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Abstract

Modeling the processes of neuronal progenitor proliferation and differentiation to produce

mature cortical neuron subtypes is essential for the study of human brain development and

the search for potential cell therapies. We demonstrated a novel paradigm for the generation

of vascularized organoids (vOrganoids) consisting of typical human cortical cell types and a

vascular structure for over 200 days as a vascularized and functional brain organoid model.

The observation of spontaneous excitatory postsynaptic currents (sEPSCs), spontaneous

inhibitory postsynaptic currents (sIPSCs), and bidirectional electrical transmission indicated

the presence of chemical and electrical synapses in vOrganoids. More importantly, single-

cell RNA-sequencing analysis illustrated that vOrganoids exhibited robust neurogenesis

and that cells of vOrganoids differentially expressed genes (DEGs) related to blood vessel

morphogenesis. The transplantation of vOrganoids into the mouse S1 cortex resulted in the

construction of functional human-mouse blood vessels in the grafts that promoted cell sur-

vival in the grafts. This vOrganoid culture method could not only serve as a model to study

human cortical development and explore brain disease pathology but also provide potential

prospects for new cell therapies for nervous system disorders and injury.

Introduction

In contrast to the rodent lissencephalic cortex, the human neocortex has evolved into a highly

folded gyrencephalic cortex with enormous expansion of the cortical surface and increases in
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cell type and number [1,2]. Animal models, particularly rodents, have provided significant

insight into brain development, but the complexity of the human neocortex cannot be fully

captured with these models. Therefore, understanding the genetic changes as well as the mech-

anistic steps that underpin the evolutionary changes that occur during the development of the

neocortex in primates may require new model systems.

Organoids have recently been used to study the development of and pathological changes

in different tissue types, such as pancreas, liver, kidney, and retina tissues [3–8]. In addition,

several different methods involving the differentiation of human-induced pluripotent stem

cells (hiPSCs) have been developed to generate organoids that mimic nervous system develop-

ment [9–19]. Three-dimensional brain organoids are comprised of multiple cell types that col-

lectively exhibit cortical laminar organization, cellular compartmentalization, and organ-like

functions. Therefore, compared to conventional 2D culture, organoids are advantageous

because they can recapitulate embryonic and tissue development in vitro and are better at mir-

roring the functionality, architecture, and geometric features of tissues in vivo.

Previous studies have successfully established suitable approaches for generating cerebral

organoids from human embryonic stem cells (hESCs) or hiPSCs that can recapitulate in vivo

human cortical development and a well-polarized ventricle neuroepithelial structure that con-

sists of ventricular radial glia (vRGs), outer radial glia (oRGs), and intermediate progenitor

cells (IPCs) and the production of mature neurons within layers [12,13,15,17,18,20]. However,

a major limitation of current culture approaches that prevents truly in vivo–like functionality

is the lack of a microenvironment, such as vascular circulation. Previous studies have reported

that the development of the nervous system and the vascular system in the brain is synchro-

nous [21–23]. Vascularization is specifically required for oxygen, nutrient, and waste exchange

and for signal transmission in the brain. Additionally, blood vessels around neural stem cells

(NSCs) serve as a microenvironment that maintains homeostasis, and they play essential roles

in NSC self-renewal and differentiation during embryonic development [24,25]. A lack of vas-

cular circulation can induce hypoxia during organoid culture and accelerate necrosis, which

consequently hinders the normal development of neurons and their potential migration [26].

To overcome these limitations, some studies have tried to generate vascularized organoids

(vOrganoids) by coculturing hESC- or hiPSC-derived cerebral organoids with endothelial cells

(ECs) differentiated from induced pluripotent stem cells (iPSCs) from the same patient [27].

In addition, recent studies have established a robust method for generating vascularized

human cortical organoids by introducing hESCs that ectopically express ETV2 into organoids

[28]. Mansour and colleagues showed that transplanting human cerebral organoids into the

adult mouse brain can result in the formation of a vascularized and functional brain organoid

model in vivo [29]. In addition, other reports have demonstrated that compared to transplant-

ing dissociating neural progenitor cells, engrafting cerebral organoids into the lesioned mouse

cortex induces enhanced survival and robust vascularization [30]. All of these studies indicate

that vascularization is one of the feasible methods to improve organoid survival. In addition to

the methods reported in these studies, other stable and reproducible methods are required for

establishing vascularized cerebral organoids to model human brain development in vitro and

to perform in vivo transplantation.

Here, we developed a 3D culture protocol to generate vOrganoids by coculturing hESCs or

hiPSCs with human umbilical vein endothelial cells (HUVECs) in vitro. In our studies,

HUVECs were connected and formed a well-developed mesh-like or tube-like vascular system

in the cerebral organoids. vOrganoids recapitulated neocortical development, exhibiting dif-

ferent cell types and a neural circuit network, in vitro. In addition, single-cell RNA sequencing

(scRNA-seq) analysis verified that vOrganoids shared similar molecular properties and cell

types with the human fetal telencephalon. Finally, we intracerebrally implanted vOrganoids
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into mice and observed that the grafted vOrganoids survived and integrated into the host cor-

tical tissue in vivo. Importantly, the vessels in vOrganoid grafts connected well with the native

blood vessels in the rodents to build a new functional vascularization system. This vOrganoid

culture system serves as a model for studying human cortical development and provides new

potential therapeutic strategies for treating brain disorders or injuries.

Results

Vascularization in the 3D vOrganoid culture system

HUVECs, which are derived from the endothelium of veins from the umbilical cord, have

been widely used to explore the function and pathology of ECs [31–33]. In addition, via cocul-

turing with other cell types, HUVECs have been extensively used to characterize angiogenesis

during tumorigenesis and other biological processes [34–36]. Due to the tube formation ability

of HUVECs (S1A Fig), we generated vascularized cerebral organoids by coculturing hESCs or

hiPSCs with HUVECs. Approximately 3 × 106 dissociated hESCs or hiPSCs and 3 × 105

HUVECs were plated onto low cell-adhesion plates, and uniformly sized tight embryoid body-

like aggregates formed within the first 7 days. On day 18, the aggregates were transferred to

petri dishes for neural induction culture. The resulting 3D aggregates were then replated for

neural differentiation on day 35. Nonvascularized control organoids were generated by the

same workflow except that no HUVECs were added (Fig 1A). vOrganoids differentiated and

matured for up to approximately 200 days under the optimized culture conditions (Fig 1B, 1G

and 1L).

To visualize vascularization in vOrganoids, LAMININ, the major basement membrane gly-

coprotein of blood vessels, and isolectin I-B4 (IB4), a marker of ECs, were both used. We

observed that the HUVECs connected to form a mesh-like and tube-like structure in vOrga-

noids as early as 42 days (Fig 1C and S1B Fig, S1 Movie and S2 Movie). Previous studies have

confirmed that the proliferating cells in the ventricular zone/subventricular zone (VZ/SVZ)

are, on average, closer to blood vessels [37,38]. Interestingly, in our studies, vascularization in

vOrganoids primarily occurred just above the VZ/SVZ region, which is enriched with SRY-

box transcription factor 2 (SOX2)+ radial glia cells (RGs), homeodomain only protein X

(HOPX)+ oRGs, and eomesodermin (TBR2)+ IPCs (Fig 1D and 1E). Meanwhile, some vessels

were also detected in the migrating zone and cortical plate (CP; Fig 1D). This localization and

distribution were similar to those of blood vessels in the developing human cerebral cortex at

gestational week (GW) 12 (S1C Fig). As vOrganoids developed up to day 65, the vascular

structures extended into newborn neurons (Fig 1F). The vascular system, mainly located in the

outer layers of vOrganoids, which were enriched with neurons, was sustained for over 200

days (Fig 1G).

To test whether the ability of the culture protocol to produce vascular systems in organoids

is reproducible in different cell lines, vOrganoids were cultured from two hESC cell lines (H9

and H3) and two hiPSC cell lines (hiPSCs-AE and hiPSCs-LMZ). vOrganoids derived from

the different cell lines exhibited similar vascular structures in similar locations (S1D and S1E

Fig), indicating the reproducibility of the culture protocol. The vascularization success rate in

H9 cells was 100% over more than 30 experiments, while the success rates in the other three

cell lines were higher than 95% in at least 3 biological replicates for each. Then, we performed

cleaved CASPASE 3 immunostaining in nonvascularized organoids and vOrganoids and

found that the cell ratio of cleaved CASPASE 3+ cells in vOrganoids was significantly reduced

compared to that in nonvascularized organoids (S1F Fig, upper panel; and S1G Fig). In addi-

tion, we also performed immunostaining for hypoxia induciable factor 1 subunit alpha

(HIF1α), which is a hypoxia marker. Consistent with the results of cleaved CASPASE 3
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Fig 1. Cerebral vOrganoids with vascular system recapitulate the cortical spatial organization. (A) Schematic diagram of the 3D culture methods for

generating cerebral organoids with complicate vascular systems. (B) Representative bright field (BF) images of vOrganoids at different stages. Scale bar, 200 μm.

(C) Whole mount imaging of vOrganoid on day 42. The elaborate mesh-like vascular systems in vOrganoids were displayed by immunofluorescence staining

for LAMININ and IB4. Areas 1 and 2 outlined in boxes were magnified and reconstructed in 3D to depict the complexity of vasculature in vOrganoids. Scale
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staining, the cell ratio of HIF1α-positive cells in the vOrganoids was significantly reduced (S1F

Fig, lower panel, and S1G Fig). The HIF1α-positive cells in vOrganoids were mainly located in

the center of the organoids, while those in nonvascularized organoids were abundant and

widespread (S1F Fig, lower panel). Moreover, vOrganoids were larger in size and possessed

thicker neuroepithelia than nonvascularized organoids (S1H–S1K Fig). These results indicate

that the vascular systems in vOrganoids may provide more oxygen to support cell survival,

resulting in decreased cell death and larger vOrganoids. Human brain microvascular endothe-

lial cells (HBMECs) are the main ECs in the human brain and play important roles in the

development of the blood–brain barrier (BBB) [39]. Given the difference between HUVECs

and HBMECs, we also examined whether coculture can induce HUVECs to adopt a more

brain-like EC fate. P-glycoprotein (P-gp), an efflux transporter that influences the absorption,

distribution, and elimination of a variety of compounds, has been reported to be expressed on

brain capillary ECs. In our studies, P-gp was abundantly detected in brain capillary ECs at

GW12 but not in cultured HUVECs (S1L Fig and S1M Fig). These results indicate that when

cultured individually in the absence of organoids, HUVECs can form tube-like structures that

are similar to those in vOrganoids, but do not express P-gp (S1M Fig). Next, we examined the

expression of P-gp in the vOrganoids on day 83. The high degree of IB4 and P-gp colocaliza-

tion in vOrganoids (S1N Fig) indicated that coculture might induce HUVECs to adopt a more

brain-like EC fate.

