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Non-symbiotic (nsHb) and truncated (tHb) hemoglobins 
(Hbs) are O

2
-binding proteins that have been detected in a 

variety of land plants, ranging from primitive bryophytes to 
evolved angiosperms.1-5 Phylogenetic analysis revealed that land 
plant nshb and thb genes apparently evolved from different 
ancestors. Also, sequence analysis showed that 2 classes of 
nsHbs exist in higher plants: class 1 and class 2 nsHbs (nsHb-1 
and nsHb-2, respectively).6,7 However, recent analysis revealed 
that apparently only nsHbs-1 exist in cultivated monocots, 
which diverged into clade I and clade II nsHbs (nsHb-I and 
nsHb-II, respectively) from a nsHb-1 ancestor.8

The evolution of land plant nsHbs and tHbs at the protein 
level is well documented.3,4,8-10 However, little is known about 
the evolution of genes coding for these proteins. For example, 
the variability of the land plant nshb and thb genes is not known. 
Monocots are useful models for gene analysis because of the 
availability of several (fully or partially) sequenced genomes 
from these plants. Here, we report the variability of the nshb 
and thb genes from the cultivated monocots Brachypodium 
distachyon, Hordeum vulgare (barley), Oryza glaberrima (rice), 
O. rufipogon (rice), O. sativa (rice) var indica, O. sativa (rice) 
var japonica, Panicum virgatum (switchgrass), Setaria italica 

(foxtail millet), Sorghum bicolor (sorghum), Triticum aestivum 
(wheat), and Zea mays ssp. mays (maize). Our results revealed 
that in cultivated monocots, variability is higher in nshbs than 
in thbs and that these genes evolved under the effect of neutral 
selection.

Protein and gene sequences for nsHbs and tHbs from the 
above cultivated monocots were obtained from the GenBank 
(www.ncbi.nlm.nih.gov/genbank) and Phytozome (www.
phytozome.org) databases as described by Rodríguez-Alonso 
and Arredondo-Peter8 (Tables S1 and S2) using the sequence 
of O. sativa nsHbs 1 to 5 and tHb (GenBank accession number 
AAK72229.1, AAK72228.1, AAK72230.1, AAK72231.1, 
ABN45744.1, and EEC80902.1, respectively) as probes. 
Pairwise sequence alignment was performed using the Needle 
program (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). 
Differences between the aligned sequences were quantitated 
using a Phyton’s script developed by one of the authors 
(Rodríguez-Alonso G). Values were normalized based on 
the number of aligned sequences. The maximum composite 
likelihood (MCL) matrix and GC content quantitation were 
obtained using the MEGA 5.0 program.11 Testing of the neutral 
mutation hypothesis was performed by calculating the Tajima’s 
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D value12 using the DNAsp program (http://www.ub.edu/
dnasp/).

Figure 1 shows that in cultivated monocot nshb-I and 
nshb-II genes the 3 introns interrupting land plant nshbs1,4,13 
are differentiated from exons because of the existence of high 
and low variability scores, respectively. This indicates that in 
cultivated monocot nshb-I and nshb-II genes, the variability of 

introns is higher than that of exons. In 
contrast, in cultivated monocot thb genes 
the variability score of exons and introns 
is similar. Quantitation of similarity 
between pairwise sequence alignments 
of cultivated monocot Hb proteins and 
exons from the hb genes showed that the 
average variability values (obtained from 
the similarity values reported in Figures 
S1 and S2) are 30.36% for nsHbs, 
25.52% for nshbs, 11.46% for tHbs, and 
11.23% for thbs. This result indicates 
that in cultivated monocots, the average 
variability of nsHbs is higher than that 
of tHbs.

Direct quantitation of similarity 
from aligned sequences assumes that 
nucleotides exist approximately in the 
same proportion in the genomes of 
organisms and that point mutations 
occurred with the same frequency during 
the evolution of genomes. However, this 
is generally incorrect. Also, this method 
does not consider regressions. Thus, we 
generated MCL matrices to evaluate 
substitution rates for point mutations 
and regression frequencies into the 
cultivated monocot hb genes. Figure 2 
shows that the transition/transversion 
ratios (R) are 2.144 for nshb-I, 1.463 

for nsb-II, and 1.077 for thb genes. This result suggests that 
major substitution events that occurred during the evolution 
of the cultivated monocot hbs were A→G and T→C transitions, 
and thus indicates that in these genes the GC content is 
high. Quantitation of the GC content in codons from exons 
of cultivated monocot hbs showed that GC content is slightly 
higher in nshbs than in thbs and that GC content in these 
genes is higher (~70–90%) in codon position 3 than in codon 
positions 1 and 2 (~55–60 and ~40%, respectively) (Fig. 3).

Testing of the neutral mutation hypothesis for the evolution 
of cultivated monocot hb genes was performed by estimating 
the Tajima’s D value.12 Results showed that the Tajima’s D value 
for cultivated monocot nshb and thb genes is 0.39 and –0.272, 
respectively, and that P > 0.1 for both estimations. Thus, these 
estimations are not statistically different from values expected 
in a neutralist model. These results suggest that cultivated 
monocot nshb and thb genes evolved under the effect of neutral 
selection.
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Figure 1. Variability of the nshb-I, nshb-II and thb genes from cultivated monocots. high and low score 
regions approximately correspond to introns and exons into the nshb-I and nshb-II genes, respectively.

Figure  2. maximum composite likelihood (mCL) matrix for nshb-I, 
nshb-II, and thb genes from cultivated monocots. the R value indicates 
the transition/transversion ratio.
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Figure 3. GC content in codon positions 1, 2, and 3 
from the cultivated monocot nshb-I (A), nshb-II (B), 
and thb (C) genes.
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