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Abstract
Background Therapeutic drug monitoring (TDM) aims at individualising a dosage regimen and is increasingly being per-
formed by estimating individual pharmacokinetic parameters via empirical Bayes estimates (EBEs). However, EBEs suffer 
from shrinkage that makes them biased. This bias is a weakness for TDM and probably a barrier to the acceptance of drug 
dosage adjustments by prescribers.
Objective The aim of this article is to propose a methodology that allows a correction of EBE shrinkage and an improve-
ment in their precision.
Methods As EBEs are defined, they can be seen as a special case of ridge estimators depending on a parameter usually 
denoted λ. After a bias correction depending on λ, we chose λ so that the individual pharmacokinetic estimations have mini-
mal imprecision. Our estimate is by construction always better than EBE with respect to bias (i.e. shrinkage) and precision.
Results We illustrate the performance of this approach with two different drugs: iohexol and isavuconazole. Depending 
on the patient’s actual pharmacokinetic parameter values, the improvement given by our approach ranged from 0 to 100%.
Conclusion This innovative methodology is promising since, to the best of our knowledge, no other individual shrinkage 
correction has been proposed.

Key Points 

This study provides a methodology to suppress the 
individual shrinkage of the usual individual estimates 
of the pharmacokinetic parameters  (empirical Bayes 
estimate).

This method decreases the estimate's imprecision.

The use of this methodology is illustrated for the estima-
tions of the individual pharmacokinetic parameters of 
isavuconazole and iohexol.

1 Introduction

Therapeutic drug monitoring (TDM) is used for some drugs 
to control drug exposure by choosing an appropriate dosage 
regimen (i.e. drug dosage and frequency of administration) 
[1].

Classical TDM checks whether or not a concentration is 
within a concentration range if measured at a predefined time 
and considers the exposure (i.e. the area under the curve) to 
be abnormal when the concentration is outside this range. 
It is very simple to use in practice. However, this classical 
TDM assumes a perfect correlation between the measured 
concentration and the associated exposure, which is not the 
case for all patients. Indeed, two patients could have two 
very similar concentrations for two samples collected at the 
same time and still have different pharmacokinetic profiles 
and hence different exposures. Interpreting a measured con-
centration without considering the physio-pathological char-
acteristics of the patients on the one hand and by referring 
to the same range of concentrations for all patients on the 
other hand can lead to inappropriate dose adjustments. The 
use of a population pharmacokinetic (PPK) model to analyse 
the concentrations allows a better evaluation of the patient's 
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exposure than classic TDM, through an estimation of their 
own pharmacokinetic parameters [2, 3, 4]. These estimates 
are generally the empirical Bayes estimates (EBEs), com-
puted by assuming that all the PPK model parameters are 
known without any imprecision [5, 6].

Unfortunately, EBEs can suffer from shrinkage [7]. 
Shrinkage is an average deviation of the individual pharma-
cokinetic (IPK) parameter estimate toward the population 
mean. Because shrinkage is a kind of bias (i.e. a systematic 
deviation), it should be possible to remove it. For example, 
Lavielle and Riba [8] proposed a method to limit the shrink-
age when validating a PPK model. In the case of TDM, the 
problem is not an average but an individual deviation, so-
called individual shrinkage. This individual shrinkage is 
specific to each patient (i.e. to their own pharmacokinetic 
parameter values), to the time when the blood samples are 
collected, and to the population's parameter values; this is 
why it is not usually removed [9].

