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Abstract: A biomechanical understanding of gait stability is needed to reduce falling risk. As a typical
parameter, the COM-COP (center of mass–center of pressure) inclination angle (IA) could provide
valuable insight into postural control and balance recovery ability. In this study, an artificial neural
network (ANN) model was developed to estimate COM-COP IA based on signals using an inertial
sensor. Also, we evaluated how different types of ANN and the cutoff frequency of the low-pass
filter applied to input signals could affect the accuracy of the model. An inertial measurement
unit (IMU) including an accelerometer, gyroscope, and magnetometer sensors was fabricated as a
prototype. The COM-COP IA was calculated using a 3D motion analysis system including force plates.
In order to predict the COM-COP IA, a feed-forward ANN and long-short term memory (LSTM)
network was developed. As a result, the feed-forward ANN showed a relative root-mean-square
error (rRMSE) of 15% while the LSTM showed an improved accuracy of 9% rRMSE. Additionally, the
LSTM displayed a stable accuracy regardless of the cutoff frequency of the filter applied to the input
signals. This study showed that estimating the COM-COP IA was possible with a cheap inertial
sensor system. Furthermore, the neural network models in this study can be implemented in systems
to monitor the balancing ability of the elderly or patients with impaired balancing ability.

Keywords: COM-COP inclination angle; artificial neural network; long-short term memory; inertial
measurement unit

1. Introduction

Evaluation of the balance ability of body movement through posture control is a representative
area of biomechanics that is studied by many clinicians and rehabilitation engineers [1]. Generally, the
risk of fall increases when one encounters irregularly surfaced ground, a sloping path, or when there is
an obstacle [2]. In the United States, it has been shown that more than 30% of elderly people above
the age of 65 experience a fall at least once a year [3]. Fall may cause serious pain, which may lead
to long-term hospitalization [4]. In the elderly, it is known that factors such as lower body muscular
atrophy, limitation in range of motion, and cognitive disorder are related to the degradation of balance
recovery ability [5]. Therefore, quantitative evaluation of the balancing ability of body posture during
walking is needed to improve the biomechanical understanding of factors related to falls.

Trajectories of the center of mass (COM) and center of pressure (COP) are used as representative
parameters to evaluate the balancing ability while walking [6]. Joint assessment of both COM and
COP (relative position of COM to COP trajectory) can provide a more complete evaluation than
interpretation of COM and COP separately [7,8]. A typical parameter is the COM-COP inclination
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angle (IA) which is defined as the instantaneous orientation of the imaginary line that connects the
COM and COP locations [9]. The horizontal distance between COM and COP that can explain a
decrease in stability can be quantified using the magnitude of COM-COP IA. Hong et al. [10] used
COM-COP IA to investigate the effects of the sloped pathway and age on gait stability. Their results
revealed that the elderly show more COM-COP IA alteration in the sagittal plane and increased
COM-COP IA velocity change in the single and double support gait phases. This was thought to be a
mechanism to compensate for the decrease in balancing ability compared to the young control group.
Other similar studies have used COM-COP IA as a parameter to evaluate the balancing ability of
patients suffering from Parkinson’s disease [11,12], scoliosis [13], and cerebral palsy [14]. COM-COP
IA has also been used to evaluate the balancing ability of pregnant women [15].

The COM-COP IA parameter can only be extracted with a 3D motion analysis system in a
specialized space that has fixed force platform devices. This is due to the fact that the COM is calculated
based on marker trajectories extracted by optical cameras and anthropometric information (weighted
sum of each segment), while the COP is acquired from the force platform [16]. However, a 3D motion
analysis system with a time-series synchronized force platform is highly expensive. In addition, it is
installed in a limited space [17]. Moreover, “Targeting” problems can arise when one takes unnatural
steps onto a force platform, thereby affecting the entire movement of the body [18]. An existing report
has suggested that the “Targeting” problem changes ground reaction patterns during walking [19].

