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Abstract: Piezoelectric nanomaterials (PNs) are attractive for applications including sensing,
actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because
of their excellent electromechanical coupling, mechanical and physical properties. However, the
properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A
large amount of efforts have been devoted to studying the size-dependent properties of PNs by using
experimental characterization, atomistic simulation and continuum mechanics modeling with the
consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and
achievements in the research on the continuum mechanics modeling of the size-dependent mechanical
and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics
models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local
piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly
for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the
investigation of the size-dependent properties of PNs by using the modified continuum mechanics
models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and
dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy
harvesters based on piezoelectric nanostructures are presented.

Keywords: piezoelectric nanomaterials; continuum mechanics modeling; size-dependent properties;
surface effects; flexoelectricity; non-local theory

1. Introduction

Piezoelectricity represents the capability of some materials to convert mechanical energy into
electrical energy and vice versa. Piezoelectricity was first discovered by brothers Pierre and
Jacques Curie in 1880 [1]. There are many materials that naturally possess piezoelectricity, such as
tourmaline, Rochelle salt, topaz, quartz, cane sugar, etc. The first important application of piezoelectric
materials was to generate acoustic waves by crystal quartz, which lead to the development of
various piezoelectric transducers for the purpose of military applications during the first half of
the 20th century [2]. Besides the natural piezoelectric crystals mentioned above, an important class
of piezoelectric materials commonly used nowadays are called piezoelectric ceramics, which were
synthesized in the 1950s. These synthetic materials such as lead zirconate titanate (PZT), barium
titanate (BaTiO3) and lead titanate (PbTiO3) can be tailored for particular applications according to
their specific properties. In the 1980s, the idea of micro-electro-mechanical-systems (MEMS) emerged
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to meet the requirements of miniaturization and integration of electronic components. Consequently,
piezoelectric MEMS devices such as switches, resonators, filters and transformers were developed,
which served in robotics as well as everyday applications [3,4]. With the miniaturization of various
functional devices, piezoelectric nanomaterials (PNs) have attracted increasing interest during the last
decade. It is worth mentioning the pioneer work of Professor Zhonglin Wang [5], who demonstrated
the first piezoelectric nanogenerator prototype using a single zinc oxide (ZnO) nanowire in 2006.
Due to the remarkable progress in the research and the advances of synthesis techniques, researchers
have been able to synthesize PNs with various materials and configurations. Examples of PNs with
a perovskite crystal structure include zero-dimensional bismuth ferrite (BiFeO3) nanoparticles [6],
one and two dimensional PZT nanofibers/films/ribbons [7–9] and BaTiO3 nanowires/films [10,11].
With combined piezoelectricity and ferroelectricity, these perovskite PNs are promising for constructing
ferroelectric thin film memory devices [12,13] and piezoelectric nanogenerators [9,11]. Other kinds
of PN with a wurtzite crystal structure, such as ZnO, gallium nitride (GaN), zinc sulfide (ZnS),
have also received considerable attention in recent years. Due to the electrostatic interaction energy
and distinct chemical activities of the polar surfaces, a wide range of configurations can be easily
formed for this group of materials, including ZnO and GaN nanoparticles/wires/tubes/belts [14–20].
The unique piezoelectric and semiconducting properties of these novel materials have made them
ideal candidates as building blocks and functional elements in nanopiezotronics, such as lasers [21],
resonators [22], field-effect transistors [23], diodes [24], strain sensors [25], strain-controlled logic
gates [26], energy generators [27] and photovoltaic devices [28]. Wang [29] has given a comprehensive
review on the applications of one-dimensional ZnO nanomaterials in electromechanical coupled
devices. It is worth mentioning that the piezoelectricity has also been discovered in the boron
nitride (BN) nanosheets/tubes and monolayers of materials belonging to the family of TMDC
(transition metal dichalcogenide), as reviewed in reference [30]. Furthermore, piezoelectric polymers
such as polyvinylidene difluoride (PVDF) are attractive for building energy harvesters due to their
high flexibility and stretchability, biocompatibility and low cost [31]. To achieve the full potential
functionality of these novel nanomaterials, it is necessary to have a better understanding of the
underlying fundamentals of their unique physical and mechanical properties.