Recapture of cell subtypes during neurogenesis

To determine whether vOrganoids can recapitulate human cortical organization (S1O Fig), we

stained for cortical layer markers on day 65. We found that TBR2+ IPCs were adjacent to the

early CP, which was indicated by chicken ovalbumin upstream promoter transcription factor

(COUP-TF)–interacting protein 2 (CTIP2)+ cells (Fig 1H, left panel). Furthermore, we found

that some SATB homeobox 2 (SATB2)+ cells were superficially localized to CTIP2+ neurons

and some were widely distributed in the migrating zone and newly formed CPs in vOrganoids

(Fig 1H, right panel; Fig 1I, left panel; and S1P Fig). This observation was consistent with

reports showing that SATB2 is expressed by virtually all upper layer projection neurons as well

as 30% of deep layer neurons that project through the corpus callosum [40–42]. In addition,

we also observed that early-born reelin (RELN)+ cells were located in the superficial layer

while later-born TBR1+ cells were located in the deeper layer (S1Q Fig).

bar, 100 μm (upper left), 50 μm (in box 1), 50 μm (in box 2). The arrowheads pointed out the hollows in the vascular systems that are permeable at different

views. (D) Representative immunofluorescence staining figure for TBR2, SOX2, and IB4 to reveal that the vasculogenesis in vOrganoids is synchronous to the

neurogenesis at early stage. Scale bar, 50 μm. (E) Representative immunofluorescence staining figure for HOPX, SOX2, and IB4 to demonstrate that the

HOPX+ SOX2+oRG cells could be detected in the vOrganoids at day 65. Scale bar, 50 μm. (F) Representative immunofluorescence staining figure for CTIP2/

IB4/PAX6 at day 65 to demonstrate that the IB4+ vascular structures would progressively extend into newborn neurons (CTIP2+) with the development of

vOrganoids. Scale bar, 50 μm. (G) Representative IB4 and LAMININ staining figure in vOrganoid at day 210 to demonstrate that the vascular system could be

maintained for over 200 days. Scale bars, 100 μm. (H) The spatial organization of vOrganoids was illustrated by immunofluorescence staining for TBR2/CTIP2

(left panel) and SATB2/CTIP2 (right panel) at day 65. Scale bar, 50 μm. (I) Representative immunofluorescence staining figure for the SATB2 and SOX2 to

illustrate that SATB2+ cells are mainly located above the SOX2+ progenitor cells (left panel); SST and CR staining illustrated the emergence of interneurons in

vOrganoids at day 65 (right panel). The “#5” and “#6” labelled in the upper left represent the number of continuous sections of vOrganoids. Scale bars, 50 μm.

(J-L) Representative immunostaining figure for the pyramidal layer markers and interneuron markers in the continuous cryosections of vOrganoids at day 92

(J), day 128 (K), and day 210 (L). Scale bars, 50 μm. (M) The percentage of SATB2+, BRN2+, and CTIP2+ cells in the vOrganoids of day 128 and day 210,

respectively. n = 3 organoids from three independent experiments. All data are presented as means ± SEM, independent-samples t test, �p< 0.05, ��p< 0.01.

The numerical data underlying this figure can be found in the Fig 1M sheet of S1 Data. BRN2, POU class 3 homeobox 2; CR, calretinin; CTIP2, chicken

ovalbumin upstream promoter transcription factor (COUP-TF)–interacting protein 2; EB, embryonic body; hESC, human embryonic stem cell; hiPSC,

human-induced pluripotent stem cell; HOPX, homeodomain only protein X; IB4, isolectin I-B4; iPSC, induced pluripotent stem cells; oRG, outer radial glia;

PAX6, paired box 6; SATB2, SATB homeobox 2; SOX2, SRY-box transcription factor 2; SST, somatostatin; TBR2, eomesodermin; vOrganoid, vascularized

organoid.

https://doi.org/10.1371/journal.pbio.3000705.g001
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Because pyramidal neurons and interneurons are both required to form neural circuits, we

also paid close attention to the different subtypes of interneurons in vOrganoids. Calretinin

(CR)+ or somatostatin (SST)+ cells were first detectable at day 65 in continuous sections of

vOrganoids (Fig 1I, right panel). Moreover, layer-specific pyramidal neurons were surrounded

by sparse interneurons in the late stages of the 3D culture on days 92, 128, and 210 (Fig 1J–1L).

The proportion of upper layer neurons increased from 15.94% to 33.04% from day 128 to day

210, and the interneurons were sparsely distributed (Fig 1K–1M), indicating that the vOrga-

noid culture system models the organization of the neocortex in vivo.

Next, we used scRNA-seq (10X Genomics Chromium) to capture the cellular and molecu-

lar features of the vOrganoids. We collected nonvascularized organoid and vOrganoid samples

at two time points: day 65 and day 100 (Fig 2A and 2B and S2A Fig). There were three inde-

pendent experimental replicates for each group (S2A Fig). After quality control, we obtained a

final dataset of 57,180 cells from 12 independent samples encompassing an average of 2,762

genes per cell (S2B Fig, S1 Table). To characterize the cellular heterogeneity of vOrganoids and

nonvascularized organoids, we performed Uniform Mainfold Approximation and Projection

(UMAP) analysis with Seurat (Stuart and colleagues, 2019) and identified 11 major clusters,

including RGs, oRGs, IPCs, cell cycle active cells (labeled as cell cycle), immature neurons,

excitatory neurons, interneurons, microglia, astrocytes, oligodendrocyte progenitor cells

(labeled as OPCs) and choroid plexus cells, based on the expression of classical gene markers

(Fig 2A, S2C and S2D Fig, and S1 Table). The high transcriptomic correlations between the

corresponding cell types in the organoids suggested that there are no remarkable cell type dif-

ferences between nonvascularized organoids and vOrganoids (S2E Fig).

We then aimed to compare the similarities between the organoids and the human fetal tel-

encephalon at the single-cell level [43]. To identify the homologous cell types between orga-

noids and primary tissue, we integrated organoid cells and embryonic human telencephalon

cells and found that the same cell types were generally close to each other (Fig 2C). To clearly

exhibit the correlations of cell types between organoids and human telencephalon, we con-

structed a correlation network via partition-based graph abstraction (PAGA) (Fig 2D and 2E

and S2F Fig). In the PAGA plots, the RGs, oRGs, IPCs, excitatory neurons, interneurons,

astrocytes, microglia, choroid plexus cells, and OPCs in the organoids were located close to the

corresponding cell types in the human telencephalon (Fig 2D and 2E and S2F Fig). These

results suggest that based on transcriptome analysis, the cell types in organoids are highly simi-

lar to the corresponding cell types in the human fetal telencephalon.

To explore whether vOrganoids more closely recapitulate fetal telencephalon development

than control organoids, we compared the single-cell transcriptome profile of the human fetal

telencephalon with that of control organoids (S2G and S2H Fig) and vOrganoids (S2I and S2J

Fig) separately. Based on PAGA as well as transcriptomic correlation analysis, the cell types in

control organoids as well as those in vOrganoids were highly similar to those in the human

fetal telencephalon (S2K–S2N Fig). Although there were no obvious differences in cell types or

the similarity to the human fetal telencephalon between vOrganoids and control organoids, we

then compared the development of vOrganoids and nonvascularized organoids by analyzing

the scRNA-seq data. First, we predicted the developmental states of the cells in control orga-

noids and vOrganoids along the pseudo-time trajectory by monocle analysis [44–46]. The fit-

ted curves of the cell density along the pseudo-time were plotted on day 65 and day 100 (Fig

2F). More vOrganoid cells than nonvascularized organoid cells were assigned a high pseudo-

time score (Fig 2F). The extent of divergence was more obvious on day 65 than on day 100

(Fig 2F). These results indicate that vOrganoids develop faster than nonvascularized orga-

noids, even though this difference decreases during development. To further validate this

observation, we calculated the maturation score of each cell in vOrganoids and controls (Fig
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Fig 2. Cell type mapping between the scRNA-seq data of organoids and human fetal telencephalon. (A) Visualization of the major cell types in organoids

and vOrganoids by 3D UMAP. Each dot represents one individual cell and colored by cell types. The expression of known gene markers was visualized at the

lower panel and cells were colored by the expression level (red, high; gray, low). (B) The cell distributions of control organoids and vOrganoids at d65 and

d100, respectively, were individually showed using UMAP. Each dot represents one individual cell and colored by sample information. (C) The scRNA-seq data
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2G). Similar to the developmental pseudo-time analysis, there were fewer vOrganoid cells than

nonvascularized organoid cells with low maturation scores and more vOrganoid cells than

nonvascularized organoid cells with high scores (Fig 2G). Together, both the developmental

state and maturation trajectory analyses suggest that the vascular systems in vOrganoids might

accelerate the development of vOrganoids in the early stage.

Next, to understand why vOrganoids develop faster than control organoids, we analyzed

the cell composition on day 65. We found that the percentage of one type of neural progenitor

cell—oRGs—was much higher in vOrganoids than in nonvascularized organoids (S2O Fig).

oRGs originate from RGs and play important roles in neurogenesis, greatly contributing to

rapid excitatory neuron production during human fetal cortical development [47,48]. Accord-

ingly, the percentage of excitatory neurons, the progenies of neural progenitor cells, in vOrga-

noids was much higher than that in nonvascularized organoids on day 65 (S2O Fig).

Consistently, more neuronal differentiation 2 (NEUROD2)+ neurons were detected in vOrga-

noids than nonvascularized organoids by immunostaining on day 65 (Fig 2H and 2I). Thus,

both scRNA-seq and immunostaining suggested that the vascular systems in vOrganoids may

promote neurogenesis in vitro.

Given the intimate interactions between the vasculature and proliferative progenitor cells

during brain development [49–52], we also attempted to detect whether the vascular systems

in vOrganoids can influence gene expression in neural progenitors. We conducted the differ-

entially expressed gene (DEG) and Gene Ontology (GO) enrichment analysis of progenitors

(cell cycle active cells, RGs, oRGs, and IPCs) in vOrganoids and nonvascularized organoids.

The GO terms enriched in progenitor cells in nonvascularized organoids were responses to

hypoxia and positive regulation of cell death (Fig 2J, S1 Table). These GO terms are consistent

with the higher number of HIF1α+ and cleaved CASPASE 3+ cells observed in nonvascularized

organoids (S1F and S1G Fig). Meanwhile, the GO terms enriched in progenitor cells in vOrga-

noids were positive regulation of neurogenesis and blood vessel morphogenesis (Fig 2J,

S1 Table).