Instead, an average shrinkage is provided for each phar-
macokinetic parameter after a PPK model analysis. Usually 
this shrinkage is expressed as a percentage. When this aver-
age shrinkage is large, the general recommendation is to 
discard or at least not trust the IPK parameters calculated 
for a patient from only a few concentrations [9, 10]. Thus, 
a large shrinkage can be a limitation of TDM based on the 
estimation of the IPK parameters, but it is not the only one. 
Indeed, it has been shown [11–14] that it is not reasonable to 
expect a precise estimation of the pharmacokinetic param-
eters for a patient with only a few concentrations obtained 
from the patient, even using an optimal sampling strategy 
[15, 16, 17]. Even without any shrinkage, several combina-
tions of pharmacokinetic parameters can lead to the drug 
concentrations observed in a patient. One way to quantify 
this imprecision is thus the length of the interval, or more 
generally, the volume of the prediction region of all the pos-
sible values of pharmacokinetic parameters that are consist-
ent with the observed concentrations. This imprecision is 
intrinsic to the way the IPK parameters are estimated; in 
other words, this imprecision is intrinsic to the EBEs. Using 
the EBEs to estimate the IPK parameters cannot therefore 
lead to any significant improvements.

The purpose of this work is to propose an estimate of IPK 
parameters with no shrinkage and with less imprecision than 
the EBEs.

2  Materials and Methods

2.1  Models and Notations

When a PPK analysis is performed, a model describing the 
evolution of concentrations over time is used. This model is 
often written as in Eq. (1).

 where Yij is the jth concentration measured in individual i at 
the time tij , �i is a vector containing the individual pharma-
cokinetic parameters for the ith individual, f  and g are two 
known functions, �ij is the jth residual error for individual i 
at the time tij assumed to be independent of �i , h is a known 
function usually assumed to be h

(

�i, �,Ai

)

= Ai�e
�i , Ai is a 

known matrix of covariates of the ith individual, � is a fixed 
effect vector, �i is the vector of the random effects involved 
in inter-individual variability for the ith individual, Ω is the 
variance–covariance matrix of the �i s, and b is the vector of 
the parameters involved in the residual error model.

Data analysis with a PPK model as described by Eq. (1) 
provides estimates of �, Ω , and b , respectively denoted by 
�̂�, Ω̂ , and b̂ . Of course, these estimates are imprecise. How-
ever, we will not take into account this uncertainty. In other 
words, herein, we consider these estimates to be fixed.

Once the model has been created and validated, it can be 
used daily for hospitalised patients. So, let us consider the 
concentrations (Yj)j=1,…,n observed at the time (tj)j=1,..,n for a 
hospitalised patient with covariates A for whom TDM is 
requested. TDM should be based on the patient’s IPK param-
eters 𝜑 = h

(

𝜂, �̂�,A
)

 , which are unknown when the blood 
sample is performed. However, a prediction of � can be 
computed using both population parameters of the model 
and the patient’s concentrations 

(

Yj
)

j=1,…,n
.

A classical predictor of � is the EBE obtained as 
�̂� = h

(

�̂�, �̂�,A
)

 , where (Eq. 2)

In a more detailed manner (Eq. 3),

The first term (T1) of the previous equation is a least 
squares term. The second term (T2) corresponds to a penalty. 
It penalises values deviating far from the population average.

In Eq. (3), when n increases, T2 decreases, whereas T1 
tends towards a fixed value. In this case, the patient’s con-
centrations govern the � prediction and the shrinkage should 
be low. By contrast, when n is low, T2 dominates T1 and the 
population parameters dominate the prediction, i.e. the � is 
closer to the population mean 0 than it should be. In this 
case, one can expect �̂� to be “shrunk” toward 0 . Equation 
(3) can be interpreted as a special case of a criterion giving 
a ridge estimator, defined as (Eq. 4):

(1)
{

Yij = f
(

tij;�i

)

+ g
(

tij;�i;b
)

�ij where �ij ∼iid ℕ(0, 1)

�i = h
(

�i, �,Ai

)

where �i ∼iid ℕ(0,Ω)

(2)�̂� = argsup
𝜂

P
(

𝜂|Y1,… , Yn
)

(3)

�̂� = arg inf
𝜂

1

n

∑n

j=1

(

Yj − f
(

tj, h
(

𝜂, �̂�,A
)))2

g2
(

tj, h
(

𝜂, �̂�,A
)

, b̂
)

+ ln g2
(

tj, h
(

𝜂, �̂�,A
)

, b̂
)