The mechanical and physical properties of bulk piezoelectric materials have been well studied
in the literature. However, “small is different”, and the corresponding properties of PNs can differ
dramatically from those of their bulk counterparts. Indeed, many applications of PNs mentioned
above become possible since the material properties at the nanoscale are improved. Therefore, it is
important to characterize the size-dependent properties of PNs. From the experimental perspective,
micro-electro-mechanical-systems (MEMS) in situ transmission electron microscopy (TEM) [32,33]
or in situ scanning electron microscopy (SEM) [34] has been successfully adopted to characterize
the mechanical properties of PNs while the piezoelectric properties of some materials have been
studied by using the piezoelectric force microscopy (PFM) [35,36]. There is a general agreement
concluded from the experiments that the properties of PNs are size-dependent, e.g., as the nanowire
diameter decreases from 80 nm to 20 nm, the Young’s modulus of ZnO nanowire increases from ∼140
to 160 GPa [32]; the fracture strain and strength of ZnO nanowires also increase as the nanowire
diameter decreases [34]; the piezoelectric constants of GaN nanowires were reported up to six times
that of the bulk values [37]. It was also noted that the piezoelectric coefficient of ZnO nanobelt is
frequency dependent [35,38], which is the so-called retardation or relaxation behavior and could
be explained by the Debye model [38]. Meanwhile, atomistic simulations have been extensively
used to predict the elastic and piezoelectric properties of PNs. However, it should be highlighted
that simulation results may show size-dependence with much smaller nanowires. As an example,
Chen et al. [39] predicted that the elastic properties of ZnS nanowire with sizes of ∼5 nm would
probably agree with that of bulk ZnS by using the first-principles approaches. Zhang et al. [40] studied
the influence of tensile and compressive strain on the ferroelectric behaviors of BaTiO3 nanowires
based on a molecular dynamics approach. The size-dependence of the piezoelectric coefficient of the
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BaTiO3 nanowires was evidenced from this study, and the piezoelectric coefficient of the nanowire
approaches the bulk value (e33 = 6.71 C/m2) of the BaTiO3 when its diameter is larger than 2.4 nm.
First principles-based density function theory calculations also showed that, for both ZnO and GaN
nanowires, a significant enhancement, i.e., approximately two orders of magnitude, in piezoelectric
coefficient could be achieved if the diameter of the nanowire were reduced to below 1 nm [41]. Utilizing
the molecular dynamics technique, Momeni et al. [42] found that the piezoelectric coefficients of ZnO
nanobelts with lengths of 150.97 Å increase when the lateral sizes reduce from 37.37 to 8.13 Å. It was
also interesting to find that the elastic and piezoelectric modulus of ZnO nanowires are enhanced
with diameter d > 1 nm, but are dropped suddenly for d < 1 nm due to the phase transition from
nanowires to nanotubes, and the degradation of the mechanical properties of ZnO nanobelts with
lateral dimension < 1 nm was also observed [43]. A comprehensive review of the mechanical and
piezoelectric properties of wurtzite piezoelectric nanowires has been carried out by Espinosa et al. [44].
These existing studies have clearly evidenced the size-dependent material properties of piezoelectric
nanostructures. Nevertheless, there are some limitations for both the experimental characterization and
the atomistic simulations. In general, the extremely small sizes of nanostructures can impose serious
challenges for experimental measurements. For example, it is noted that uncertainties in boundary
conditions, metrology of the cross-section, instrument calibration and sample manipulation often lead
to significant scatter in experimental data [32]. In addition, the mechanical and electromechanical
properties of PNs may be significantly affected by certain defects, which makes the interpretation of
measured data more difficult. For the atomistic simulations, investigations are limited by computation
capabilities at both the length and the time scales, considering the large number of atoms in a typical
nanostructure. Moreover, the semi-empirical force fields employed in the molecular simulations
should be validated against the first-principles calculations. As an alternative way, many researchers
have resorted to the continuum mechanics modeling to investigate the properties of PNs due to its
superior computational efficiency and robustness. However, the conventional continuum models
ignore the variation of interatomic quantities, and thus fail to capture the size effects of nanostructures.
Therefore, new continuum modeling techniques incorporating the nanoscale structure features must
be developed to overcome this obstacle.

It is commonly believed that surface effects are attributed to the size-dependent properties
of nanomaterials due to their large surface-to-volume ratio. As the structural size reduces to the
nanoscale, the number of atoms at the surface increases in respect to that in the bulk. Since the surface
atoms are more unstable than the bulk ones, they may induce the unique properties of nanomaterials.
In addition, strain gradient (or nonuniform deformation) induced flexoelectricity, which is a more
universal and diverse electromechanical coupling effect in comparison with piezoelectricity, is expected
to contribute to the size-dependent properties of PNs and explain the unusual ferroelectric properties of
materials such as the unusual domain structure and domain wall observed at the nanoscale. It should
be mentioned that the domain patterns are important in determining the properties such as the
piezoelectric coefficient of ferroelectrics [45], and it has been theoretically justified that the engineered
domain configurations can be made use of to improve the performance of actuators, sensors and
energy harvesting devices [46,47]. With the consideration of surface effects or flexoelectricity, a number
of modified continuum models have been established to explore the mechanical, physical, and
electromechanical coupling properties of PNs. Extended from the non-local elasticity [48], a non-local
piezoelectricity theory has also been developed to analyze the mechanical behaviors of PNs. A
review of these theories as well as the size-dependent electromechanical coupling, bending, vibration,
buckling, wave propagation and dynamic characteristics of PNs are reviewed in the following sections.
The applications of nanostructured piezoelectric materials as actuators and energy harvesters will also
be discussed.
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2. Novel Modified Continuum Theories for PNs

2.1. Surface Piezoelectricity Theory

Since the atoms at and near a free surface or an interface experience a different local environment
compared with those in the bulk of a material due to the reduced coordination, the equilibrium position
and the energy associated with these atoms are generally different from those of the atoms in the
bulk [49]. Therefore, the creation of a surface leads to excess free energy in a solid, i.e., the surface
free energy, which is the origin of the surface effects. As the size of materials reduces to the nanoscale,
the influence of the surface or interface is substantially enhanced due to the increased surface-to-volume
ratio. Thus, the surface effects should be incorporated into the continuum modeling of PNs to account
for the size-dependent properties. Gurtin and Murdoch [50] proposed a surface elasticity model with
the theoretical framework stemming from the continuum mechanics. In this model, the surface is
regarded as a thin layer with negligible thickness adhered to the underlying bulk material without
slipping. The surface properties and constitutive relations are different from those of the bulk, and the
equilibrium of the surface is governed by the generalized Young–Laplace equations. As an extension of
the surface elasticity model, Huang and Yu [51] proposed a surface piezoelectricity model by assuming
that the surface energy density depends on the electric field at the surface and the in-plane strains.
Based on this assumption, the surface stresses σs