In addition to neurons, we also detected glial cells, such as microglia, OPCs, and astrocytes,

in our scRNA-seq dataset (Fig 2A). We performed immunostaining for microglia-specific allo-

graft inflammatory factor 1 (AIF1) and astrocyte-specific glial fibrillary acidic protein (GFAP)

of organoids and human fetal telencephalon were integrated to display the cell similarities in forced-directed graph. The integrated data were showed in the top

left zoomed-out plot. Meanwhile, the cell distributions of organoids and human fetal telencephalon were highlighted separately. Each dot represents a single

cell and is colored according to the cell types in the integrated data. The width of edges is scaled with cell–cell connectivity. (D) The correlations among cell

types are displayed in the PAGA graph. The cell types in the organoids and human fetal cortex datasets were denoted by the solid and hollow dots, respectively.

And the same cell types in two datasets were colored identically. The size of dots was scaled with the cell numbers; width of edges was scaled with the

connectivity between cell types. (E) The expression of the well-known gene markers in different cell types is showed in the PAGA plots. The GAD1,

NEUROD2, EOMES, and AIF1 are the specific genes for interneuron, excitatory neurons, IPCs, and microglia, respectively. Nodes are colored according to the

gene expression levels (light pink, low; dark red, high). (F) The fitted curves of cell density along the pseudo-time at day 65 (upper) and day 100 (lower) The

shadow represents the confidence interval around the fitted curve. (G) The curves of cell density along the pseudo-maturation trajectory at day 65 (upper) and

day 100 (lower). The shadow represents the confidence interval around the fitted curve. (H) Immunofluorescence staining for NEUROD2/IB4 in the control

organoids and vOrganoids at day 65. The expressions of NEUROD2 are individually displayed in the right panel. Scale bar, 100 μm. (I) The ratio of

NEUROD2+ excitatory neurons is higher in the vOrganoids than in the control organoids at day 65. n = 4, 4 control organoids and vOrganoids from three

independent experiments. (J) Heatmap showing the expression of DEGs between the progenitor cells (included RG, oRG, cell cycle active cells, and IPCs) of

control organoids and vOrganoids at day 65. The enriched gene ontology of the DEGs and the adjusted p-values are also listed. (K) Representative

immunofluorescence staining figure for AIF1, a specific microglia marker, to illustrate the presence of microglia in organoids. Scale bar, 10 μm (left), 5 μm

(right). (L) Immunofluorescence staining for GFAP to illustrate the presence of astrocytes in organoids. Scale bar, 10 μm. (M) A few of NKX2-1–positive cells

are detected in the immunofluorescence staining section. The area in the white dashed box is magnified in the lower panel. Scale bar, 200 μm (upper), 20 μm

(lower). The numerical as well as metadata underlying this figure can be found in the Fig 2A, 2B, 2C and 2I sheets of S1 Data. AIF1, allograft inflammatory

factor 1; Ast, astrocyte; cell cycle, cell cycle active cell; Ch, choroid plexus; DEG, differentially expressed gene; Endo, endothelial cell; EOMES, eomesodermin;

ExN, excitatory neuron; GAD1, glutamate decarboxylase 1; GFAP, glial fibrillary acidic protein; IB4, isolectin I-B4; ImN, immature neuron; IN, interneuron;

IPC, intermediate progenitor cell; MGE, medial ganglionic eminence; MGE-div, MGE dividing cell; Mic, microglia; Mural, mural cell; NEUROD2, neuronal

differentiation 2; NKX2-1, NK2 homeobox 1; OPC, oligodendrocytes progenitor cell; oRG, outer radial glia; PAGA, partition-based graph abstraction; RG,

radial glia cell; scRNA-seq, single-cell RNA sequencing; UMAP, Uniform Mainfold Approximation and Projection; vOrganoid, vascularized organoid.

https://doi.org/10.1371/journal.pbio.3000705.g002
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and verified the presence of these markers in vOrganoids (Fig 2K and 2L). In addition, we

detected interneurons with high expression of glutamate decarboxylase 1 (GAD1)/distal-less

homeobox 1 (DLX1) and sparse expression of NK2 homeobox 1 (NKX2-1) and LIM homeo-

box 6 (LHX6) in our scRNA-seq data (Fig 2A and S2C Fig). The immunostaining results also

illustrated sparsely distributed NKX2-1+ cells in vOrganoids (Fig 2M). Notably, we also

detected a cluster of choroid plexus epithelial cells, which displayed transcriptomic similarity

with the choroid plexus in the human telencephalon (Fig 2A, S2C Fig and S2F Fig). In vivo,

the choroid plexus is mainly responsible for the production of cerebrospinal fluid (CSF),

which serves as a rich source of proteins, lipids, hormones, cholesterol, glucose, microRNA,

and many other molecules for the maintenance of central nervous system (CNS) functions

and plays a role in embryonic neurogenesis [53].

Modeling functionality maturation during neurogenesis

Several previous studies have illustrated that neurons in cortical organoids without vascular

structures are ultimately able to reach mature states as their morphology and functionality pro-

gressively mature [13,20,54]. Because vOrganoids partially recapitulate human cortical devel-

opment based on gene expression and cell subtypes, we next investigated the functional

characteristics of the neurons by obtaining electrophysiological recordings. We performed

patch-clamp recordings on slices from both control organoids and vOrganoids. To unbiasedly

record neurons in vOrganoids and nonvascularized organoids, we selected neurons with simi-

lar soma diameters (S3A Fig) located within 150 μm of the edge of the organoid slices (S3B

Fig). There were no differences in the amplitude of the inward currents. However, dramatic

increases in outward current amplitudes were found in vOrganoid cells on day 80 (Fig 3A and

3B and S3C Fig). The increased outward current might in turn contribute to higher firing abil-

ity under current stimulation of different amplitudes in vOrganoids compared to nonvascular-

ized organoids (S3D and S3E Fig). Because outward current increases significantly during the

maturation process of cortical neurons [55], our observations suggest that neurons in vOrga-

noids might be more mature than those in nonvascularized organoids. Apart from increased

outward current, vOrganoid neurons also exhibited lower resting membrane potential (S3F

Fig) and greater cell capacitance (S3G Fig), suggesting that there might be increased dendritic

or axonal growth in vOrganoids. Additionally, more spontaneously active cells were detected

in vOrganoids (8/56 cells) than in nonvascularized organoids (4/52 cells) on day 80 (S3H Fig).

Together, these results indicate that the vascular system in vOrganoids may accelerate the pro-

gression of the functional development of individual neurons in vitro.

To build coordinated neural circuits, individual neurons must establish synaptic connec-

tions with each other. Therefore, we next focused on the formation of synapses in the vOrga-

noids. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) and sIPSCs from

vOrganoids from day 90 to day 100 (Fig 3C–3F), and sIPSCs were blocked by the gamma-ami-

nobutyric acid A (GABAA) receptor antagonist bicuculline methiodide (BMI) (S3I Fig). Fur-

thermore, to monitor the formation of the synapses, staining for synaptobrevin 2 (SYB2) and

postsynaptic density protein-95 (PSD95) was performed to identify presynapses and postsy-

napses, respectively. We found abundant SYB2+ and PSD95+ puncta, some of which were

colocalized, in vOrganoids on day 62 (Fig 3G). On day 210, dense distribution of RNA binding

fox-1 homolog 3 (NeuN)+/microtubule associated protein 2 (MAP2)+ mature neurons was

observed (S3J Fig), and Na+ currents and sIPSCs/sEPSCs were captured from these mature

neurons (S3K–S3M Fig), which was indicative of long-standing synaptic formation in

vOrganoids.
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Fig 3. Electrophysiological properties of cells in the vOrganoids at different developmental stages. (A) The amplitudes of outward (upper) and inward

(lower) currents from the organoids (black) and vOrganoids (red) cells at day 60 (32 cells from 5 organoids in 4 independent experiments; 53 cells from 8

vOrganoids in 6 independent experiments), day 80 (45 cells from 6 organoids in 4 independent experiments; 49 cells from 6 vOrganoids in 4 independent
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Intracellular calcium fluctuation imaging is an efficient method for characterizing the func-

tional features of neural activities in cortex-like organoids. Therefore, we performed calcium

dye imaging to detect calcium oscillations and observed spontaneous calcium surges in indi-

vidual cells. When we blocked the action potentials with the application of tetrodotoxin

(TTX), a specific blocker of voltage-gated sodium channels, we observed dampened calcium

surges in most cases, indicating that spontaneous calcium events in neurons depend on neuro-

nal activity (Fig 3H and S3N Fig). To further characterize the types of mature neurons, we

applied exogenous glutamate and observed more frequent calcium events, indicating that

these neurons exhibited glutamatergic receptor activity on day 85 (S3O Fig). Given the pre-

dominance of glutamatergic neurons in the aggregates, we combined a pharmacological assay

with calcium imaging to further illustrate the differences in receptor-mediated synaptic trans-

mission on day 50 and day 85. Neuronal activity in vOrganoids was reduced during treatment

with DL-2-Amino-5-phosphonopentanoic acid (APV), which is an N-methyl-D-aspartate

(NMDA) receptor antagonist, 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX), which is an α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, or BMI,

which is a GABAA receptor antagonist, indicating that NMDA receptor–, AMPA receptor–,

and GABAA receptor–mediated synaptic activities were present after day 50 (Fig 3H and 3I).

Importantly, when we compared neurons on day 50 and day 85, we observed reduced sensitiv-

ity to APV and greater sensitivity to CNQX on day 85 (Fig 3I), which indicated a transition

from NMDA receptor–to AMPA receptor–mediated excitatory synaptic activity during the

integration and maturation of vOrganoids. This is similar to what happens in vivo [56]. We

also observed that BMI severely reduced neural activity on day 50 but not on day 85 (Fig 3H

and 3I), indicating that the GABAergic response changed from depolarizing to hyperpolariz-

ing during development; this change can be induced by a decreased intracellular chloride ion

concentration due to the expression of potassium-chloride transporter member 5 (KCC2)

[57].