���������������������������������������������������������������������������������������������
(T1)

+
1

n
𝜂�Ω̂−1𝜂

�������
(T2)
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Actually, EBE(𝜑) = �̂�(1) = h
(

�̂�(1), �̂�,A
)

.
The only difference between Eqs. (3) and (4) is the pres-

ence of � in T2 . If the predictions �̂�(𝜆) of � were good, 
�̂�(𝜆) should be close to � , which is unknown. To circumvent 
this difficulty (i.e. � being unknown), we evaluate the dis-
tance between �̂�(𝜆) and � using simulations by proceeding 
as follows:

1. A set of K vectors �∗
1
, �∗

2
,… , �∗

K
 are simulated where 

𝜂∗
k
∼iid ℕ

(

0, Ω̂
)

 for k ∈ 1,… ,K. Then, for each 
k ∈ 1,… ,K , 𝜑∗

k
= h

(

𝜂∗
k
, �̂�,A

)

 are computed.
2. For each k ∈ 1,… ,K , Y∗

kj
= f

(

tj;𝜑
∗
k

)

+ g
(

tj;𝜑
∗
k
;b̂
)

𝜀∗
j
 are 

simulated where �∗
j
∼iid ℕ(0, 1), for j = 1,…,n.

3. For a given � , one computes �̂�∗
k
(𝜆) from Eq. (4) by using 

Y∗
kj

 instead of Yj.

In other words, for a vector A containing covariate values 
for a hospitalised patient, it is possible to simulate K differ-
ent sets of IPK parameters 

(

�∗
k

)

 (line 1). For each set of IPK 
parameters, it is possible to simulate concentrations 

(

Y∗
kj

)

 at 
the same sampling times as those of the hospitalised patient 
(line 2). From these concentrations Y∗

kj
 , it is possible to esti-

mate IPK parameters 
(

�̂�∗
k
(𝜆)

)

 thanks to a Newton–Raphson 
algorithm (Eq. 4) for a given � (line 3). Therefore, for K 
simulated patients, we have actual IPK parameters (�∗

k
) and 

predicted IPK parameters 
(

�̂�∗
k
(𝜆)

)

 (line 3).
Once this �̂�∗

k
(𝜆) is obtained, one can compute �̂�∗

k
(𝜆) = 

h
(

�̂�∗
k
(𝜆), �̂�,A

)

 . We can see whether �̂�∗
k
(𝜆) is a good predictor 

of �∗
k
 by drawing �∗

k
 as a function of �̂�∗

k
(𝜆) or equivalently 

�∗
k
 as a function of �̂�∗

k
(𝜆). If it is a good predictor, the points 

should be concentrated around the first bisector line. Unfor-
tunately, there may exist a systematic departure from this 
line, signalling a bias. This is why we look for a function 
Γ ∈ L , which minimises the distance between the vectors �∗ 
and Γ(�̂�∗(𝜆)) (Eq. 5):

Depending on the space L where the Γ functions are to be 
found, there should exist at least one function Γλ so that the 
minimum is reached. There exist many possible choices for 
L . As any continuous functions can be locally approximated 
by polynomials, we chose L as the set of the local polyno-
mial functions. This polynomial function can be estimated, 
for example, by locally estimated scatterplot smoothing 

(4)

�̂�(𝜆) = arginf
1

n

n
∑

j=1

(

Yj − f
(

tj, h
(

𝜂, �̂�,A
)))2

g2
(

tj, h
(

𝜂, �̂�,A
)

, b̂
)

+ ln g2
(

tj, h
(

𝜂, �̂�,A
)

, b̂
)

+ 𝜆
1

n
𝜂�Ω̂−1𝜂.

(5)Γ𝜆 = arginfΓ∈L

K
∑

k=1

‖

‖

‖

𝜂∗
k
− Γ

(

�̂�∗
k
(𝜆)

)

‖

‖

‖

2

.