αβ and the surface electric displacements Ds
i can be

expressed as
σs

αβ = σ0
αβ + cs

αβγδεγδ − es
αβκEk (1a)

Ds
i = D0

i + es
αβiεαβ + κs

ijEj (1b)

with cs
αβγδ, es

αβk and κs
ij being the surface elastic coefficients, the surface piezoelectric coefficients and

the surface dielectric coefficients, respectively. σ0
αβ and D0

i are the residual surface stress constants
and the residual surface electric displacement constants without any applied strain and electric field.
Since most piezoelectric nanodevices are beam- or plate-like structure based, Yan and Jiang [52,53]
developed modified piezoelectric nanobeam and nanoplate models by combining conventional Euler
beam and Kirchhoff plate theories with the surface piezoelectricity theory. Zhang et al. [54] developed
a two-dimensional theory for piezoelectric nanoplates considering surface effects, and their model
can describe the extension, flexure and thickness-shear modes of deformation. Zhang et al. [55]
also presented general equations of two-dimensional piezoelectric shells with nano-thickness in an
orthogonal curvilinear coordinate system with the surface effects. In 2010, Shen and Hu [56] established
a theoretical framework of nanoscale dielectrics, in which the total internal energy density of the
material (U) was calculated as the sum of the surface energy density (Us) and the bulk energy density
(Ub). It should be noted that such a "bulk + surface" model has been widely employed to represent
the piezoelectric nanostructures in the modelling, as illustrated in Figure 1. For a one-dimensional
nanobeam, a circumferential surface is considered, as seen from Figure 1a. While, for a two-dimensional
nanoplate, only the upper and lower surfaces are considered due to the small plate thickness,
as demonstrated by Figure 1b. By considering the equilibrium of a small element of a curved interface
in elastic solids, the generalized Young–Laplace equations were derived [57], which indicate that
traction jumps will be induced by the existence of the surface stresses, i.e.,[

σ+ − σ−
]
· n = −∇S · σs (2)

Similarly, an electric displacement jump exists for piezoelectric nanomaterials due to the surface
piezoelectricity, i.e., [

D+ − D−
]
· n = −∇S · Ds (3)

These two equations constitute the surface effects for the PNs. It should also be mentioned that
the bulk material possesses the same constitutive relations as the traditional piezoelectric materials.
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Figure 1. Schematic of (a) a piezoelectric nanobeam; and (b) a piezoelectric nanoplate with surface
effects.

2.2. Theory of Flexoelectricity

Flexoelectricity is a universal electromechanical coupling in all dielectrics including soft matter,
polymers and hard materials. It refers to a spontaneous electric polarization in response to nonuniform
strains (or strain gradients). In a phenomenological way, the electric polarization Pi can be expressed
in terms of strain gradients ε jk,l as

Pi = µijklε jk,l (4)

Obviously, the strength of this flexoelectric effect depends on both the flexoelectric coefficients
µijkl and the strain gradients. In general, the flexoelectric coefficients are small values, which represent
relatively weak electromechanical coupling as compared to the traditional piezoelectricity, particularly
for the macroscale materials. This is the main reason that the flexoelectricity has received very limited
attention for a long period of time after its discovery in the 1950s. However, the strain gradients are
inversely proportional to the scale length of a structure under the same mechanical loads. Therefore,
the flexoelectricity is a size-dependent property and becomes more prominent at the nanoscale, which
could significantly influence the electromechanical coupling behavior of PNs. Due to the advances in
nanotechnology and the potential applications of nanomaterials in electromechanical transduction
technology, there has been a trend of increasing scientific interest in the flexoelectricity in recent
years. Meanwhile, the flexoelectric constants of certain ferroelectric materials with high dielectric
permittivities were measured and found to be remarkably large. Thus, flexoelectricity has gained
wide attention from the research community to investigate the electromechanical couplings of PNs.
For the fundamentals and recent advances of flexoelectricity, refer to the following reviews [58–62].
In the current paper, we will focus on the efforts in establishing the theoretical framework for
dielectrics in order to quantitatively understand the underlying physics of their electromechanical
coupling at the nanoscale. For example, Catalan et al. [63] presented a phenomenological model
for ferroelectric thin films and accounted for the flexoelectricity by modifying the conventional
Landau–Ginzburg–Devonshire (LGD) free energy expression. According to the modified LGD theory,
a phase-field modeling approach was also developed to examine the role of the flexoelectric effect
in the complex domain patterns in ferroelectric ceramics [64]. Based on the variational principle,
Maranganti et al. [65] developed a general framework for dielectrics including the flexoelectric effect.
For an isotropic centrosymmetric continuum medium, they also provided Green’s function solutions
for the governing equations. Shen and Hu [56] later established a more comprehensive framework for
the nanoscale dielectrics by incorporating the flexoelectric effect into the constitutive equations as

σij = cijklεkl + eijkl Pk,l + dijkPk + rijklmεkl,m (5a)
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τijm = fijmkPk + rklijmεkl + ηklijmPk,l + gijmknlεkn,l (5b)

Ei = aijPj + djkiε jk + hijkPj,k + f jkliε jk,l (5c)