In addition to the formation of chemical synapses, we also investigated the formation of

electrical synapses (gap junctions) in vOrganoids. To identify the connectivity of the neural

network, we explored how many cells were connected to one neuron through gap junctions.

experiments, p-values: 0.0428, 0.0278, 0.0222, 0.0171, 0.0085, 0.0066, 0.0072, 0.0099, and 0.0131 when evoked voltages are −20, −10, 0, 10, 20, 30, 40, 50, and 60

mV) and day 90 (42 cells from 6 organoids in 4 independent experiments; 50 cells from 6 vOrganoids in 5 independent experiments, p-values: 0.0090, 0.0027,

0.0033, 0.0025, and 0.0018 when evoked voltages are 20, 30, 40, 50, and 60 mV). Two-sample t test, data shown as mean ± SEM, �p< 0.05, ��p< 0.01,
���p< 0.001. (B) The amplitudes of outward currents elicited by +60 mV (indicated by gray box in upper panel of A) and the amplitudes of inward currents

elicited by −10 mV (indicated by gray box in lower panel of A) from organoid (black) and vOrganoid (red) cells at day 60, day 80, and day 90. Open circles

indicate the amplitude of current from individual cells. Filled circles indicate the mean value. p-Values: 0.0108 (outward current of vOrganoid d60 versus d80),

0.0615 (outward current of vOrganoid d80 versus d90), 0.0131 (outward current at day 80 organoid versus vOrganoid), 0.0018 (outward current at day 90

organoid versus vOrganoid), 0.0066 (inward current of organoid d60 versus d80), 0.00001 (inward current of vOrganoid d60 versus d80). Two-sample t test,

data shown as mean ± SEM, �p< 0.05, ��p< 0.01, ���p< 0.001. (C-F) Spontaneous EPSCs (C) and IPSCs (E) were recorded in vOrganoids. The average

frequency and amplitude of EPSCs and IPSCs are shown in (D) and (F), respectively. n = 6, 6 cells from 3 organoid and 3 vOrganoids in three independent

experiments for sEPSCs (D) and sIPSCs (F), respectively. (G) Synapses in vOrganoids are revealed by immunofluorescence staining for the pre- and

postsynaptic markers, SYB2 and PSD95, respectively. Scale bar, 10 μm. (H) Intracellular spontaneous calcium fluctuations were measured before and after the

application of TTX, CNQX, APV, and BMI in the vOrganoids at day 50 and day 85, respectively. (I) The effects of different treatments on spontaneous calcium

fluctuations were compared between day 50 and day 85 in the statistical results. Relative Ca2+ transient frequencies are normalized with the ACSF data of day

50. There are 188 and 124 cells in total for day 50 and day 85. All data are presented as means ± SEM. n = 188, 124, 31, 9, 65, 33, 77, 36, 15, and 46 from three

independent experiments. Two-sample t test, p_ACSF = 0.1266, p_TTX = 0.2798, p_CNQX = 0.0208, p_APV = 0.00005, p_BMI = 0.0075. �p< 0.05,
��p< 0.01, ���p< 0.001, ����p< 0.0001. (J) Coupling pattern was visualized by cell injection. Green arrows indicated the injected cells. Red arrows indicated

the cells that were connected to the injected cells. Scale bar, 50 μm. (K-L) The gap junctions between two cells (CMV-GFP labeled) were identified by dual-

patch recording. The morphology of cells that dual patched was showed in (K). Scale bar, 50 μm in (K). The voltage deflections with small amplitudes were

recorded in one cell while currents were injected into the other cell (L). The numerical data underlying this figure can be found in the Fig 3A, 3B, 3D, 3F and 3I

sheets of S1 Data. ACSF, artificial cerebral spinal fluid; APV, DL-2-Amino-5-phosphonopentanoic acid; BMI, bicuculline methiodide; CMV, cytomegalovirus;

CNQX, 6-Cyano-7-nitroquinoxaline-2,3-dione; DGC, dodt gradient contrast; GFP, green fluorescent protein; PSD95, postsynaptic density protein-95; sEPSC,

spontaneous excitatory postsynaptic current; sIPSC, spontaneous inhibitory postsynaptic current; SYB2, synaptobrevin 2; TTX, tetrodotoxin; vOrganoid,

vascularized organoid.

https://doi.org/10.1371/journal.pbio.3000705.g003
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When we injected neurobiotin into two neurons, 11 coupled neurons were observed (Fig 3J

and S3P Fig), suggesting that electrical connections exist in vOrganoids. To directly observe

electrical coupling between neurons, we performed dual-patch recordings of vOrganoids.

When the dual patch was established, voltage deflections with small amplitudes were recorded

from one cell while currents were injected into the other cell (Fig 3K and 3L). Bidirectional

electrical transmission indicated the existence of gap junctions between these two cells (Fig

3L). Together, these results indicate that the neurons in vOrganoids can become functionally

mature with the emergence of a spontaneous action potential and that functionally mature

neurons can later connect to one another based on the formation of abundant chemical and

electrical synapses and receptor maturation.

Transplantation of vOrganoids reconstructs the vascular system in the

mouse cortex

The long-term survival of organoid grafts in a host requires vascularization to satisfy the ade-

quate delivery of oxygen and nutrients. The intracerebral implantation of hiPSC-derived brain

organoids into the retrosplenial cortex of immunodeficient mice results in the recruitment of

mouse blood vessels that grow into the grafts and support the long-term survival of the cells

[29]. Therefore, we next tested whether the vascular systems in the vOrganoids can connect to

blood vessels in the brain of the host to build a functional circulatory system. Sixty-day-old

vOrganoids were intracerebrally implanted into a cavity that was made in the S1 cortex of non-

obese diabetic severe combined immunodeficient (NOD-SCID) mice (Fig 4A). At 60 days

postimplantation (dpi), we observed the integration of the organoid grafts into the host brain

tissue (Fig 4B). SATB2+ cells were generally distributed close to the surface even though some-

times interrupted by SATB2−/CTIP2− VZ-like rosettes. Meanwhile, CTIP2+ cells were mainly

located in the deep area of the grafts (Fig 4B).

To test whether synaptic integration emerges in grafted vOrganoids, we performed immu-

nofluorescence staining for SYB2 and PSD95 to observe presynaptic and postsynaptic proteins,

respectively, in the graft area close to the graft–host border at 60 dpi. The colocalization and

close association of SYB2 and PSD95 indicated that there was synaptic connectivity in the

grafts (Fig 4C). However, the presynaptic and postsynaptic sources could not be distinguished

in the current study.

Because vOrganoids showed less cell death than nonvascularized organoids in culture, we

next asked whether vOrganoid grafts survive better than nonvascularized grafts. We implanted

control organoids or vOrganoids into the S1 cortex of NOD-SCID mice and performed immu-

nostaining for cleaved CASPASE 3 in grafts at 60 dpi. Less cell death was observed in the vOr-

ganoid grafts than nonvascularized organoid grafts (S4A and S4B Fig). Additionally, we also

compared cell death in organoid grafts with that in in vitro cultured vOrganoids on the same

day (day 120). On day 120, there were fewer cleaved CASPASE 3+ cells in cultured vOrganoids

than control nonvascularized grafts but significantly more in cultured vOrganoids than vOrga-

noid grafts (S4A and S4B Fig). These results suggest that the vascular systems in vOrganoids

can improve cell survival in the host brain.

We next injected Alexa Fluor 594–conjugated dextran into the mouse caudal vein to

observe the blood flow in organoid grafts by live two-photon microscopy. Interestingly, steady

blood flow was captured in organoid grafts, indicating the formation of a functional vascular

system between the graft and host (S3 Movie). The 3D reconstructed images also briefly

showed the vascular systems in the grafts (Fig 4D, S4 Movie). In addition, to further demon-

strate that the ECs in the grafts had reliably integrated into the new vascular system, immuno-

fluorescence staining for dextran and LAMININ was performed to label blood vessels, while
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Fig 4. The vOrganoids play important roles in the reconstruction of vascular system after transplantation. (A) Schematic diagram to demonstrate the

vOrganoids implantation protocols in our studies. The vOrganoids were transplanted into the S1 cortex of NOD-SCID mice. (B) Representative

immunofluorescence staining figure for the classical cortical layer markers, CTIP2 and SATB2, at 2 months postimplantation. The boxed area was magnified in

the right panel. Scale bar, 500 μm (left), 50 μm (right). (C) Representative immunofluorescence staining figure for presynaptic (SYB2) and postsynaptic

(PSD95) in the vOrganoid grafts of 60 dpi. The displayed area was close to the graft–host border. The colocalization (arrowheads) and close association of SYB2

and PSD95 indicate that synaptic connectivity emerges in the organoid grafts. Scale bar, 10 μm. (D) The blood vessels in the vOrganoid grafts were

reconstructed in three dimensions. The red tubular structure was blood vessels. Scale bar was labeled at three dimensions. Scale bar, 30 μm. (E)

Immunofluorescence staining for LAMININ, dextran, and HUN were performed to confirm that the human ECs derived from vOrganoids (labeled by yellow

circles and yellow arrows) and the mice ECs derived from hosts (labeled by white circles and white arrowheads) were both detected in the vascular systems in

the vOrganoid grafts. Scale bar, 100 μm (left), 10 μm (right). (F) Representative immunofluorescence staining figure for GFAP and HUN in the vOrganoid

grafts. A few HUN-positive astrocytes were labeled by boxes and magnified in right panels. Scale bar, 50 μm (left), 10 μm (right). (G) Representative

immunofluorescence staining figure for MBP and HUN to illustrate that myelinization just could be infrequently observed at the border of graft-host

commissure. The boxed areas were magnified. Scale bar, 500 μm (left), 100 μm (middle), 50 μm (right). See also S4 Fig. CTIP2, chicken ovalbumin upstream

promoter transcription factor (COUP-TF)–interacting protein 2; dpi, days postimplantation; GFAP, glial fibrillary acidic protein; HUN, human nuclear; MBP,

myelin basic protein; NOD-SCID, nonobese diabetic severe combined immunodeficient; PSD95, postsynaptic density protein-95; SATB2, SATB homeobox 2;

SYB2, synaptobrevin 2; vOrganoid, vascularized organoid.

https://doi.org/10.1371/journal.pbio.3000705.g004
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human nuclear (HUN) was used to distinguish vOrganoid grafts from host cells. We observed

that human HUVEC-derived HUN+ ECs and mouse HUN− ECs coexisted in the blood vessels

in vOrganoid grafts 2 months after implantation (Fig 4E).

A study by Mansour and colleagues demonstrated that blood vessels from the host can

grow into organoid grafts to support their long-term survival [29]. We next asked whether

angiogenesis appears earlier in the vOrganoid grafts than in nonvascularized organoid grafts.

Thus, we performed immunostaining for IB4 and HUN in organoid grafts at 30 dpi, a time

point at which the blood vessels from the host did not extensively grow into the organoid grafts

(S4C Fig). Some IB4+ blood vessels were detectable in the center of the vOrganoid grafts, while

the majority of blood vessels in the nonvascularized organoid-implanted brains were distrib-

uted close to the graft–host borders (S4C Fig).

Considering the supporting roles of glial cells in normal neural activities and the integration

of the grafts into host tissue, we next examined the level of gliogenesis within the organoid

grafts. Abundant GFAP+ astrocytes were present in the graft regions, and some of them were

HUN+ (Fig 4F). To exclude the possibility that these GFAP+ cells might be RGs, we performed

coimmunostaining for GFAP and SOX2, as well as for GFAP and paired box 6 (PAX6) (S4D

Fig). The results showed that very few GFAP+ cells coexpressed SOX2 or PAX6 (S4D Fig), sug-

gesting that the majority of GFAP+ cells in the grafts were astrocytes, some of which were

native vOrganoid cells (HUN+ cells). Furthermore, we also detected signs of myelination in

the grafts upon staining for myelin basic protein (MBP). However, consistent with the obser-

vation that very few oligodendrocytes were found in cultured vOrganoids by scRNA-seq, only

sparse MPB+ signals were observed at the implantation border of the grafts, and no myelina-

tion was detected in the core regions (Fig 4G), which is consistent with previous studies [29].

