Kappa is used to measure the
agreement between the instance’s true label and the one predicted by the selected classifier.
It is defined as:

k =
po − pe

1− pe
(5)

where po is the observed label and pe is the expected label. Cohen’s Kappa is always less
than or equal to 1. In Table 4 the correspondance between Cohen’s Kappa and agreement
is reported .

Table 4. Cohen’s Kappa vs agreement.

Cohen’s Kappa Agreement

k < 0.20 slight
0.21 ≤ k < 0.40 fair
0.41 ≤ k < 0.60 moderate
0.61 ≤ k < 0.80 good
0.81 ≤ k ≤ 1.00 perfect

It is important to highlight that the analysed data set is unbalanced, particularly
between the class with sarcopenia confidence level 2 and the other two. In particular it
can be observed that the ratio of confidence level 1 versus confidence level 2 is 1:7.33. So,
to avoid this unbalance and to generate a more robust dataset, an augmentation strategy
was used, as described in Section 2.1, resulting in a dataset of 150 patients with balanced
sarcopenia confidence levels (47–52–51).

In this work, each ML model was trained by first considering all available features
and then considering only features obtained by the feature selection technique described in
Section 2.3. Subsequently, the performances of such models were compared on the basis
of separately constructed test sets. A 10-cross-validation [53] was applied. In order to
reduce classification bias, this procedure is used to perturb the training set of each classifier
randomising the original data set. So, each classifier is trained for each fold using 90% of
the data, whereas the remaining 10% is used for testing. In addition, to avoid over-fitting
of the training set, 10% of the training data is additionally used to create a validation set.
The procedure is repeated 10 times training the classifier with a different training set and
testing with a separated test set. It is important that the same samples do not appear in the
training and test sets at the same time.

Tables 5 and 6 present the performance of each ML model without feature selection
and with feature selection, respectively. SVM model showed the best performance in terms
of accuracy, precision, recall and F1-score both considering all features and those obtained
via feature selection. On the other hand, the NB model showed the worst performance.
A significant improvement in model performance can be seen by applying feature selection
with a range of 10–20% improvement. In particular, SVM has a 10% improvement in
accuracy from 86.7% to 96.7%, while DT and NB have a 20% improvement respectively
from 66.7% to 86.7% and from 62.8% to 82.8%.
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Table 5. Classifier results with dataset augmentation and without feature selection.

Model Accuracy Precision Recall F1

SVM 0.867 0.861 0.845 0.849
DT 0.667 0.647 0.647 0.647
RF 0.698 0.683 0.688 0.684
LR 0.728 0.706 0.706 0.706

KNN 0.797 0.806 0.787 0.797
NB 0.628 0.622 0.621 0.621

MLP 0.729 0.744 0.706 0.717
XGB 0.798 0.806 0.787 0.798

Table 6. Classifier results with dataset augmentation and feature selection.

Model Accuracy Precision Recall F1

SVM 0.967 0.969 0.953 0.956
DT 0.867 0.862 0.838 0.847
RF 0.867 0.863 0.845 0.852
LR 0.9 0.884 0.871 0.875

KNN 0.933 0.941 0.926 0.932
NB 0.828 0.830 0.812 0.819

MLP 0.9 0.916 0.871 0.884
XGB 0.936 0.944 0.927 0.931

Table 7 shows the Cohen’s Kappa values for the various compared classifiers both
without and with feature selection. The numerical values, shown in the first line of the table,
highlight the high sensitivity of the considered metric. We can see that 5 classifiers give a
moderate agreement and the remaining 3 classifiers provide a good agreement. Instead,
with the feature selection, the range of the obtained values varying the classifiers is more
limited, with a gap between the best and the worst classifier of about 24.5%. Additionally,
for this metric, SVM is the classifier with the best score among those that obtain a perfect
agreement (LR, KNN, MLP and XGB). Finally, the differences in Cohen’s Kappa values
for each classifier confirm the goodness of the introduction of the feature selection logical
block in the proposed algorithmic pipeline.

Table 7. Cohen’s Kappa results without and with feature selection.

SVM DT RF LR KNN NB MLP XGB

without FS 0.794 0.485 0.538 0.588 0.687 0.436 0.579 0.691
with FS 0.984 0.791 0.792 0.845 0.896 0.739 0.843 0.897

In a multi-class recognition problem, as in the present study, the use of an aver-
age recognition rate (i.e., accuracy) among all the classes could not be exhaustive due
to the impossibility of inspecting the separation level in terms of correct classifications,
among classes (in our case, the three different sarcopenia confidence levels). To overcome
this limitation, in Figures 5 and 6 the confusion matrices of the average accuracies obtained
for each considered classifier with and without feature selection are reported. From the
confusion matrices analysis, it can be seen that for the classifier with the best performance,
there are failures to classify classes adjacent to each other; in particular, SVM confuses
confidence level 2 with the other two.
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Figure 5. Confusion matrices for three classes of sarcopenia confidence levels using (a) SVM, (b) DT,
(c) RF, (d) LR, (e) KNN, (f) NB, (g) MLP, (h) XGB as classifiers without feature selection.
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Figure 6. Confusion matrices for three classes of sarcopenia confidence levels using (a) SVM, (b) DT,
(c) RF, (d) LR, (e) KNN, (f) NB, (g) MLP, (h) XGB as classifiers with feature selection.
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4. Conclusions

In recent years, the “intelligent healthcare” concept has become more and more
consistent, due to the commercialization of smart medical devices. Moreover, the use of
artificial intelligence to build clinical DSS has achieved excellent results, especially with
regard to the identification and/or prevention of specific diseases.