Vij = bijkl Pk,l + eklijεkl + hkijPk + ηijkmnεkm,n (5d)

where σij, Ei, Pi and εij are traditional stresses, electric fields, polarizations and strains, respectively,
with the subscript comma indicating differentiation with respect to the spatial variables. cijkl , dijk
and aij are the elastic coefficients, piezoelectric coefficients and dielectric susceptibilities as in the
traditional linear piezoelectricity. fijkl and eijkl are the direct and converse flexcoupling coefficients.
hijk, bijkl , rijklm, ηijkmn and gijmknl are the tensors representing the other higher-order couplings, i.e.,
polarization–polarization gradient, polarization gradient–polarization gradient, strain–strain gradient,
polarization gradient–strain gradient and strain gradient–strain gradient. In fact, eijkl was introduced
by Mindlin [66] in his polarization gradient theory while gijklmn was introduced in the strain–gradient
elasticity theory and could represent the non-local elastic effect. τijm and Vij are the higher-order
stresses and higher-order local electric fields, which are caused by the flexoelectric effect and some
other higher-order coupling effects.

An alternative form of the constitutive equations for dielectrics with the incorporation of the
flexoelectricity is given by [67]

σij = cijklεkl − eijklEk,l − dijkEk + rijklmεkl,m (6a)

τijm = − f ijmkEk + rklijmεkl − ηklijmEk,l + gijmknlεkn,l (6b)

Di = aijEj + djkiε jk + hijkPj,k + f jkliε jk,l (6c)

Vij = bijklEk,l + eklijεkl + hkijEk + ηijkmnεkm,n (6d)

where pairs of conjugate variables (Di, Ei) instead of (Ei, Pi), and (Ei,j, Vij) instead of (Pi,j, Vij) are
employed, and Di is the electric displacement vector. In addition, cijkl , dijk and aij are the elastic,
piezoelectric and dielectric coefficients different from cijkl , dijk and aij. f ijkl and eijkl are the direct and
the converse flexoelectric coefficients, representing the strain gradient and the electric field coupling,
and the electric field gradient and the elastic strain coupling, respectively. hijk, bijkl and ηijkmn represent
the electric field–electric field gradient, electric field gradient–electric field gradient and electric
field gradient–strain gradient coupling tensors, respectively. From these constitutive relations, it is
clearly seen that the flexoelectric effect is characterized by a fourth-order flexocoupling or flexoelectric
coefficient tensor. A few efforts have been devoted to determining the nonzero components of these
tensors, both from experimental characterization [68] and atomistic simulations [69]. In 2011, the
number of independent components of the flexoelectric coefficient tensor for a certain symmetry
class of materials was demonstrated by Le Quang and He [70]. Shu et al. [71] determined the
flexoelectric coefficient components in a matrix form for materials belonging to specific point groups
and Curie groups. Subsequently, Yan and Jiang [72,73] and Zhang et al. [74] developed modified
piezoelectric nanobeam and nanoplate models with the flexoelectric effect to investigate the static and
dynamic behaviors of PNs. It is also worth mentioning that the flexoelectricity will result in modified
boundary conditions of the piezoelectric nanostructures, and the modified elastic boundary conditions
were demonstrated by the work of Yurkov [75]. Recently, Yan and Jiang [76] further presented the
modified elastic boundary conditions in the cylindrical coordinate system in the presence of the
direct flexoelectricity. It should be noted that the flexoelectricity is also important for a special class
of soft materials: biological membranes. Deng et al. [77] demonstrated that the electrets and the
flexoelectricity permitted the engineering of a rather large electromechanical coupling in soft materials.
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2.3. Non-Local Piezoelectricity Theory

In order to capture the size-dependent properties of nanomaterials, higher-order continuum
mechanics theories such as polarization gradient theory [66], strain gradient theory [78], non-local
theory [48], micropolar theory [79] and couple stress theory [80–82] have been employed in the
literature. Extended from the non-local elasticity, the non-local piezoelectricity theory states that the
stresses and the electric displacements at a reference point x depend not only on the strains and the
electric fields at the same point but also on all other points x′ of the body. The non-local constitutive
equations can be expressed as

σnl
ij (x) =

∫
V

α
(
|x′ − x|

)
σl

ij(x
′)dV

(
x′
)

(7a)

Dnl
k (x) =

∫
V

α
(
|x′ − x|

)
Dl

k(x
′)dV

(
x′
)

(7b)

where α(|x′− x|) is the non-local modulus satisfying
∫

V α(|x′− x|)dV(x′) = 1, and the volume integral
is over the region V occupied by the body. σnl

ij and σl
ij are, respectively, the components of the non-local

stress tensor and the classical stress tensor; Dnl
k and Dl

k are the components of the non-local and the
classical electric displacement. The classical stress and electric displacement satisfy the traditional
constitutive equations as σl

ij(x
′) = cijklεkl(x′) − ekijEk(x′) and Dl

k(x
′) = ekijεij(x′) + κkiEi(x′) with

cijkl , ekij and κki being the elastic, piezoelectric and dielectric constants. According to Eringen [48],
the non-local effect represented by Equation (7a) can be rewritten in the differential format, i.e.,

(1− µ∇2)σnl
ij = σl

ij (8)

where µ = (e0a)2 is the non-local parameter with a being an internal characteristic length (e.g., lattice
parameter, granular size) and e0 being a material property determined by experimental results or
comparison with calculations based on lattice dynamics; ∇2 is the Laplacian operator. Similarly,
Equation (7b) can be rewritten as (

1− µ∇2
)

Dnl
k = Dl

k (9)

The non-local piezoelectricity theory was firstly employed to solve the crack problems in piezoelectric
materials [83], and has been extensively adopted to study the size-dependent mechanical and physical
behaviors of PNs in recent years.