(LOESS) regression. Next, we look for the value �̂� , so that 
(Eq. 6):

Because � ∈ R+ , Eq. (6) can be solved by looking for 
lambda in an adaptive discretisation of ]0; �max ]. For the 
practical implementation, �max can be chosen close to 10.

At the end of these two optimisation steps, the best pre-
diction with respect to the mean square error of their actual 
η for all patients having the same characteristics (i.e. same 
covariates values) and the same sampling times, is given 
by Γ�̂�

(

�̂�
(

�̂�
))

 . Obviously, this predictor is not exact: several 
values from the same population correspond to a given value 
of �̂�

(

�̂�
)

 obtained from the hospitalised patient (blue double 
arrow in Fig.1). The length of this range can be used as a 
prediction interval of P

(

𝜂∗|Γ�̂�(�̂�
∗
(

�̂�
))

 and so the uncertainty 
of the �∗ estimation. A more traditional way of evaluating 
this uncertainty is to compute empirically a 95% predic-
tion interval defined as the 2.5 and 97.5% percentiles of the 
�∗ s corresponding to the �̂�

(

�̂�
)

 obtained from the patient of 
interest. The way to build these intervals (regression quantile 
methods) is not discussed in this article.

These ideas can be illustrated by the graph as shown in 
Fig. 1. To simplify, we concentrate on the component of �∗

k
 

linked to the clearance of the drug. We denote �∗
Cl,k

 the kth 
simulated η for the clearance and we restrict Γλ as a function 
of clearance only.

The graph in Fig. 1 can be disturbing because intuitively, 
we would tend to represent the predicted values as a func-
tion of the simulated/true values. However, the aim is to 
minimise the difference between the true value of �Cl and its 
prediction (i.e. between �∗

Cl
 and Γλ

(

�̂�∗
Cl
(𝜆)

)

 ). This presents 
itself as a classic nonlinear regression problem, in which 
we minimise the vertical distance between a point and its 
predictor.

A crude but global evaluation of the improvement that 
can be obtained using our prediction instead of the usual 
EBE can be computed by Eq. (7):

This non-negative quantity evaluates how much closer 
our prediction Γ�̂�

(

�̂�∗
Cl,k

(

�̂�
)

)

 is to the actual �∗
Cl,k

 than is the 
EBE ( �=1) given by �̂�∗

Cl,k
(1) . When this improvement is 

close to 0, the EBE and our predictor are close. As a conse-
quence, our predictor does not improve the estimation of the 
individual pharmacokinetic parameter. On the contrary, any 
positive improvement shows that our predictor is better than 

(6)�̂� = arginf𝜆

K
∑

k=1

‖

‖

‖

𝜂∗
k
− Γ𝜆

(

�̂�∗
k
(𝜆)

)

‖

‖

‖

2

.

(7)Improv = 1 −

∑K

k=1

�

𝜂∗
Cl,k

− Γ�̂�

�

�̂�∗
Cl,k

�

�̂�
�

��2

∑K

k=1

�

𝜂∗
Cl,k

− �̂�∗
Cl,k

(1)
�2

.



752 S. Baklouti et al.

the EBE. This indicator is a global evaluation that does not 
give any information on any specific patient located in a 
specific area of the green curve in Fig. 1.

We also provide estimates of the shrinkage for the EBE 
and for the estimator that we propose and determine the pre-
diction of the shrinkage based on the method proposed by 
Combes et al. [14].

Finally, from this prediction, we deduce a prediction for 
IPK parameters, � as (Eq. 8):

Once lambda 
(

�̂�
)

 and gamma (Γ�̂� ) are defined, they are 
used to improve predictions made for a given patient (Eq. 8). 
In a more detailed manner, when we have concentration(s) 
(Y1,… , Yn) available for a patient P, simulations allow to 
compute �̂� and Γ�̂� . Next, Eq. (4) is solved using the con-
centrations (Y1,… , Yn) observed in the patient and with �̂� 
computed at the previous step instead of �.