These results suggested that the myelinated fibers in the organoid grafts were primarily derived

from the host brain and merely intruded into regions of the implantation border and that

barely any came from the organoids in the early stage after implantation.

Discussion

The neurovasculature, which is the circulatory system in the brain, is a key component of the

NSC microenvironment, which provides oxygen and nutrient support to the brain while

removing waste metabolites. Proper development and functioning of the CNS relies on

mutual cross talk between the nervous and vascular systems [21,24,58]. Brain organoids are

promising models for investigating the development of the human brain and the pathome-

chanism of mental disorders. However, in current culture systems, the ability of oxygen and

nutrients to reach the center of organoids is hampered due to impairments in the circulatory

system; therefore, cellular necrosis occurs in the center of organoids. This cellular necrosis in

organoids, in turn, heavily limits the continuous growth and long-term maintenance of func-

tional cells in organoids. Many studies have tried to generate vOrganoids by adopting various

methods. For example, Cakir and colleagues reported a method for engineering human brain

organoids with a functional vascular-like system by introducing hESCs ectopically expressing

ETV2 into human cerebral organoids[28]. Here, we have established a reproducible system

for the generation of vascularized cerebral vOrganoids by coculturing hESCs/hiPSCs with

HUVECs, with minimal introduction of extrinsic signals. HUVECs, which are derived from

the endothelium of veins from the umbilical cord, have been used extensively to characterize

angiogenesis [59,60]. However, HUVECs are different from HBMECs, which are the main

ECs in the human brain [39]. Interestingly, we found that coculture with organoids can

induce the development of HUVECs towards brain-like ECs to some extent, as indicated by

P-gp expression.
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In this system, the ECs connected to form a mesh-like and tube-like vascular structure in

vOrganoids. In the early culture stage, the vascular structures preferred to be adjacent to the

neural progenitors and were located above the VZ/SVZ region. With rapid neurogenesis, the

migrating zone and CP expanded while the VZ/SVZ area shrunk. During this process, the vas-

cular structures gradually emerged in the migrating zone and CP in vOrganoids. ECs have

been suggested to secrete soluble factors such as vascular endothelial growth factors (VEGFs),

angiopoietin-1 (Ang1), and angiopoietin-2 (Ang2), which promote the self-renewal and differ-

entiation of VZ/SVZ progenitors [49,51,52]. Additionally, the VZ/SVZ is more densely vascu-

larized than its neighboring brain regions during development [50]. Several studies have also

indicated that neural cells in neighboring areas can participate in feedback mechanisms to reg-

ulate the growth and properties of cells in the vasculature [21]. Therefore, our vOrganoid sys-

tem to a certain extent recapitulates the in vivo interaction between vascular cells and NSCs/

progenitors during neurogenesis. In vOrganoids, ECs may secrete essential extrinsic signals

that facilitate neurogenesis. The observations of lower hypoxia signals and fewer cleaved CAS-

PASE 3+ cells in vOrganoids than nonvascularized organoids indicate that the vascular systems

in vOrganoids may supply even greater levels of oxygen and nutrients for neural progenitors

and neurons, although no real blood cells are present in the vascular structure. These factors

may promote cell proliferation and differentiation and prevent cell death, which could account

for the larger size of and enhanced neurogenesis in vOrganoids. Given the limitations of tradi-

tional organoid culture, our vascularized 3D cerebral culture may solve the problem of insuffi-

cient oxygen supply and nutrient support to organoids to some extent, thus permitting better

growth and functional development of vOrganoids.

vOrganoids mimic cortical development in vivo, and the major cell types in these orga-

noids are RGs, oRGs, IPCs, excitatory neurons, interneurons, astrocytes, and microglia, as

detected by both immunostaining and scRNA-seq. In addition, the cell types in cultured vOr-

ganoids and control organoids were both highly similar to those in the human telencephalon

at the single-cell transcriptome level [43,61], indicating that vOrganoids could be a potential

model for exploring the fundamental questions related to human brain development and

neurological diseases. Unfortunately, we did not find clustered ECs in vOrganoids, but this

may have been because the dissociation method we used was too mild to break the tight junc-

tions between ECs [62,63]. However, the DEGs between vOrganoids and nonvascularized

organoids were enriched in the GO terms of blood vessel morphogenesis, suggesting that

there may have been some ECs that were not clustered due to limited cell number caught by

scRNA-seq.

Pyramidal excitatory neurons and interneurons in vOrganoids showed an organization that

was similar to that observed in the human fetal neocortex. With this classical cytoarchitecture,

the neurons gradually matured and formed synaptic connections. We also observed a transi-

tion from NMDA receptor–to AMPA receptor–mediated transmission of excitatory synapses

in our culture system, indicating that the neurons exhibited a maturation process that contrib-

utes to the formation of functional circuits [56]. Together, the results suggest that our vOrga-

noids derived from coculturing hESCs/hiPSCs with ECs recapitulate human cortical

development not only in cell type and cellular organization but also in circuit formation.

A variety of 3D organoid systems have been transplanted in vivo [4,64], and in some cases,

they have been used to repair and rescue tissue damage [65], indicating that organoids have

the potential to be good resources for cell therapy. Mansour and colleagues proved that the

intracerebral implantation of hiPSC-derived brain organoids into immunodeficient mice can

develop into a functional vasculature system that significantly rescued the cell death in the

grafts and improve the long-term survival of organoid grafts [29]. In their study, there were

almost no TUNEL-positive cells detected in the organoid grafts at 50 dpi and 233 dpi.
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However, we observed about 10% of cleaved CASPASE 3 cells in the vOrganoid grafts. The dif-

ferences in the culture and transplantation methods and transplantation location might

account for the discrepancy. However, the results from both studies suggest that the growth of

blood vessels into the grafts help cell survival. In addition, Cakir and colleagues verified that

the vascularized human cortical organoids established in their studies can form a functional

vasculature system in vivo by implanting vOrganoids subcutaneously into the hind limbs of

immune-deficient mice [28]. However, no reports have demonstrated whether the vascular

systems in vOrganoids can connect to the host cerebrovascular systems to form a new func-

tional circulation system when implanted in vivo. In our studies, we explored this question by

transplanting vOrganoids into the S1 cortex of NOD-SCID mice. In the blood vessels that

were located in the vOrganoid graft regions, both human ECs and mouse endothelial cells

were detected. Furthermore, a notable level of blood flow was observed in the vOrganoid grafts

in mice by two-photon fluorescence imaging. Therefore, our results illustrate that the vascular

system in vOrganoids can recruit host ECs to reconstruct a functional vascular system and

enable blood flow into the grafts after implantation. Vascularization is a potential vital factor

for the survival of organoids, as it may not only promote cell growth in vitro but also play a

role in reconstructing blood vessels after transplantation in vivo. Hence, we speculate that our

vascularized culture system may be widely applicable for future 3D organoid transplantation

in vivo to improve survival rates and functional reconstruction.

Materials and methods

Ethics statement

The animal housing conditions and all experimental procedures in this study were in compli-

ance with the guidelines of the Institutional Animal Care and Use Committee (IACUC) of the

Institute of Biophysics, Chinese Academy of Sciences (SYXK2017-22). The human brain tissue

collection and research protocols were approved by the Reproductive Study Ethics Committee

of Beijing Anzhen Hospital (2014012x) and the Institute of Biophysics (H-W-20131104). The

written informed consent was designed as recommended by the ISSCR (International Society

for Stem Cell Research) guidelines for fetal tissue donation. The fetal tissue samples were col-

lected after the donor patients signed informed consent documents, which is in strict obser-

vance of the legal and institutional ethical regulations from elective pregnancy termination

specimens at Beijing Anzhen Hospital, Capital Medical University. All the protocols are in

compliance with the "Interim Measures for the Administration of Human Genetic Resources,"

administered by the Ministry of Science and Technology of China.

Mice

NOD-SCID–immunodeficient mice were purchased from Charles River Laboratories in

China (Vital River, Beijing, China) and used for experiments of organoid implantations. All

mice were housed in SPF environments with a 12-hour light–dark schedule and had free access

to food and water. All the subjects were not involved in any previous procedures.

Tissue sample collection

Fetal brains were collected in ice-cold artificial CSF containing 125.0 mM NaCl, 26.0 mM

NaHCO3, 2.5 mM KCl, 2.0 mM CaCl2, 1.0 mM MgCl2, and 1.25 mM NaH2PO4 at a pH of

7.4 when oxygenated (95% O2 and 5% CO2). Gestational age was measured in weeks from the

first day of the woman’s last menstrual cycle to the sample collecting date.
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Three-dimensional vOrganoid culture and differentiation procedure

hESCs (H9 and H3 lines, from ATCC) and iPSCs (AE and LMZ) were maintained on Matri-

gel-coated 6-well plates (Corning, Corning, NY) and were cultured with Essential 8 Medium

(Gibco). On day 0, the hESCs and iPSCs colonies were pretreated for one hour with 20 μM

Y27632 (Tocris Bioscience, Bristol, Avon, UK) and were dissociated into single cells by Accu-

tase (STEMCELL Technologies, Vancouver, British Columbia, Canada). HUVECs were cul-

tured in endothelial Cell Growth Medium and dissociated into single cells by TrpLE. The

mixture of approximately 3 × 106 dissociated hESCs and 3 × 105 HUVECs was resuspended in

Knockout Serum Replacement (KSR) medium (Gibco, Waltham, MA) and plated into 96-well

U-shaped polystyrene plates (Thermo Fisher, Waltham, MA). The size of embryonic bodies

(EBs) is determined by the number of cells seeding into each well of the plate. The KSR

medium was prepared as follows: DMEM/F12 (Gibco, Waltham, MA) was supplemented with

20% KSR (Gibco, Waltham, MA), 2 mM Glutamax (Gibco, Waltham, MA), 0.1 mM nonessen-

tial amino acids (NEAA; Gibco, Waltham, MA), 0.1 mM beta-mercaptoethanol (Gibco, Wal-

tham, MA), 3 μM endo-IWR1 (Tocris Bioscience, Bristol, Avon, UK), 0.1 μM LDN-193189

(STEMGENT, Beltsville, MD), and 10 μM SB431542 (Tocris Bioscience, Bristol, Avon, UK).