3. Size-Dependent Properties of PNs

In the literature, the above-mentioned modified continuum theories have been employed
extensively to study the size-dependent electromechanical coupling and mechanical properties of PNs.
In this section, the electromechanical coupling, bending, vibration, buckling, wave propagation and
dynamic characteristics of various piezoelectric nanostructures are reviewed, and a summary of the
relative works is demonstrated in Table 1.

3.1. Electromechanical Coupling Behaviors of PNs

The electromechanical coupling (EMC) coefficient measures the effectiveness of the EMC and thus
is commonly adopted as an important parameter for characterizing the performance of piezoelectric
energy harvesting. The EMC coefficient can be obtained through measuring the variation of the
energy stored in the electromechanical structure with the change of the electric boundary conditions.
Considering the surface effects, this coefficient for a piezoelectric nanobeam ξe f f was determined

based on the surface piezoelectricity theory as ξe f f =
e2

31bh+es
31e31(2h+6b)

(c11κ33+e2
31)bh+(cs

11κ33+es
31e31)(2h+6b)

[52] with c11, e31

and κ33 being the conventional elastic, piezoelectric and dielectric constants, with cs
11 and es

31 being the
surface elastic and piezoelectric constants, and b and h representing the width and thickness of the
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beam. It is explicitly demonstrated by this expression that the EMC coefficient varies with the size and
can be dramatically enhanced with the decrease of the beam thickness due to the surface effects. Later,
the non-local piezoelectricity theory in addition to the surface effects were considered to study the
EMC coefficient by Wang and Wang [84], and they found that the EMC coefficient increases, with the
increase of the nanobeam thickness, to a peak, and then decreases, which indicates that the non-local
parameter µ decreases the EMC coefficient. The explicit expression of the EMC coefficient has also
been obtained by considering both the surface effects and the flexoelectricity [85], which indicates that
the EMC coefficient is enhanced by the flexoelectricity. In addition, the flexoelectricity was also found
to enhance the effective piezoelectric constants of a piezoelectric nanowire [86].

The electromechanical coupling fields of both flat structures [52,53] and curved structures
including a piezoelectric nanoring [51] and a curved piezoelectric nanobeam [87] have been
investigated by using the surface piezoelectricity model. These works indicated that surface effects
have a great influence upon the electroelastic fields of the piezoelectric nanostructures. An analytical
solution was also obtained for the piezoelectric potential generated in a cantilevered ZnO nanowire
with the consideration of the flexoelectricity, indicating the size-dependent electromechanical coupling
due to the inhomogeneous strains [88]. Furthermore, the influence of the direct flexoelectricity and
the non-local elastic effect on the electroelastic fields of a hollow piezoelectric nanocylinder was
investigated by Yan and Jiang [76], in which the flexoelectricity was found to induce clear electroelastic
responses that could not be achieved through pure piezoelectricity.

3.2. Bending, Vibration and Buckling Behaviors of PNs

The mechanical properties of PNs including bending, vibration and buckling behaviors are crucial
for the rigidity and functionality of structures in use, and thus the focus of many investigations.
Based on the surface elasticity model, Wang and Feng [89] investigated the surface stress effect on the
vibration and buckling of piezoelectric nanowires, and they showed that the surface stress has quite a
similar influence on the mechanical performance of the nanowires as that of the piezoelectricity.
Based on the surface piezoelectricity beam model, Yan and Jiang [52] revealed that the surface
piezoelectricity also plays a significant role in the bending behavior of the piezoelectric beam,
which cannot be neglected. In addition, they found that the residual surface stress could soften
or stiffen a piezoelectric cantilever beam depending on the stress direction and magnitude. The same
authors derived the resonant frequency and the critical electric potentials for the mechanical buckling
of piezoelectric nanobeams with different boundary conditions [90]. The results indicated that
the mechanical behaviors of the piezoelectric nanobeams are significantly affected by the surface
effects, the beam boundary conditions, the applied electrical loads and the prescribed axial strains.
Li et al. [91] studied the wrinkling behavior of a piezoelectric nanofilm on a compliant substrate in
the presence of the surface effects by modelling the film structure as a von Karman plate. The surface
effects were found to play an important role in the wrinkling response of piezoelectric thin films
as the critical electric potentials for buckling, the wavelength and the amplitudes of the wrinkles
deviate significantly from the classical ones. Subsequently, based on the Kirchhoff plate theory,
the surface effects on the static bending behavior of a simply supported piezoelectric nanoplate with
different in-plane boundary constraints were investigated [53]. In this work, two in-plane constraints
were adopted, namely the traction free conditions (Case 1) and the fixed mid-plane displacements
(Case 2). For Case 1, the traction free conditions on the plate side surfaces induce a relaxation strain
as ε = −

[
e31V + 2

(
σ0 + es

31V/h
)]

/
[
(c11 + c12) h + 2

(
cs

11 + cs
12
)]