From this computation, we obtain �̂�Cl,P
(

�̂�
)

 and therefore 
Γ�̂�

(

�̂�Cl,P
(

�̂�
))

 , which is the de-shrunk estimate of its clear-
ance individual random effect. By taking into account the 
imprecision observed during the simulations, it is also pos-
sible to define the prediction interval from which the indi-
vidual pharmacokinetic parameter is estimated.

For example, we estimate a Γ�̂�

(

�̂�Cl,P
(

�̂�
))

 for patient P 
equal to 0.2. Figure 1 shows that the true median value for 

(8)�̂� = h
(

Γ�̂�

(

�̂�
(

�̂�
))

, �̂�,A
)

.

the individual pharmacokinetic parameter is 0.18 and the 
prediction interval is between 0.05 and 0.29.

2.2  Simulations Study

Datasets were simulated using R version 3.5.2.
This methodology was applied to two different mod-

els from the literature. The performance evaluation of the 
proposed methodology was performed on 5000 subjects 
simulated by the models described in the corresponding 
articles.

Usually, it is necessary to perform K simulations for 
each subject; a subject being defined by its sampling times 
tj and its covariate values A. Since we simulated patients 
with exactly the same sample times and covariate values, 
K = 5000 simulations could be used for all simulated 
patients.

For the rest of this work, we focus on clearance that con-
trols exposure and use only one concentration to estimate 
individual clearance as per hospital practice.

For each drug tested, the sampling times were chosen in 
line with the model itself (i.e. sampling times used for the 
model construction) and according to a clinical practicability 
allowing a later clinical use of this methodology.

2.2.1  First Model

The first model used relates to the pharmacokinetics of 
iohexol in dogs [18]. This molecule allows establishment 
of the glomerular filtration rate (GFR). As it is an exoge-
nous molecule eliminated mainly by glomerular filtration, 
its clearance represents GFR. The model was built from 
iohexol pharmacokinetic data in 49 dogs. Each kinetic 
profile includes five points (i.e. 5, 15, 60, 90, and 180 
min).

The PPK model is a two-compartment model param-
eterised with clearances and volumes. This implies the f  
function of the first equation. The g function was chosen as 
g(t,�, b) = bf (t,�).

Part of the clearance variability is explained by two covar-
iates: the health status and the plasma creatinine concentra-
tion. Health status is a dichotomous covariate defined on the 
basis of the International Renal Interest Society (IRIS). The 
plasma creatinine concentration is a continuous covariate.

This results in the h function of Eq. (1) being such that

ln(�) = ln(h(�, �,A))

= ln (Cl, Vc,Vp,Q)

=
(

ln(�Cl) + �11[status] + θ2creat + �Cl, ln(�Vc
) + �Vc

,

ln(�Vp
) + �Vp

, ln
(

�Q
)

)

.

Fig. 1  The y-axis represents the �∗
Cl

 that have been used to simulate 
the concentrations; the x-axis contains the �̂�∗

Cl

(

�̂�
)

 obtained from the 
procedure described in section 2.1. The red line is the first bisector 
line. For a patient P, having a clearance individual random effect, 
denoted by �∗

Cl,P
 , far below or above zero or, equivalently, an individ-

ual pharmacokinetic parameter far from the typical value, there is a 
systematic error. The systematic error is represented on the plot by 
the distance of the green curve from the red curve. The green curve 
represents Γ�̂�

(

�̂�Cl
(

�̂�
))

 . The blue band is the 95% prediction interval. 
Its width, for a given �̂�Cl,P

(

�̂�
)

 (i.e., for a given patient) gives an evalu-
ation of the imprecision of our method
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The indicator function 1[status] = 1 for a diseased individual 
and 0 otherwise (Table 1).

The variance–covariance matrix Ω of � =

(

�Cl, �Vc
, �Vp

)

 
is assumed to be a diagonal matrix.

The dose chosen to perform the simulation is equal to 
1600 mg. This corresponds to the average dose that was used 
to build the PPK model in the study by Baklouti et al. [18]. 
Similarly, we performed the simulations with sick dogs with 
a plasma creatinine level of 2.25 mg/dL that roughly cor-
responds to the average concentration reported in diseased 
animals [18].