These suggested limitations can be easily dealt with by employing a wearable sensor device and
artificial neural network (ANN) modeling technique. The most inexpensive and practical wearable
sensor device is the inertial measurement unit (IMU), which consists of a three-axis accelerometer,
gyroscope, and magnetometer. IMU is widely used in movement analysis [20–22]. Generally, sensor
signals are smoothed with a low-pass digital filter because the raw signals of the IMU device have
thermal-mechanical and electronic noise. Previous studies have suggested various cutoff frequencies
to reduce noise during walking. In order to study the walking step time and velocity, the accelerometer
signal was filtered at a 2 Hz cutoff frequency [23] while a IMU sensor signal filtered at 25 Hz was
used to compute COM trajectories [24]. In addition, the ANN technique can reduce the number of
sensors attached to the body and increase the possibility of estimating the COM-COP IA parameter.
ANN has a powerful prediction performance when there is no direct physical relationship between
input and output. In the field of biomechanics, the ANN provides great solutions when parameters
such as electromyogram signals and joint forces do not have a deterministic relationship [25]. Thus,
ANN is widely used to predict human activities or to develop biomechanical models [26]. Moreover,
the recently suggested long-short term (LSTM) network can provide high accuracy for time series
data estimation [27]. Therefore, this technique is presumed to show good performance for estimating
changing parameters such as COM-COP IA in a period of walking.

Although the COM-COP IA is a biomechanically useful parameter to evaluate the balancing
ability during walking, there has been no reported attempt to extract it using a cheap, wearable IMU
sensor. The evaluation of balance control ability using a cheap wearable sensor allows one to monitor
the risk of a fall in daily life. Additionally, periodic monitoring and follow-up are needed to assess the
effectiveness of rehabilitation following medical treatment [28]. Therefore, development of a simple
system, such as a single inertial sensor device, with artificial intelligence technology is important for
health-care perspectives. The first objective of this study was to propose ANN models that could
estimate the COM-COP IA during walking based on signals using an IMU device attached to the waist.
The ANN can show differences in accuracy depending on its own characteristics. Furthermore, the
cutoff frequency of the low-pass filter applied to the sensor signal is decided by the high-frequency
composition. This can make changes to the input value and affect the performance of the model.
Therefore, the second objective of this study was to evaluate how different types of ANN (conventional
feed-forward ANN vs. LSTM) and filtering cutoff frequency could affect the accuracy of the model.
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2. Materials and Methods

2.1. Subjects, Apparatus, and Gait Experiments

For this study, we recruited 24 healthy adult males (age: 26.2 ± 1.5 years, height: 171.2 ± 4.3 cm,
weight: 67.3 ± 7.1 kg), without any musculoskeletal disorders. The experiments were approved by the
local ethics committee and performed at the Biomedical Engineering Laboratory in Sungkyunkwan
University, Republic of Korea. All participants provided written informed consent prior to experiments.

Six MCam2 cameras (VICON, Oxford Metrics, Oxford, UK) and two OR6-6-2000 force platforms
(AMTI Inc., Newton, MA, USA) were used to measure human gait motion. Each system was sampled
at 120 and 1080 Hz, respectively. The time-series data acquired from these devices were synchronized
using a VICON 460 system. Additionally, an IMU system including an accelerometer, a gyroscope,
and a magnetometer was fabricated to estimate the COM-COP IA parameter. The IMU was 45 mm
(width) × 70 mm (length) × 25 mm (height) in size. It consisted of an ARM STM 32 microprocessor
(AVR, STMicroelectronics, Geneva, Switzerland), an MPU-9250 IMU sensor (InvenSense Inc., San Jose,
CA, USA), a battery (3.7 V 2,000 mhA), and a Bluetooth 2.0V module (Chipsen Corp., Gwangmyeong,
Korea) (Figure 1). Accelerometer (±16 g), gyroscopic (±2000 deg/s), and magnetic (±4800 uT) signals
were sampled at 100 Hz and gathered in the microprocessor. These signals were then transmitted to a
PC using a Bluetooth module. The PC interface was implemented using LabVIEW software (National
Instruments Corp., Austin, TX, USA). The VICON 460 and IMU system were manually synchronized
using major gait events (heel strike and toe-off events) based on a previous study [29].
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Figure 1. Inertial measurement unit (IMU) prototype.