, with σ0, cs
11, cs

12 and es
31 being the

residual surface stress, surface elastic constants and surface piezoelectric constant, c11, c12 and e31 being
the elastic and piezoelectric constants, V being the applied electric potential and h being the plate
thickness. It is seen that the relaxation strain originally caused by the applied electric potential due to
the piezoelectricity depends on the surface effects. For Case 2, the mid-plane in-plane displacements
are constrained to zero, and thus induce in-plane forces, which could possibly cause the buckling
of the nanoplate. This study concluded that the deflection and the electric field of the piezoelectric
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nanoplate in the plate thickness direction, and the in-plane relaxation strain under the mechanical
and electrical loads, are size dependent due to the surface effects. By using the same modified plate
model, the vibration and the buckling behaviors of piezoelectric nanoplates were investigated [92,93].
For a simply supported piezoelectric nanoplate with Case 2 in-plane constraints, it was found that
the surface effects upon the vibration behavior of the plate depends on the applied electric potential,
the mode number and the plate aspect ratio. It is also interesting to reveal a transition aspect ratio a/h
(a and h are the length and thickness of a square piezoelectric nanoplate, respectively) by conducting
the buckling analysis. At this transition point, the influence of the surface effects on the critical electrical
load for buckling vanishes regardless of the value of the plate thickness h. The significant influence of
the surface effects on the vibration [94], the critical buckling load [95] and the critical electric potential
for the buckling [96] of piezoelectric nanofilms have also been observed by Zhang and his colleagues.
In addition, Xu [97] presented analytical solutions for the bending deflection, the resonant frequency
and the mode shape of a piezoelectric nanobeam with the consideration of shear deformation and
rotary inertia. Furthermore, Zhang et al. [54] calculated the Miller–Shenoy coefficients and the natural
frequencies of a piezoelectric nanoplate for pure extensional deformations based on a two-dimensional
piezoelectricity theory with the consideration of the surface effects. The same authors also studied the
vibration behavior of a piezoelectric shell with the nanoscale thickness [55]. Numerical results showed
that the surface effects have a remarkable influence on the natural frequencies of the plates and shells
with nanoscale thickness.

The flexoelectric effect upon the bending behaviors of piezoelectric cantilever, clamped–clamped
and simply supported nanobeams were investigated by Yan and Jiang [72]. It was found that the
beams could be either stiffened or softened depending on the boundary conditions that have been
modified by the flexoelectricity. The vibration analysis of a simply supported piezoelectric nanobeam
revealed that the flexoelectricity tends to reduce its resonant frequency [73]. The size-dependent
bending and vibration characteristics of a clamped and a simply supported nanoplate were studied by
Zhang et al. [74] and Yang et al. [98], respectively, based on the Kirchhoff plate model. In Reference [74],
the flexoelectricity was found to increase the deflection while decreasing the resonant frequency of the
plate. However, for the case presented in Reference [98], opposite trends of the flexoelectricity on the
plate deflection and resonant frequency were observed. Recently, Liang et al. [99] studied the buckling
and vibration of a piezoelectric nanofilm and found that the critical buckling load and the natural
frequency of the film with the consideration of the flexoelectricity are higher than those obtained by
the classical piezoelectricity plate theory.

Based on the non-local piezoelectricity theory and the conventional continuum mechanics
models, Ke et al. [100,101] investigated the vibration behaviors of piezoelectric nanobeams by
changing the non-local parameter, the temperature change and the external electric voltage to see
their influences. The same research group further investigated the thermo-electro-mechanical free
vibration of a piezoelectric nanoplate [102]. Numerical simulation results showed that an increase in the
non-local parameter tends to the decrease of the vibration frequencies of the beam and the plate studied,
and the non-local parameter has a significant effect on the mode shapes for the clamped–clamped and
the clamped–hinged piezoelectric nanobeams.

With the consideration of both the surface effects and the flexoelectricity, the size-dependent
bending properties of a piezoelectric nanobeam [85] and a piezoelectric nanoplate were studied [103].
In Reference [103], the vibration behavior of the plate was also examined. These works clearly
showed that the flexoelectricity plays an indispensable role in predicting the size-dependent
mechanical behaviors of piezoelectric nanostructures. Moreover, by taking into account the surface
effects, the flexoelectricity and the non-local effects into a modified Kirchhoff circular plate model,
the size-dependent bending and vibration behaviors of a clamped piezoelectric circular nanoplate
were analyzed [104]. Simulation results indicated that the influences of the flexoelectricity and the
non-local elastic effect on the plate displacements and resonant frequencies are more significant when
the plate radius to thickness ratio R/h is relatively small, while such an influence of the surface effects
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is more prominent at larger R/h. In summary, the combined flexoelectric, surface and non-local elastic
effects are significant for the whole range of the plate aspect ratio considered.