On day 18, the self-organized floating EBs were transferred to low-cell-adhesion 6-well plates

(Corning Corning, NY) and further cultured in the neural induction medium containing

DMEM/F12, 1:100 N2 supplement (Gibco, Waltham, MA), 2 mM Glutamax (Gibco, Wal-

tham, MA), 0.1 mM NEAA (Gibco, Waltham, MA), 55 μM beta-mercaptoethanol (Gibco,

Waltham, MA), and 1 μg/mL heparin. After day 35, the free-floating aggregates were trans-

ferred to the neurobasal-type differentiation medium supplemented with 1:50 B27 (Gibco,

Waltham, MA), 2 mM Glutamax and 0.1 mM NEAA, 0.55 μM beta-mercaptoethanol, 5 μg/mL

heparin, 1% Matrigel, 10 ng/mL BDNF, 10 ng/mL GDNF, and 1 μM cAMP (Sigma-Aldrich,

St.Louis, MO). The control nonvascularized organoids were generated with the same work-

flow, except no HUVECs were added. The vascular and cortical structure analyses have been

done in organoids from all the cell lines to test the repeatability of our culture procedure; other

experiments in the studies were conducted by the H9 cell line.

Tube formation assay

First, 24-well plates were coated with thawed Matrigel (354230) without introducing air bub-

bles, and then the plates were plated in a 37˚C incubator for at least 30 minutes to allow gelling

of the Matrigel. Next, the HUVECs reaching to approximately 80% confluence in a T-25 flask

were digested by being incubated in the trypLE solution at 37˚C for 3 minutes. After neutraliz-

ing the trypLE, 15ml tubes containin HUVECs were centrifuged for 5 minutes at 800g, then

the supernatant was removed and the cell pellet suspended in the HUVEC medium, EGM (cc-

3124, Lonza, Basel, Switzerland). Adjust the volume with HUVEC medium to have 5 × 105

cells/mL, and plate 200 μL of the cell mixture, which contains 100,000 cells, into each Matri-

gel-coated well. Then, incubate the 24-well plate overnight at 37˚C in a 5% CO2/95% air incu-

bator. The next day, the medium is gently aspirated from each well and is incubated with

approximately 500 μL of PFA fixative for 15 minutes. The tube-like structures formed by

HUVECs were then immunostained.

Immunofluorescence

Organoids and tissues were fixed by 4% paraformaldehyde in PBS at 4˚C for 2 hours and then

dehydrated in 30% sucrose in PBS. The fixed and dehydrated organoids and tissues were

embedded and frozen at −80˚C in O.C.T. compound, sectioned with Leica CM3050S. Cryosec-

tions were subjected to antigen retrieval, pretreated (0.3% Triton X-100 in PBS) and incubated
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for a blocking solution (10% normal donkey serum, 0.1% Triton X-100, and 0.2% gelatin in

PBS), followed by incubation with the primary antibodies (SOX2, sc17319, Santa Cruz, Dallas,

TX; IB4, 217660-100UG, Millipore, Burlington, MA; LAMININ, ab23753, Abcam, Cambridge,

Cambridgeshire, UK; TBR2, ab23345, Abcam, Cambridge, Cambridgeshire, UK; CTIP2,

NB100-79809, Novus, Littleton, CO; SATB2, ab34735, Abcam, Cambridge, Cambridgeshire,

UK; PAX6, 901301, BioLegend, San Diego, CA; MAP2, ab32454, Abcam, Cambridge, Cam-

bridgeshire, UK; SST, MAB354, Millipore, Burlington, MA; CR, 6B3, Swant, Marly, Fribourg,

Switzerland; NeuN, MAB377, Millipore, Burlington, MA; SYB2, 102211, SYSY, Goettingen,

Lower Saxony, Germany; PSD95, 124003, SYSY, Goettingen, Lower Saxony, Germany; GFAP,

3670s, CST, Danvers, MA; MBP, ab62631, Abcam, Cambridge, Cambridgeshire, UK; CD31,

MAB1393Z, Millipore, Burlington, MA; cleaved CASPASE 3, 9664S, CST, Danvers, MA;

BRN2, sc-31983, Santa Cruz, Dallas, TX; GABA, LS-C63358-100, LifeSpan, Seattle, WA; AIF1,

LS-B2645-50, LifeSpan, Seattle, WA; FOXP2, ab16046, Abcam, Cambridge, Cambridgeshire,

UK; HOPX, sc-30216, Santa Cruz, Dallas, TX; P-gp, MA126528, Pierce, Waltham, MA; RELN,

MAB5364, Millipore, Burlington, MA; HUN, ab191181, Abcam, Cambridge, Cambridgeshire,

UK;) overnight at 4˚C. Immunofluorescence images were acquired with Olympus laser confo-

cal microscope and analyzed with FV10-ASW viewer (Olympus, Tokyo, Japan), ImageJ

(NIH), and Photoshop (Adobe).

Electrophysiology

Cultured vOrganoids were embedded in 3% low-melting agarose in artificial cerebral spinal

fluid (ACSF; in mM: 126 NaCl, 3 KCl, 26 NaHCO3, 1.2 NaH2PO4, 10 D-glucose, 2.4 CaCl2, and

1.3 MgCl2) and sectioned at 200 μm in oxygenated (95% O2 and 5% CO2) ice-cold ACSF with a

vibratome (VT1200s, Leica, Wetzlar, Hesse, Germany). The slices were then cultured in a

24-well plate filled with 250 μL/well of neural differentiation medium in an incubator (5% CO2,

37˚C). After a recovery period of at least 24 hours, an individual slice was transferred to a

recording chamber and continuously superfused with oxygenated ACSF at a rate of 3–5 mL per

minute at 30 ± 1˚C. Whole-cell patch clamp recording was performed on cells of vOrganoid

slices. Patch pipettes had a 5–7 MO resistance when filled with intracellular solution (in mM:

130 potassium gluconate, 16 KCl, 2 MgCl2, 10 HEPES, 0.2 EGTA, 4 Na2-ATP, 0.4 Na3-GTP,

0.1% Lucifer Yellow, and 0.5% neurobiotin, pH = 7.25, adjusted with KOH). Evoked action

potentials were recorded in current-clamp mode using a series of injected currents from −60 pA

to 280 pA in increments of 20 pA. Whole-cell currents were recorded in voltage-clamp mode

with a basal holding potential of −60 mV followed by stimulating pulses from −80 mV to 60 mV

with a step size of 10 mV. The membrane potential was held at −70/0 mV when spontaneous

EPSCs/IPSCs were recorded. Dual-patch recording was performed in current-clamp mode. A

pair of pulses (1 nA, 2-ms duration, 50-ms interval) were injected into each cell separately. The

cells were monitored with a 40× Olympus water-immersion objective lens, a microscope (Olym-

pus, BX51 WI) configured for dodt gradient contrast (DGC), and a camera (Andor, iXon3, Bel-

fast, County antrim, UK). Stimulus delivery and data acquisition were conducted with a

multiclamp 700B amplifier and a Digidata 1440A (Molecular Devices, San Jose, CA), which

were controlled by Clampex 10. The slices were fixed after patch clamp recording. Staining with

fluorescein streptavidin (SA-5001, 1:500, Vector, Burlingame, CA) or Texas Red streptavidin

(SA-5006, 1:500, Vector, Burlingame, CA) was performed to visualize the morphology of cells.

Calcium imaging

Three microliters of dye solution that contained 50 μg Fluo-4 AM (Life Technologies), 50 μL

DMSO, and 200 μg Pluronic F-127 (Sigma) was applied to the surface of each individual slice.
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After incubation for 30 minutes at 37˚C, the slice was transferred to a recording chamber and

continuously superfused with oxygenated ACSF (in mM: 126 NaCl, 3 KCl, 26 NaHCO3, 1.2

NaH2PO4, 10 D-glucose, 2.4 CaCl2, and 1.3 MgCl2) at a rate of 3–5 mL per minute at

30 ± 1˚C. The slices were washed 30 minutes before imaging. Calcium imaging was acquired

at 5 Hz using a camera (Andor iXon3) with a FITC filter set (Ex: 475/35 nm, Em: 530/43 nm)

on a BX51WI microscope (Olympus). Data analysis was performed with ImageJ. The ROIs

were selected manually, and the mean fluorescence (F) was calculated for each frame. The fluo-

rescence changes over time was calculated as follows: ΔF = (F − Fbasal)/Fbackground, in

which Fbasal was the lowest mean fluorescence value during imaging, and Fbackground was

the average mean fluorescence across all frames. Since 10 minutes before imaging, TTX

(1 μM), CNQX (20 μM), APV (100 μM), and BMI (20 μM) were added by bath application.

The slices were rinsed for 30 minutes with ACSF after drug treatments. Different from other

drugs, glutamate (100 μM) was added by bath application during imaging.

Implantation of cerebral organoid into mice S1 cortex

Before implantation, cerebral organoids had been cultured for 60 days, and strict screening

was performed by bright field (BF) microscopy to select the organoids with the appropriate

size and displayed without massive cyst formation. Immune-deficient NOD-SCID mice, aged

8 weeks, were used in our studies. Mice were anesthetized by intraperitoneal injection of aver-

tin. The heads of animals were fixed in a stereotactic frame. The fur above the skull was

removed and skin was cut. An approximate 3-mm diameter craniotomy was performed by

polishing the skull; the underlying dura mater was removed and a cavity was made by aspira-

tion with a blunt-tip needle attached to a vacuum line. The aspirative lesion was made unilater-

ally in the region of the S1cortex. Sterile ACSF was used to irrigate the lesion and keep it free

of blood throughout the surgery, and a piece of Gelfoam (Pfizer, New York, NY) was used to

slow the bleeding and absorb the excess blood. Molten 3% low-melting agarose was dropped

in the implantation regions to immobilize the organoid grafts as agarose congealed quickly.

Adhesive glue was used to seal the border of implanted organoid grafts. The wound was closed

with sutures. Following completion of the surgery, penicillin streptomycin combination was

administrated for inflammation and analgesic relief. The mice were then returned into home

cages to recover.

Two-photon imaging

For imaging of blood flow in organoid grafts, mice were tail intravenously injected FITC-dex-

tran. The mouse was fixed on the recording setup, with an isoflurane-oxygen mixture of 0.5%–

1% (v/v). The in vivo imaging of blood flow was done with a 2-photon laser scanning micro-

scope. The recording chamber was perfused with normal ACSF containing 126 mM NaCl, 3

mM KCl, 1.2 mM NaH2PO4, 2.4 mM CaCl2, 1.3 mM MgCl2, 26 mM NaHCO3, and 10 mM D-

glucose (pH 7.4 when bubbled with 95% oxygen and 5% CO2). The temperature of the mouse

was kept at approximately 37˚C throughout the experiment.

Single-cell dissociation, and library construction

The organoids with and without HUVECs at 65 days and 100 days, respectively, were cut into

small pieces and dissociated into single-cell suspensions by using a papain-based dissociation

protocol (hibernate E medium with 1 mg/mL papain [Sigma, St.Louis, MO] at 37˚C on a

thermo cycler at 500g for 15–20 minutes). Single cells were suspended in 0.04% BSA/PBS at

the proper concentration to generate cDNA libraries with Single Cell 30 Reagent Kits, accord-

ing to the manufacturer’s protocol. Briefly, after the cDNA amplification, enzymatic
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fragmentation and size selection were performed to optimize the cDNA size. P5, P7, an index

sample, and R2 (read 2 primer sequence) were added to each selected cDNA during end repair

and adaptor ligation. P5 and P7 primers were used in Illumina bridge amplification of the

cDNA (http://10xgenomics.com). Finally, the library was processed on the Illumina platform

for sequencing with 150-bp paired-end reads.