Subjects were asked to be shirtless with short tight shorts. For each subject, optical markers
were attached to 35 anatomical landmarks based on the modified Helen Hays markerset protocol [30].
In addition, the IMU system was positioned on the lower back surface over the 5th vertebra of
the lumbar spine [29,31]. Each subject performed a preliminary exercise before participating in the
experiment. Each subject also performed a sufficient amount of preliminary gait movements to adapt
to the experimental environment. The walking speed was set as normal, fast, and slow. A normal speed
indicated a comfortable speed at which the subject normally walks. Fast and slow speeds indicated
walking at speeds that the subject considered fast and slow, respectively [32]. Each subject performed
five gait experiments.

The marker position and force platform data acquired from the motion capture system during a
gait were smoothed utilizing a fourth-order Butterworth digital low-pass filter with a cutoff frequency
of 7 Hz [30]. Filtered motion capture data were then used to calculate the COM-COP IA parameter.
Additionally, sensor signals of the accelerometer, gyroscope, and magnetometer were filtered using an
identical digital filter with three different cutoff frequencies (2, 10, and 25 Hz) in order to evaluate the
accuracy of the model. These filtered sensor signals were used as input to develop the artificial neural
network models.
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2.2. Calculation of the COM-COP Inclination Angle

The net COM trajectory of the whole body was calculated utilizing the kinematic method [33].
This method requires an anthropometric model and full kinematic descriptions such as the trajectories
of each joint rotation center. In the present study, the human body was divided into 15 segments and
14 joints [34]. The COM for each segment was defined as in a previous publication [35]. The net COP
of the entire body was calculated as the weighted sum of trajectories for each COP under the foot,
which accounted for the proportion of the vertical ground reaction force for each limb [36].

The COM-COP IAs in the sagittal and frontal planes were determined to be the instantaneous
orientation of the line connecting the COM and the COP with respect to the vertical line through the
COP (Figure 2). They were calculated as follows [16]:

v = (PCOM-COP X Z)/‖PCOM-COP‖ (1)

COM-COP IAs = sin−1(v) (2)

where PCOM-COP was the vector pointing from the COP to COM, and Z was the vertical unit vector of
the global axis. Since two force platforms were set, one gait cycle was defined as the heel-contact point
of one foot from the toe-off of the other foot [37]. All data were 100% normalized time-series data.
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2.3. Artificial Neural Networks

Six different types of neural network models (3 different cutoff frequencies × 2 different models)
were proposed in this study. The input vector of each neural network model consisted of 9 time-series
signals of 3 axes (anterior/posterior, medial/lateral, and proximal/distal) of the accelerometer, gyroscope,
and magnetometer of the IMU device. The input matrix had a size of 36,000 (number of frames: 36,000
= 24 subjects × 5 trials × 3 gait velocities × 100 frames) × 9 (number of input features). Outputs were
time-series COM-COP IAs in the sagittal and frontal planes. The output matrix had a size of 36,000
(number of frames) × 2 (number of outputs). Each 9 signal columns of the input matrix and 2 output
columns of the output matrix were linearly magnitude scaled between –1 and 1 based on the maximum
and minimum values of each column in order to avoid local minima and facilitate the optimization
process [25].