We tested this methodology when a single sample is 
available at 180 min, corresponding to the best sampling 
time as identified in the study by Baklouti et al. [18].

2.2.2  Second Model

The second model relates the pharmacokinetics of isavu-
conazole [19]. This molecule is used in the treatment of 
invasive fungal infections. The model was built from 471 
concentrations obtained from 79 patients.

The PPK model has two compartments. The error 
model for residual variability is a proportional error. Two 
covariates are included in the model, body mass index 
(BMI) and sex. BMI explains a part of peripheral dis-
tribution volume variability, and sex explains a part of 
clearance variability.

This results in the h function of Eq. (1) being such that

The indicator function 1[sex] = 1 for a man and 0 for a 
woman (Table 2).

The dose in the simulation was 200 mg, which corre-
sponds to the standard dose administered in hospital. The 
covariate value for the BMI was 25.4 kg/m2, corresponding 
to the average value found in the study [19]. The mean clear-
ance selected was the clearance for men because the model 
was constructed with a majority of men.

The sampling time selected to perform simulations was 
195 h because this is when steady state is reached and TDM 
can be proposed [20].

3  Results

The results for simulated and predicted random effects on 
clearances are represented in Fig. 2. Figure 2a and b show 
the results for iohexol, and the Fig. 2c and d are for isa-
vuconazole. On all plots, the vertical axis corresponds to 
�∗
Cl

 . The horizontal axis represents the EBEs (i.e.�̂�∗
Cl
(1) ) on 

the left plots (a and c) and �̂�∗
Cl

(

�̂�
)

 on the right plots (b and 
d). Therefore, the left plots correspond to the results before 
shrinkage correction, and the right plots show the results 
obtained after our corrections. For the two tested models, 

ln(�) = ln(h(�, �,A))

= ln (Cl, Vc,Vp,Q)

=
(

ln
(

�Cl ×
(

1 − 1[sex]
)

+ �1 × 1[sex]
)

+ �Cl, ln(�Vc
),

ln(�Vp
+ �2 × (BMI − 25.38) + �Vp

, ln
(

�Q
)

)

.

Table 1  Population pharmacokinetic parameters of iohexol published 
by Baklouti et al. [18]

Value

Parameters
�̂�Cl 0.00432 L/min/kg

�̂�Vc

0.163 L/kg

�̂�Vp

0.0584 L/kg

�̂�Q 0.00336 L/min/kg
Covariates
 �̂�1 − 0.345

 �̂�2 − 0.517 dL/mg
Standard deviation of 
� =

(

�Cl, �Vp
, �Vc

)

 �̂�Cl 0.207
 �̂�Vc

0.249
 �̂�Vp

0.213
Residual error
 Proportional 6.12%

Table 2  Population 
pharmacokinetics model of 
isavuconazole published by Wu 
et al. [19]

BMI body mass index, Vp 
peripheral volume of  distribu-
tion

Parameters Value

 �̂�Cl 4.28 L/h

 �̂�Vc

57.6 L

 �̂�Vp

468 L

 �̂�Q 37.4 L/h
Covariates
 �̂�1(sex on clearance) 2.73 L/h

 �̂�2(BMI on Vp) 39.7 L
Standard deviation of 
� =

(

�Cl, �Vp

)

 �̂�Cl 0.461
 �̂�Vp

0.444
Residual error
 Proportional 20.5%
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the �̂� value is different from 1 (iohexol �̂� = 0.017 ; isavucona-
zole �̂� = 0.059 ), so �̂�∗

Cl

(

�̂�
)

 are different from the �̂�∗
Cl
(1) and 

therefore from the EBEs. The difference between the median 
curve (obtained using LOESS regression) in green and the 
first bisector line in red represents the shrinkage.

Figure 2a and c shows that estimations of the IPK param-
eters provided by EBEs are not good: they are biased (i.e. 
the two clouds of points are not centred on the first bisector) 
and imprecise (i.e. the two clouds are thick).