Single-cell RNA-seq data preprocessing

Raw sequencing data were processed using Cell Ranger analysis pipeline 2.1.1 with default

parameters. Reads were aligned to human reference genome (GRCh38). Cell Ranger output

“filtered gene-barcoded” count matrix was loaded into Seurat 3.1.0 [66] for downstream analy-

sis. We excluded poor-quality cells based on the following criterion: nFeature_RNA > 200 or

nFeature_RNA < 6,000, mitochondrial gene percentage < 10%. Cells with percentage of

hemoglobin reads> 1% (‘HBA1’, ‘HBA2’, ‘HBB’, ‘HBD’, ‘HBE1’, ‘HBG1’, ‘HBG2’, ‘HBM’,

‘HBM’, ‘HBQ1’, ‘HBZ’) were discarded as well. In total, 57,180 cells remained for subsequent

analysis. Batch effect correction was performed with function fastMNN from R package batch-

elor [67] by considering each sample as a batch.

Dimensionality reduction, cell clustering, and cell type identification

We performed principal component analysis (PCA) with Seurat function RunPCA [66] and

selected the top 20 statistically significant PCs for clustering by using function FindClusters

with resolution parameter set to 2. Known markers SOX2, FAM107A, MKI67, EOMES, DCX,

NEUROD2, GAD1, AIF1, AQP4, OLIG1, and RSPO2 were used to name the major cell types

RG, oRG, cell cycle, IPC, immature neuron, excitatory neuron, interneuron, microglia, astro-

cyte, oligodendrocyte and choroid plexus, respectively. UMAP was employed for visualization

of our data in 3D coordinates, generated by the RunUMAP [66] function. Three-dimensional

UMAP plots were generated using function plot3d from R package rgl.

Identification of DEGs among clusters

Differential gene expression analysis among clusters was performed with Seurat function Fin-

dAllMarkers by setting parameter “only pos = TRUE” [66]. Genes with adjusted p-values

<0.05 were selected as DEGs.

Ordering cells along pseudo-maturation trajectory and pseudo-time

trajectory

To order cells along a pseudo-maturation trajectory, we applied the approach introduced in

Petropoulos’s [68] and Mayer’s [69] studies. Following these approaches, we performed

dimensionality reduction analysis with Seurat function RunPCA based on the expression of

variable genes, followed by fitting a principal curve through the subspace spanned by the first

three principal components (PCs). The maturation score for a cell was defined as the arc-

length from the beginning of the fitted curve to the points where the cell was fitted on. Then,

to assign the curve a starting point, we correlated the PCs with maturation scores and defined

the beginning of the curve so that the expression of gene SOX2 is negatively correlated with

the maturation score. Once each cell was projected onto the principal curve and given a matu-

ration score, we computed the density of cells along the maturation trajectory for organoids

and vOrganoids with R function hist by setting freq = False and fitted curves through them.

Besides a pseudo-maturation score, we also constructed a pseudo-time trajectory with R

package monocle3 [44–46]. We first imported the gene expression matrix into monocle,
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followed by dimensionality reduction analysis with function reduce_dimension, which gener-

ated a UMAP graph. We then ran function learn_graph to learn the generated trajectory

graph. For ordering cells, we applied the function order_cells by manually selecting the cell

cluster that annotated as RG (the cluster that had a higher expression level of the known radial

glial marker gene SOX2) as root. After each cell was assigned a pseudo-time value, as described

above for maturation trajectory, we computed the density of cells along the pseudo-time tra-

jectory and fitted curves on data.

Mapping organoids cell types to fetal human cortex cell types

To compare cell-type classification between organoid and human cortex datasets, we down-

loaded count matrix from the previous published work (Nowakowski and colleagues, 2017).

Cell types, as assigned to each cell in the previous work, were merged into more general cell

types (for example, cells with identity of nIN and IN-CTX were aggregated into a general cell

type, Interneuron; EN-PFC and EN-V1 were merged into cell type Excitatory neuron). The

Seurat integration approach is committed to identify the homogeneous cell states across differ-

ent datasets based on dectecting shared sources. Thus, the function of Seurat integration was

adopted to integrate the datasets of organoids and human in our studies., and so to combine

First, we selected genes for the integrated analysis by function SelectIntegrationFeatures with

default parameters. As described in Stuart’s study (Stuart and colleagues, 2019), this function

ranked highly variable genes that individually identified in the organoid and fetal human cor-

tex datasets by examining the number of datasets in which they were independently identified

as highly variable genes. Next, we identified correspondences among the two datasets using

function FindIntegrationAnchors based on the genes selected, as described above [66], and

then integrated them into a combined dataset with function IntegrateData, which holds the

integrated (or ‘batch-corrected’) gene expression matrix for all cells from the combined data-

set. To compute the relations between cell types among organoid and human datasets, we

imported the integrated matrix into PAGA and constructed an Anndata data structure fol-

lowed by running PCA with function sc.tl.pca. Next, we computed the neighborhood graph

with function sc.pp.neighbors and constructed the PAGA graph with function sc.tl.paga

[70,71]. (the width of edges was scaled with the strength of relations; the size of nodes was

scaled with the number of cells of each cell type). To access a general visualization of the distri-

bution of cells, a force-directed graph (ForceAtlas2 layout) of the combined dataset was com-

puted with function sc.tl.draw_graph [70,71].

GO enrichment analysis

GO enrichment analysis was performed with Metascape [72] by importing the DEGs between

H9-d65 and HUVEC-d65 cells and visualized via heatmap. Only GO terms with an adjusted p-

value <0.05 (Benjamini-Hochberg correction for multiple testing) were considered.

Quantification and statistical analysis

All data were represented as the mean ± SEM. The quantification graphs were made using

GraphPad Prism software. The sample size (n) for each analysis can be found in the figure

legends.

Data resources

The accession number for the RNA sequencing data reported in this paper is GEO:

GSE131094.

PLOS BIOLOGY Vascularized human cortical organoids

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000705 May 13, 2020 21 / 29

https://doi.org/10.1371/journal.pbio.3000705


Supporting information
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S1 Fig. The vascular system in vOrganoids promotes cell growth and reduces cell apopto-

sis. (A) Representative figure showing the tube formation of HUVECs on matrigel. Scale bar,

200 μm. (B) Representative immunofluorescence staining figure for CD31, IB4, and SOX2 to

illustrate that tube-like vascular systems were formed in vOrganoids at 45 days. Scale bar,

50 μm. (C) Representative immunostaining figure for IB4 in the human cortical cryosections

at GW12 to show the distribution of blood vessels in the human cortex. Scale bar, 100 μm. (D)

Representative BF and immunohistochemical images of vOrganoids derived from hESC-3 and

hESC-9 lines. BF images showed on the left and immunohistochemical images for vessel (IB4,

green) and progenitor (SOX2, red) showed on the right. Scale bar, 100 μm (left panels), 50 μm

(right panels). (E) Representative BF and immunohistochemical images of vOrganoids derived

from iPSCs-AE and iPSCs-LMZ cell lines. BF images showed on the left and immunohisto-

chemical images for vessel (IB4, green) and progenitor (SOX2, red) showed on the right. Scale

bar, 100 μm (left panels), 50 μm (right panels). (F) Representative immunofluorescence stain-

ing figure for cleaved CASPASE 3, IB4 (upper) and HIF1α, IB4 (lower) in the control nonvas-

cularized organoids and vOrganoids at d115. Scale bar, 500 μm. (G) Quantification of the

percentages of cleaved CASPASE 3+ cells (left) and HIF1α+ cells (right) within all cells

(DAPI+) in the control organoids and vOrganoids at d115, respectively. For cleaved CASPASE

3, n = 5, 5 slices of the control organoids and vOrganoids from three independent experiments.

For HIF1α, n = 5, 5 slices of control and vOrganoids in three independent experiments. Data

are represented as mean ± SEM, independent samples t test, ���p< 0.001. (H) The diameters

of organoids and vOrganoids generated from H9 at day 7, day 31, day 52, day 70 and day 98,

respectively. n = 11, 11, 11, 11, 11 for day 7, day 31, day 52, d 70, and day 98, respectively. Data

are represented as mean ± SEM, two-way ANOVA analysis, ���p< 0.001. (I) Representative

images showing the distribution of PAX6+ progenitors in the organoids with or without

HUVECs (IB4, red). Scale bar, 50 μm. (J-K) Quantification of the percentages of PAX6+ cell

within all cells (DAPI+) in VZ/SVZ (J) and of the thickness of PAX6+ region (K) in control

organoids and vOrganoids, respectively. For (J), n = 3, 3 slices from control organoids and

vOrganoids in three independent experiments, respectively. For (K), n = 4, 5 slices from

control organoids and vOrganoids in three independent experiments, respectively. Data are

represented as mean ± SEM, independent samples t test, �p< 0.05. (L) Representative immu-

nofluorescence staining figure for P-gp and IB4 in the human cortical slices at GW12. Scale

bar, 100 um. (M) Representative immunofluorescence staining figure for P-gp and IB4 in the

tube-like structure formed by HUVECs. Scale bar, 100 um. (N) Representative immunofluo-

rescence staining figure for P-gp and IB4 in the vOrganoids at d83. The signals of P-gp were

colocalized with IB4 to a great degree. Scale bar, 200 μm. (O) Representative immunofluores-

cence staining figure for SATB2 and FOXP2 in the human fetal cortex at GW23 to show the

human cortical lamination. Scale bar, 50 μm. (P) Cryosections of vOrganoids were immunos-

tained for the progenitor (PAX6) and layer-specific cortical neuron marker (SATB2) at 65

days. Scale bar, 50 μm. Representative figure was showed. (Q) Cryosections of vOrganoids

were immunostained for the layer-specific cortical neuron markers, RELN and TBR1, at 65

days. Scale bar, 100 μm. Representative figure was showed. The numerical data underlying this

figure can be found in the S1G, S1H, S1J, S1K Fig sheets of S1 Data. BF, bright field; CD31,

platelet and endothelial cell adhesion molecule 1; FOXP2, forkhead box P2; GW, gestational

week; hESC, human embryonic stem cell; HIF1α, hypoxia induciable factor 1 subunit alpha;

HUVEC, human umbilical vein endothelial cell; IB4, isolectin I-B4; iPSC, induced pluripotent
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stem cell; P-gp, P-glycoprotein; PAX6, paired box 6; RELN, reelin; SATB2, SATB homeobox 2;

SOX2, SRY-box transcription factor 2; TBR1, T-box brain transcription factor 1; vOrganoid,

vascularized organoid; VZ/SVZ, ventricular zone/subventricular zone.