It is worth noting that there also exist a few works on modeling the flexoelectric effect upon
the electromechanical coupling properties of dielectric nanostructures (without piezoelectricity).
For example, the exact solutions for the displacement and the electric potential fields in a dielectric
nanobeam and an elastic beam integrated with a flexoelectric nanoactuator layer were obtained
by Ray [105,106], and the results revealed that the thickness of the flexoelectric nanoactuator layer
can be treated as a parameter for optimizing the performance of the nanoactuator. Li et al. [107]
solved the problems of static bending and free vibration of a three layer microbeam, with the
middle layer being a flexoelectric dielectric layer. They adopted the piezoelectric couple stress
theory [108], which considered that the size-dependent piezoelectric effect is characterized by the
skew-symmetric part of rotation gradients rather than the strain gradients defined in previous works.
Their results showed that, in the isotropic dielectric beam, a deformation induces polarization while
an applied voltage causes deformation due to the flexoelectricity. Both the induced voltage and the
deformation are size dependent. Li et al. [109] also developed a reformulated flexoelectric theory by
splitting the strain gradient tensor into mutually independent parts, and the size-dependent direct
and converse flexoelectric effects were captured through studying the electromechanical coupling
fields of a cantilever beam, which is subjected to a concentrated force at its free end and an electric
potential across its thickness. Moreover, Mao and Purohit [110] combined the theories of the strain
gradient elasticity and the classical electrostatics to derive the governing equations and boundary
conditions for general flexoelectric dielectrics. They solved the problems of a bending beam, a torsional
shaft and a disk under pressure and predicted the corresponding size-dependent electromechanical
properties and the flexoelectric modulation of the material behavior. Yan [111] further presented
the exact solutions for the electromechanical responses of a dielectric nanoring subjected to both
mechanical and electrical loads, with the consideration of the flexoelectricity, the surface effects and
the non-local elastic effect. The results were compared with those from the theories of pure elasticity,
the strain gradient elasticity and the one with the direct flexoelectricity, revealing the significant role of
the surface effects and the converse flexoelectricity in the size-dependent electromechancial behavior
of dielectrics.

As mentioned in the Introduction, various configurations of the nanostructures can be easily
formed by using PNs with a wurtzite crystal structure. Due to the particular geometry and size, these
materials may exhibit some unique properties and hold promise for applications in the biological
areas and functional elements in NEMS. Therefore, it is important to investigate the size-dependent
properties of these structures based on the modified continuum models. Wang et al. [112] extended
the classical Kirchhoff rod model by considering the surface effects and employed the extended model
to study the mechanical responses of quasi-one-dimensional nanomaterials such as nanosprings and
helical nanobelts. The residual surface stresses were found to have a remarkable influence on the
elastic constants of the nanosprings. Such an influence increases with the decrease of the nanospring
cross-sectional radius and the increase of the nanospring helical angle. How the anisotropic surface
effects influence the formation of chiral morphologies of nanomaterials was further investigated. It
was demonstrated that the formation of various complicated morphologies of the nanomaterials such
as the twisting and bending of nanobelts and nanohelics could be a consequence of anisotropic surface
stresses [113]. Later, the same first author developed a modified Euler–Bernoulli beam model for
chiral nanowires with the incorporation of both the surface effects and the material chirality [114]. The
developed model was employed to investigate the bending and the buckling behaviors of the chiral
nanowires. It was found that the mechanical behaviors of the nanowires were affected by the surface
effects and the material chirality considerably. These works provide great insights into understanding
the various structure formation and the size-dependent elastic behaviors of wurtzite PNs.
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3.3. Size-Dependent Dynamic Performance of PNs

In order to realize the functionality of certain piezoelectric nanodevices in NEMS, some researchers
also conducted investigations on the size-dependent properties of waves propagating in piezoelectric
nanostructures. For example, the surface effects on the propagation of Bleustein–Gulyaev waves in
a piezoelectric half-space were studied by Chen [115], and it was indicated that the Bleustein–Gulyaev
wave may not exist if a fast surface layer was considered. Zhang et al. [116] investigated the anti-plane
or horizontally polarized shear (SH) waves propagating in an infinite piezoelectric nanoplate. It was
found that, in the presence of the surface piezoelectricity, the frequency for the anti-symmetric waves
decreases while the frequency for the symmetric waves increases. Moreover, the surface effects on
the wave behavior are more prominent at higher frequencies. The dispersion characteristics of elastic
waves propagating in a monolayer piezoelectric nanoplate were investigated with the consideration
of the surface piezoelectricity as well as the non-local effect [117]. Numerical results showed that
both the non-local scale parameter and the surface piezoelectricity have remarkable influence on the
size-dependent properties of dispersion behaviors. It is also found that there exists an escape frequency
above which the waves may not propagate in the piezoelectric plate with the nanoscale thickness, which
may have potential applications for wave band gap. The scattering of a plane harmonic compressional
wave around a nanosized piezoelectric particle was studied in [118], and simulation results showed
that the scattering effect of the compressional waves is significantly related to the coupling effect
of the surface/interface. In addition, the surface energy was found to significantly influence the
dynamic stress and electric displacement around the nano-particle. The dynamic effective properties
of a piezoelectric medium with randomly distributed nano-fibers were examined to study the multiple
scattering phenomena [119], which showed that the surface energy makes a significant contribution to
the dynamic effective elastic modulus, especially in the region of intermediate frequencies.

Table 1. Summary of the size-dependent mechanical and electromechanical coupling properties
of piezoelectric nanomaterials (PNs) based on different theories. Acronyms: SPT (Surface
piezoelectricity theory), TF (Theory of flexoelectricity), NPT (Non-local piezoelectricity theory), EMC
(Electromechanical coupling).