Figure 2a (iohexol) shows that EBEs overestimated the 
IPK parameters, particularly for the lowest IPK parameter 
values. In this case, elimination clearance is overestimated 
and an unjustified dose increase is applied. Conversely, for 
isavuconazole, elimination clearance is underestimated for 
the lowest values, leading to an unjustified dose reduction. 
Thus, for drugs with a narrow therapeutic range, this kind 
of mistake can be detrimental to the patient; this means a 
therapeutic failure or, conversely, increased toxicity.

Fig. 2  Graphical representation of �∗
Cl

 as a function of �̂�∗
Cl
(1) (i.e. 

empirical Bayes estimate for clearance) (left) and of �∗
Cl

 as a function 
of Γ�̂�

(

�̂�∗
Cl

(

�̂�
))

 (right). The red curves represent the first bisector, the 

green curve represents the regression line, and the blue curves rep-
resent the prediction interval. After correction, the point clouds are 
refocused on the first bisector
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Surprisingly, it can be seen that, for these two experimen-
tal designs (covariates, sampling times, PPK model), shrink-
age does not affect the high IPK parameter values. How-
ever, these results could be radically different for another 
experimental design and evolve in an unpredictable way. As 
a consequence, for each experimental design (covariates, 
sampling times, PPK model), it is necessary to repeat the 
shrinkage correction.

The second important information observed in these plots 
is that the IPK parameter estimates are imprecise. Indeed, 
one can see that a large number of actual IPK parameters 
are consistent with a single estimated IPK parameter, i.e. 
the cloud of points is thick. If the role of �̂� is to reduce the 
thickness of the cloud of points, it seems that this decrease 
is modest in these two examples. Indeed, there is an incom-
pressible limit to imprecision, mainly governed by the num-
ber of available concentrations for the patient. Moreover, the 
imprecision varies according to the values of η: the further η 
is from the population average, the greater the imprecision.

Figure  3 shows the improvement obtained with our 
method (iohexol in Fig. 3a and isavuconazole in Fig. 3b), 
with respect to EBEs, for different values of departure from 
median population clearance (i.e. �∗

Cl
). The improvement is 

maximal for patients with extreme actual clearance (low-
est and highest values). Conversely, our method does not 
improve the clearance estimation for patients with actual 
clearances close to the median population clearance; this is 

Fig. 3  Graphical representation of the evolution of “Improv” of 
iohexol and isavuconazole. Improvement is much more important for 
values far from the average than for values close to the mean. The 
improvement of the estimates following the correction of the empiri-
cal Bayes estimate is therefore not always the same. So, this meth-

odology does not provide a great correction for patients who have a 
pharmacokinetic profile close to the average. However, for pharma-
cokinetic profiles far from average pharmacokinetic profiles (i.e. 
patients for whom therapeutic drug monitoring is usually indicated), 
this methodology greatly improves results

logical. Finally, one would expect this improvement to be the 
same for extreme clearance values (small and large). This 
is true for isavuconazole but surprisingly is not the case for 
iohexol. To date, we have no explanation for this phenom-
enon, and it most likely depends on the experimental design 
used. The overall improvement, as defined by Eq. (7), is 
21.2% for iohexol and 15.5% for isavuconazole.

Table 3 presents the results of shrinkage (for the EBE 
or the proposed estimator) and the prediction of shrinkage 
provided by the Combes et al. [14] method. The proposed 
estimator has a lower shrinkage than the EBE, whatever the 
application (i.e. the PPK model, the sampling times, etc.). 
Surprisingly, the method proposed by Combes et al. [14] 
does not provide a good prediction of EBE shrinkage, espe-
cially for isavuconazole.