The primary objectives of this work are essentially two. Firstly, an algorithmic pipeline
was designed and implemented with the aim of classifying three different confidence
levels of sarcopenia using electromyographic signals acquired through a commercial device
(sEMG). Secondly, this research provides a wide overview of the relative performance of
different supervised ML algorithms for assessing the severity level of the disease. Due
to the pandemic period and the consequent difficulty in obtaining real data, algorithmic
approaches to produce synthetic data from the electromyographic signals of only 32 subjects
was implemented.

The obtained results confirmed the algorithmic choices made, in fact all the measured
metrics showed a numerical improvement using the “feature selection” logic block. SVM
classifier outperformed the other 8 supervised classifiers. However, it is necessary to
underline an important limitation of the presented study. To compare the performance
of the classification algorithms, only synthesized data from a specific technique (even if
consolidated in the scientific literature) are considered.

Future work will include the implementation of other ML algorithms with a larger
dataset and also considering image-based datasets. Through the latter type of data, it will
be possible to apply Deep Learning algorithms for the classification of different confidence
levels of sarcopenia. Further future development of this work will consist of applying
different feature selection techniques and varying the clinical protocol. In particular, a new
testing protocol will be evaluated to be able to assess muscle behaviour, for the diagnosis of
sarcopenia, even for subjects who are unable to perform sitting-to-standing and gait speed
tests, for example due to injury or gait problems. Last but not least, other muscles (not only
those of the lower limbs) will be analysed and long-term monitoring of electromyographic
signals will be carried out to create an intelligent and automatic tool for the early diagnosis
of the considered pathology.
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38. Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech.
2009, 24, 327–340. [CrossRef] [PubMed]

39. Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. A novel feature extraction for robust EMG pattern recognition. J. Comput.
2009, 1, 71–80.

40. Phinyomark, A.; Chujit, G.; Phukpattaranont, P.; Limsakul, C.; Hu, H. A preliminary study assessing time-domain EMG features
of classifying exercises in preventing falls in the elderly. In Proceedings of the 2012 9th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phetchaburi, Thailand,
16–18 May 2012.

41. Atzori, M.; Gijsberts, A.; Castellini, C.; Caputo, B.; Hager, A.G.; Elsig, S.; Giatsidis, G.; Bassetto, F.; Müller, H. Electromyography
data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 2014, 1, 140053. [CrossRef] [PubMed]

42. Too, J.; Abdullah, A.R.; Mohd Saad, N.; Mohd Ali, N. Feature selection based on binary tree growth algorithm for the classification
of myoelectric signals. Machines 2018, 6, 65. [CrossRef]

43. Suykens, J.A.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
44. Wu, X.; Kumar V.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 algorithms

in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]
45. Breiman, L. Random Forests. Mach. Learn. 2000, 45, 5–32. [CrossRef]
46. Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013; Volume 398.
47. Zhang, S. Efficient kNN classification with different numbers of nearest neighbors. IEEE Transac Neural Networks Learning Systems.

2018, 5, 1774–1785. [CrossRef]
48. Hall, M. A decision tree-based attribute weighting filter for naive Bayes. Knowl.-Based Syst. 2007, 20, 120–126. [CrossRef]
49. Albarakati, N.; Kecman, V. Fast neural network algorithm for solving classification tasks: Batch error back-propagation algorithm.

In Proceedings of the IEEE International Conference on Southeastcon, Jacksonville, FL, USA, 4–7 April 2013; pp. 1–8.
50. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
51. Bhat, P.C.; Prosper, H.B.; Sekmen, S.; Stewart, C. Optimizing event selection with the random grid search. Comput. Phys. Commun.

2018, 228, 245–257. [CrossRef]
52. Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756.
53. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science &

Business Media: Berlin/Heidelberg, Germany, 2009.

https://www.btsbioengineering.com/products/freeemg/
http://dx.doi.org/10.1016/j.jelekin.2014.07.015
http://www.ncbi.nlm.nih.gov/pubmed/25156445
http://dx.doi.org/10.18857/jkpt.2021.33.6.278
http://dx.doi.org/10.1016/j.jamda.2014.04.021
http://www.ncbi.nlm.nih.gov/pubmed/24947762
http://dx.doi.org/10.1007/s12603-020-1462-9
http://dx.doi.org/10.1007/s40520-020-01782-y
http://dx.doi.org/10.1145/1007730.1007735
http://dx.doi.org/10.19026/rjaset.5.5044
http://dx.doi.org/10.1109/TSMC.1972.4309137
http://dx.doi.org/10.1016/j.jbiomech.2010.01.027
http://dx.doi.org/10.1016/j.clinbiomech.2009.01.010
http://www.ncbi.nlm.nih.gov/pubmed/19285766
http://dx.doi.org/10.1038/sdata.2014.53
http://www.ncbi.nlm.nih.gov/pubmed/25977804
http://dx.doi.org/10.3390/machines6040065
http://dx.doi.org/10.1023/A:1018628609742
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/TNNLS.2017.2673241
http://dx.doi.org/10.1016/j.knosys.2006.11.008
http://dx.doi.org/10.1016/j.cpc.2018.02.018

	Introduction
	Materials and Methods
	DATA Acquisition & Augmentation
	Pre-Processing
	Feature Extraction & Selection
	Classification

	Results and Discussion
	Conclusions
	References