(TIF)

S2 Fig. scRNA-seq of organoids with and without HUVECs. (A) The cell distributions of

each sample of control organoid and vOrganoid were showed in the UMAP plots. As for the

control organoids and vOrganoids at each time point, three independent batches of experi-

ments were performed. And in total, 12 samples were included in the studies. Each sample was

colored differently in the UMAP plot. (B) Quality control for samples: each dot represents a

single cell. Cells with mitochondrial gene percentage >10% (left panel), as well as gene number

per cell (nGene) <200 and>6,000 (right panel), were discard in the following analysis. (C)

The expression of known gene markers was visualized by UMAP plots and was colored by the

expression level (red, high; gray, low). (D) Heatmap showing the expression of DEGs across

clusters. Some canonical marker genes were labeled. (E) The transcriptomic correlations

between the cell types of organoids and vOrganoid were visualized via heatmap (correlation

coefficient: yellow, high; purple, low). (F) The expression of the well-known gene markers in

different cell types is showed in the PAGA plots. AQP4, DCX, SOX2, RSPO2, FAM107A, and

MKI67 are the specific genes for astrocytes, immature neurons, RG/oRG, choroid plexus,

oRG, and cell cycle active cells, respectively. Nodes are colored according to the gene expres-

sion levels (light pink, low; dark red, high). (G-H) After being integrated, the cell distributions

of organoids (G) and human fetal telencephalon (H) were visualized in a forced-directed

graph separately. Each dot represents a single cell and is colored according to the cell types.

The width of edges is scaled with the cell–cell connectivity. (I-J) After being integrated, the cell

distributions of vOrganoids (I) and human fetal telencephalon (J) were visualized in a forced-

directed graph separately. Each dot represents a single cell and is colored according to the cell

types. The width of edges is scaled with the cell–cell connectivity. (K-L) The correlations

between the cell types of organoids and human fetal telencephalon (K) as well as those between

the cell types of vOrganoids and human fetal telencephalon (L) are displayed in the PAGA

graph. The cell types in the organoids and human fetal cortex datasets were denoted by the

solid and hollow dots, respectively. And the same cell types in two datasets were colored identi-

cally. The size of dots was scaled with the cell numbers; width of edges was scaled with the con-

nectivity between cell types. (M-N) The transcriptomic correlations between the cell types of

control organoids (M) or vOrganoids (N) and human fetal telencephalon were visualized via

heatmap (correlation coefficient: red, high; blue, low). (O) The composition of cell types in the

control organoids and vOrganoids at day 65 was illustrated in the bar graph. The numerical as

well as metadata underlying this figure can be found in the S2A, S2B, S2C, S2D, S2E, S2G,

S2H, S2I, S2J, S2M and S2N Fig sheets of S1 Data. Ast, astrocyte; cell cycle, cell cycle active cell;

Ch, choroid plexus; DEG, differentially expressed gene; Endo, endothelial cell; ExN, excitatory

neuron; HUVEC, human umbilical vein endothelial cell; ImN, immature neuron; IN, inter-

neuron; IPC, intermediate progenitor cell; MGE, medial ganglionic eminence; MGE div, MGE

dividing cell; Mic, microglia; Mural, mural cell; OPC, oligodendrocytes progenitor cell; oRG,

outer radial glia; PAGA, partition-based graph abstraction; RG, radial glia cell; scRNA-seq, sin-

gle-cell RNA sequencing; UMAP, Uniform Mainfold Approximation and Projection; vOrga-

noid, vascularized organoid.

(TIF)

S3 Fig. Functional circuits were built in vOrganoids progressively. (A) Diameters of somata

of recorded cells from control organoids and vOrganoids at day 60, day 80, and day 90. Open

circles indicate data from individual cells. Filled circles indicate the mean value. Data are
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represented as mean ± SEM, p = 0.6026, 0.3494, and 0.7491 for day 60, day 80, and day 90,

two-sample t test, �p< 0.05, ��p< 0.01, ���p< 0.001. (B) Depth of somata of recorded cells

from organoids and vOrganoids at day 60, day 80, and day 90. Open circles indicate data from

individual cells. Filled circles indicate the mean value. Data are represented as mean ± SEM,

p = 0.5799, 0.5248, and 0.8651 for day 60, day 80, and day 90 two-sample t test, �p< 0.05,
��p< 0.01, ���p< 0.001. (C) Representative current responses evoked by a series of voltage

steps (from −80 mV to +60 mV, in steps of 10 mV) from organoid (upper) and vOrganoid

(lower) cells at day 60, day 80, and day 90. (D) Representative evoked action potentials of cell

from organoid and vOrganoid at day 90. The amplitudes of injected currents changed from

−60 pA to 280 pA in steps of 20 pA. (E) The percentage of firing cells under current stimula-

tions with different amplitudes. The insertion indicates the evoked action potential of cells

from organoids (black) and vOrganoids (red). The scale bars indicate 5 ms and 20 mV. The

arrow indicates −20 mV. p = 0.0602, 0.0000025, and 0.00012 for day 60, day 80, and day 90.

Data are represented as mean ± SEM, paired-sample t test, �p< 0.05, ��p< 0.01, ���p< 0.001,
����p< 0.0001. (F) Resting membrane potentials of recorded cells from organoids and vOrga-

noids at day 60, day 80, and day 90. Open circles indicate data from individual cells. Filled cir-

cles indicate the mean value. Data are represented as mean ± SEM, p = 0.9842, 0.00059, and

0.4102 for day 60, day 80, and day 90, two-sample t test, �p< 0.05, ��p< 0.01, ���p< 0.001.

(G) Capacitance of recorded cells from organoids and vOrganoids at day 60, day 80, and day

90. Open circles indicate data from individual cells. Filled circles indicate the mean value. Data

are represented as mean ± SEM. p = 0.3059, 0.0424, and 0.0075 for day 60, day 80, and day 90,

two-sample t test, �p< 0.05, ��p< 0.01, ���p< 0.001. (H) An example of spontaneous action

potentials recorded from cells of the vOrganoids at day 80. (I) Postsynaptic currents were sen-

sitive to BMI. Representative IPSC event highlighted by a yellow bar displayed at the right

panel. (J) Representative staining figure of classical neuron marker NeuN (green) and MAP2

(red) in the vOrganoid of day 210. Scale bar, 100 μm. (K) An example of whole-cell configura-

tion in the vOrganoids of day 210 under DGC. Scale bar, 200 μm. (L) Representative traces of

membrane currents elicited by a series of depolarizing pulses (from −80 mV to +60 mV, in

steps of 10 mV) from a neuron in the vOrganoid of day 210. (M) Spontaneous EPSCs and

IPSCs recorded from the same cells in (L). Yellow bars indicate representative events, which

are shown at right. (N-O) Intracellular spontaneous calcium fluctuations were measured

before and after the application of 1 μM TTX (N) or 100 μM glutamate (O) in the vOrganoids.

Arrows mark the time of addition of glutamate. Scale bar, 100 μm in (N), 50 μm in (O). (P)

Injected cells and the cells that coupled with them through gap junctions were visualized by

staining of neurobiotin. Scale bar, 20 μm. The numerical data underlying this figure can be

found in the S3A, S3B, S3E, S3F, and S3G Fig sheets of S1 Data. BMI, bicuculline methiodide;

DGC, dodt gradient contrast; EPSC, excitatory postsynaptic current; IPSC, inhibitory postsyn-

aptic current; MAP2, microtubule associated protein 2; NeuN, RNA binding fox-1 homolog 3;

ROI, region of interest; sEPSC, spontaneous excitatory postsynaptic current; sIPSC, spontane-

ous inhibitory postsynaptic current; TTX, tetrodotoxin; vOrganoid, vascularized organoid.

(TIF)

S4 Fig. The vascular system formation in vOrganoids grafts. (A) Representative immunoflu-

orescence staining figure for cleaved CASPASE 3, IB4 in cultured vOrganoids at d120 and for

cleaved CASPASE 3, HUN in the control nonvascularized organoid grafts and the vOrganoid

grafts at 60 dpi. Scale bar, 50 μm. (B) Quantification of the percentages of cleaved CASPASE

3+ cells within all cells (DAPI+) in the cultured vOrganoids at d120, nonvascularized and vOr-

ganoid grafts at 60 dpi, respectively. N = 4, 4, 4 samples for the vOrganoids, the nonvascular-

ized organoid grafts, and vOrganoid grafts from three independent experiments, respectively.
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Data are represented as mean ± SEM, one-way ANOVA, ��p< 0.01, ���p< 0.001. The numer-

ical data underlying this figure can be found in the S4B Fig sheet of S1 Data. (C) Representative

immunofluorescence staining figure for LAMININ and IB4 in the cryosections of host brains

contained the control organoid and vOrganoid grafts at 30 dpi. The immunostaining of LAM-

ININ is individually displayed in the right panels. The boundary between host and graft is out-

lined by dashed lines. And the arrows point out the healthy-looking blood vessels in the

vOrganoid grafts. Scale bar, 100 μm. (D) Representative immunofluorescence staining figure

for GFAP/SOX2 and GFAP/PAX6 in the vOrganoid grafts at 60 dpi. Scale bar, 50 μm. CAS3,

CASPASE 3; dpi, days postimplantation; GFAP, glial fibrillary acidic protein; HUN, human

nuclear; IB4, isolectin I-B4; PAX6, paired box 6; SOX2, SRY-box transcription factor 2; vOrga-

noid, vascularized organoid.

(TIF)

S1 Movie. Movie shows the staining of LAMININ (red) and IB4 (green) displayed in 3D,

rotating around x-, y-, and z-axes. IB4, isolectin I-B4.

(AVI)

S2 Movie. Movie shows the 3D reconstruction of LAMININ-positive vascular structure

rotating around the y-axis.

(AVI)

S3 Movie. Movie shows the functional blood flow in vOrganoids grafts. vOrganoid, vascu-

larized organoid.

(AVI)

S4 Movie. Movie shows the 3D reconstruction of dextran-positive blood vessels in vOrga-

noids grafts. vOrganoid, vascularized organoid.

(MOV)

S1 Table. Samples and genes related to scRNA-seq data. The spreadsheets include the sam-

ple information of scRNA-seq, DEGs of major cell types of organoids, and GO terms of the

DEGs between progenitor cells. DEG, differentially expressed gene; GO, Gene Ontology;

scRNA-seq, single-cell RNA sequencing.

(XLSX)

S1 Data. The numerical data used in all figures are included in S1 Data. Excel spreadsheet

containing, in separate sheets, the underlying numerical data and statistical analysis for figure

panels 1M, 2A, 2B, 2C, 2I, 3A, 3B, 3D, 3F, 3I, S1G, S1H, S1J, S1K, S2A, S2B, S2C, S2D, S2E,

S2G, S2H, S2I, S2J, S2M, S2N, S3A, S3B, S3E, S3F, S3G, and S4B.

(XLSX)
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