Table 3  Shrinkage estimates calculated from empirical Bayes esti-
mate and the proposed estimator.

a Shrinkage of the proposed estimator computed using the Combes 
et al. [14] method

Empirical Bayes 
estimate (%)

Proposed esti-
mator  (%)

Shrinkagea (%)

Iohexol 40 20 24
Isavuconazole 57 49 9.3
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4  Discussion

We proposed a method to improve the prediction of IPK 
parameters using the measured concentration for one patient. 
The EBE is the traditional predictor; however, this individual 
prediction suffers from an “attraction” toward the typical popu-
lation value and moves the prediction away from the actual 
value of the IPK parameters. This “distance” is called shrink-
age [7]. It is usually computed over both different individuals 
(i.e. with different IPK parameters) and different sampling 
times. This number gives information on the average departure 
from the actual value (i.e. actual clearance, volume of distribu-
tion, etc.), but it cannot be used as it stands to correct the pre-
diction of the IPK parameters for a particular patient [21, 22].

In contrast, the method we propose allows a specific 
shrinkage correction for each patient by considering the sam-
pling times, the PPK model, and the patient’s covariate values. 
Moreover, for each patient, the level of shrinkage correction 
depends on the proximity of the patient’s pharmacokinetic 
parameters to the population's pharmacokinetic parameters. 
Indeed, we have shown that the correction was at its maximum 
for extreme values. This information is particularly important 
as, in hospital practice, when TDM is requested, the pharma-
cokinetic parameters of the patients are quite extreme values 
(i.e. far from the mean population values). This is the case for 
example for patients in the intensive care unit and those with 
cystic fibrosis or obesity, among others [23–25]. Thus, this 
approach allows us to expect a significant improvement in the 
estimates of the IPK parameters. In addition to TDM, a better 
estimate of EBEs could help to improve PPK models during 
their construction and validation steps.

As stated in Eq. (6), � was chosen to minimise the shrink-
age on clearance. Thus, nothing guarantees a shrinkage 
decrease of other individual pharmacokinetic parameters. 
This is a not problem because, for drugs with a linear kinetic, 
clearance drives exposure and then TDM. We estimated this 
pharmacokinetic parameter with only one concentration both 
to mimic hospital practice and to guarantee a high shrinkage 
to be removed. This choice does not exclude the application 
of the same kind of methodology for all the other pharma-
cokinetic parameters (i.e. to choose a � and Γ function spe-
cific to the pharmacokinetic parameter of interest).

In this work, the method of Combes et al. [18] poorly pre-
dicted EBE shrinkage. We consider that this is mainly due to 
the assumed asymptotic framework. It is clear that, with only 
one observation per individual, the variance of P(Ψ|Y) can 
be quite different from the corresponding Bayesian Fisher 
information matrix obtained by expanding ln P(Ψ|Y) at its 
mode. Actually, the quality of approximation of P(Ψ|Y) by 
a Gaussian distribution is difficult to anticipate.

One of the limits to our methodology is the need for a 
validated PPK model. Indeed, all these results have been 

obtained conditional on �̂�, b̂, Ω̂ . In other words, an important 
assumption behind the method is that these estimations are 
precise enough to be used as if they were the actual value 
of the parameters. This hopefully happens for estimates 
obtained for a validated model built with a large number 
of individuals. If not, a model misspecification could lead 
to biased predictions. In this case, the shrinkage correction 
could be negligible compared with the bias. As such, the 
impact of a model misspecification on the final individual 
parameter estimate should be investigated.

However, although validation of PPK models for TDM 
is beyond the scope of this paper, the implicit assumption 
is that the chosen model properly describes the kinetic pro-
file of the hospitalised patient. From our experience, this 
is far from the case. An easy way to identify a poor PPK 
model is to look at the residual terms. The most often used 
residual error models are the proportional error model (i.e. 
g(t,�, b) = b1f (t,�) ) and in some cases a combined error 
model (i.e. g(t,�, b) = b2 + b1f (t,�) ). A large b1 (e.g. 
> 40%) indicates a poor PPK model and thus precludes any 
TDM based on IPK parameter estimations.

To conclude, this innovative methodology is promising 
since, to the best of our knowledge, no individual shrinkage 
correction has been proposed and it consistently provided 
better results than EBEs.
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