The feed-forward ANN (FFANN) model consisted of one input layer, one hidden layer, and one
output layer (Figure 3A). The number of neurons in the hidden layer was 10. Weight and bias were
optimized using a scaled conjugate gradient backpropagation algorithm. The transfer function used the
log-sigmoid function between each layer. The maximum number of epochs was set to 1000. However, it
was set to stop if the gradient reduction stopped for 6 epochs. The time-dependent deep running model
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was composed of an LSTM (Figure 3B) using two layers of 512 cells. The state activation function used
the hyperbolic tangent function while the optimizer function used the adaptive moment estimation
(Adam) stochastic gradient descent method with high convergence performance [31]. The mini-batch
size was 10. The learning rate was 0.001. The lambda loss amount was 0.0025, and the epoch number
was 100.
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Figure 3. Architectures of the feed-forward artificial neural network (A) and the long short-term
memory network (B).

Data were divided by the ratio of learning/validation/test as 75/12.5/12.5. Performance was
evaluated through a 10-fold cross validation. Data from eighteen and three randomly selected subjects
were used for training and validation, respectively, while the three remaining subjects’ data were used
for the test. The parameters of the developed FFANN and LSTM network models, such as the number
of neurons, transfer function, and learning rate, were determined based on trial and error to minimize
the mean-square-error values and to avoid over- or under-fitting [38]. The model implementation was
performed using MATLAB R2018b version (The Mathworks, Inc., Natick, MA, USA) and RTX 2080Ti
GPU (4352 CUDA cores, 1665 MHz base clock speed, and 11 GB RAM).

2.4. Statistics

COM-COP IA values calculated using the 3D motion analysis system and predicted using
the proposed model were compared based on the correlation coefficient, root-mean-square error
(RMSE), and relative RMSE (rRMSE) values [30]. ANOVA was used to compare the accuracy between
conventional FFANN and LSTM models and between cutoff frequencies. The significance level was set
to be p < 0.05 or p < 0.01. All statistical analyses were performed using PASW Statistics 18 (Ver. 18,
SPSS Inc. Chicago, IL, USA).
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3. Results

Figure 4 demonstrates representative raw and filtered three-axis acceleration signals during
walking. For the raw signals, no constant value or signal pattern appeared at the time of the gait event
and one cycle. The signal using a cutoff frequency at 25 Hz was similar to the original signal with a slight
difference in peak point. In contrast, in the signal with cutoff frequency at 2 Hz, the high-frequency
component was removed, and a typical acceleration signal pattern appeared in all directions.
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Figure 5 shows the COM-COP IAs calculated from the 3D motion analysis system and predicted
from the proposed models during a modified gait cycle. Changes in the COM-COP IA value on the
sagittal plane occurred within 20◦, while such changes on the frontal plane occurred within 10◦, with
half of those on the sagittal plane. In the FFANN model, the pattern of the COM-COP IA value was
fairly well-matched compared with the measured value. However, when the filtering of the cutoff

frequency of the input signals increased, the predicted values of COM-COP IA on both the sagittal and
frontal planes exhibited large upward and downward wave phenomena (Figure 5A). On the other
hand, predicted COM-COP IA values from the LSTM model demonstrated good correspondence with
the calculated ones, regardless of the filtering cutoff frequencies of the input signals (Figure 5B).

Table 1 shows the correlation coefficients and RMSE values extracted through 10 cross validation
experiments. The FFANN model showed correlation coefficients of 0.73–0.81 and RMSE values of
3.01–3.76 in the sagittal plane and correlation coefficients of 0.84–0.87 and RMSE values of 1.27–1.42 in
the frontal plane. For the LSTM model, correlation coefficients of both the sagittal and frontal planes
were 0.9 or more, higher than those for the FFANN model. In addition, the RMSE values were 1.97–2.24
on the sagittal plane and 0.82–0.85 on the frontal plane, showing improvement compared with the
FFANN model.



Sensors 2019, 19, 2974 7 of 12

Sensors 2019, 19, x FOR PEER REVIEW 6 of 12 

 

and one cycle. The signal using a cutoff frequency at 25 Hz was similar to the original signal with a 
slight difference in peak point. In contrast, in the signal with cutoff frequency at 2 Hz, the 
high-frequency component was removed, and a typical acceleration signal pattern appeared in  
all directions. 