Theories Size-Dependent Properties Materials References

SPT EMC fields PZT-5H [51–53,87]
SPT bending PZT-5H [52,53,97]
SPT vibration PZT-5H [54,55,90,92–94,97]
SPT buckling PZT-5H [53,90,92,93,95,96]
SPT wrinkling PZT-5H [91]
SPT wave propagation PZT-4 [115]
SPT wave propagation PZT-5 [116]
SPT dynamic characteristics PZT-4 [118]
SPT dynamic characteristics CoFe2O4/BaTiO3 [119]
TF EMC fields ZnO [88]
TF EMC fields BaTiO3 [72,74,76]
TF bending BaTiO3 [72–74]
TF vibration BaTiO3 [73,74]
TF bending and vibration PZT-5H [98]
TF buckling and vibration Pb(Mg1/3Nb2/3O3) [99]

NPT vibration PZT-4 [100–102]
SPT and NPT EMC fields PZT-5H [84]
SPT and NPT wave propagation PZT-5H [117]
SPT and TF bending PZT-5H [85,104]
SPT and TF vibration PZT-5H [104]
SPT and TF bending and vibration BaTiO3 [103]
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4. Modeling of Piezoelectric Nanodevices

For the development and performance optimization of piezoelectric nanostructure-based devices,
several works on the analytical modelling and analysis of piezoelectric nanoactuators and energy
harvesters were carried out. Zhang et al. [120] developed anti-parallel piezoelectric bimorph
nano-actuators of both cantilevered and simply supported plate types. Their numerical results showed
that the deflection of the antiparallel bimorph nano-actuators was size-dependent and could achieve
nearly 50 times that under the static driving voltage at the resonant frequency. In reference [54],
a nano-piezoelectric plate harvester with the surface effects was presented, and the simulation results
indicated that the nano-piezoelectric harvester has a stronger capability of energy conversion at the
nanoscale. Based on the surface stress model, analytical solutions of an energy harvester with the
flexural mode were derived, and it was demonstrated that the power density depends on the surface
material constants [121]. The influence of the surface effects on the energy-harvesting performance
of a piezoelectric circular nanomembrane under human blood pressure was studied and found to
be more significant for a membrane with smaller thickness and larger radius-to-thickness ratio [122].
The flexoelectric effect on the performance of the nanoscale energy harvesting has also been examined
in the literature. Deng et al. [123] found that the output power density and the conversion efficiency of
a flexoelectric energy harvester increase significantly when the beam thickness reduces from micro to
nanoscale. Recently, Wang and Wang [124] presented an analytical model for the nanoscale unimorph
piezoelectric energy harvesters with the consideration of the flexoelectric effect. Their results showed
that the power output could be significantly increased. For example, the maximum power output of
the model with the flexoelectric effect is almost twelve times that of the classical model in some cases.
Nanocomposite electrical generators based on ZnO nanowires embedded in an epoxy matrix were
also modeled and quantitatively analyzed with varying aspect ratios and diameters [125,126], and
the surface effects were further incorporated through a core-surface model [127]. Numerical results
indicated that the maximum generated voltage is related to the diameter of nanowire and an optimum
aspect ratio for each nanowire diameter was determined for the energy generator.

5. Conclusions

This paper provides a review on the modified continuum mechanics modeling of the
size-dependent properties of PNs. In order to capture the novel properties of the piezoelectric materials
at the nanoscale, the theories of the surface piezoelectricity, the flexoelectricity and the non-local
piezoelectricity have been developed accordingly based on the traditional continuum mechanics
frame. These modified continuum mechanics models have been widely adopted to investigate the
size-dependent mechanical and physical properties of PNs, including the bending, the vibration,
the buckling and the dynamic performance. A general conclusion achieved is that the surface effects,
the flexoelectricity and the non-local parameter have prominent influences on these behaviors and
such effects are more pronounced with the decrease of the structural size. The theoretical studies
present efficient routes for quantitatively and qualitatively understanding the electromechanical and
the unconventional properties of PNs. The modified continuum modeling of PN-based actuators and
energy harvesters with the consideration of the size effects have also been reported, which provides
a clear description of the electromechanical energy conversion and may help the design of piezoelectric
nanodevices with optimal performance.

Nevertheless, some fundamental issues still remain to be resolved in future study. Firstly,
the surface effects and the flexoelectricity are closely related to the curvature of the structure, thus they
may have a more considerable influence on the properties of PNs with a curved surface. Therefore,
the size-dependent properties of PNs with a curved surface is worth further investigation, which is not
limited to the regular piezoelectric nanostructures such as piezoelectric nanocylinder and nanosphere,
but a more general case. Consequently, numerical techniques with the incorporation of the size effects
should also be developed. Secondly, inconsistency among the results from those modified continuum
mechanics studies exists due to various small-scale effects as well as different materials chosen in the
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case studies. Within a certain length scale range, which small-scale effect is more dominant? There is
no certain answer. Thus, a systematic and in-depth study should be conducted to give essential
insights into these issues, which may need further experimental and simulation validations. Thirdly,
the purpose of the theoretical studies of PNs is to serve for their potential applications. There exist
quite a few prototypes of piezoelectric nanodevices, but the related theoretical works exploring the
underlying mechanisms are quite limited. It is thus important to model these prototypes and clarify the
size effects on their performance. Fourthly, a fully coupled electromagnetic–mechanical–thermal model
with the size effects should be established to study the multi-physics coupling at the nanoscale. Lastly,
dielectric elastomers have been attracting more interest in recent years due to their large deformation
capability and the ease of integration into various stretchable electronic devices. When the device size
is reduced to the nanoscale, the large deformation effect, together with the pseudo-piezoelectricity of
the dielectrics due to the flexoelectricity, should also be investigated in future research.
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