 
Figure 4. Representative three-axis acceleration signal acquired from the IMU device attached to the 
waist region. 

Figure 5 shows the COM-COP IAs calculated from the 3D motion analysis system and 
predicted from the proposed models during a modified gait cycle. Changes in the COM-COP IA 
value on the sagittal plane occurred within 20°, while such changes on the frontal plane occurred 
within 10°, with half of those on the sagittal plane. In the FFANN model, the pattern of the 
COM-COP IA value was fairly well-matched compared with the measured value. However, when 
the filtering of the cutoff frequency of the input signals increased, the predicted values of 
COM-COP IA on both the sagittal and frontal planes exhibited large upward and downward wave 
phenomena (Figure 5A). On the other hand, predicted COM-COP IA values from the LSTM model 
demonstrated good correspondence with the calculated ones, regardless of the filtering cutoff 
frequencies of the input signals (Figure 5B). 

 

Figure 5. COM-COP inclination angle (IA) calculated using the 3D motion analysis system and
predicted using the proposed neural network models.

Table 1. Coefficient of correlation and root-mean-square error (RMSE) values between COM-COP IA
calculated using a 3D motion analysis system and predicted using neural network models. FFAN:
feed-forward ANN; LSTM: long-short term model.

Filtering Cutoff
Frequencies of Inputs

FFANN LSTM

r RMSE (deg) r RMSE (deg)

Sagittal plane
2 Hz 0.73 3.76 (0.54) 0.90 2.24 (0.61)

10 Hz 0.81 3.01 (0.18) 0.92 1.97 (0.81)
25 Hz 0.76 3.43 (0.32) 0.91 2.13 (0.71)

Frontal plane
2 Hz 0.86 1.33 (0.22) 0.95 0.85 (0.19)

10 Hz 0.87 1.27 (0.05) 0.96 0.82 (0.16)
25 Hz 0.84 1.42 (0.10) 0.96 0.81 (0.10)

Figure 6 shows quantitative comparisons of accuracy between the FFANN and LSTM models
using relative RMSE values. The predicted accuracy of the sagittal plane COM-COP IA was about 16
(2.1)% for the FFANN model and 9.9 (3.2)% for the LSTM model (F[1, 58] = 81.6, p < 0.01). For the
frontal plane, it was about 16.3 (1.8)% for the FFANN model and about 10.0 (1.8)% for the LSTM model
(F[1, 58] = 207.1, p < 0.01).
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The relative RMSE values between the calculated and predicted COM-COP IAs with different
cutoff frequencies of input signals were different in the FFANN model (Figure 7A). There were
significant differences among the three cutoff frequencies in the sagittal plane (F[2, 27] = 8.58, p < 0.01)
and the frontal plane (F[2, 27] = 3.34, p < 0.04). In the sagittal plane, the model using the 10 Hz
cutoff frequency showed a rRMSE of 14.4 (0.9)%, about 3.1% smaller than with a cutoff frequency
of 2 Hz (p < 0.01), while the 10 Hz cutoff frequency model on the frontal plane showed an rRMSE
of approximately 1.8% smaller than that of the 25 Hz model (p < 0.05). However, the LSTM model
showed rRMSE values of 10.5 (2.7), 9.2 (3.7), and 10.0 (3.4) on the sagittal plane and 10.3 (2.2), 10.0 (2.0),
and 9.8 (1.0) on the frontal plane for the 2, 10, and 25 Hz models, respectively (Figure 7B). In the LSTM
model, both the sagittal (F[2, 27] = 0.41, p = 0.67) and frontal planes (F[2, 27] = 0.20, p = 0.81) showed
similar rRMSE values to the cutoff frequency change.Sensors 2019, 19, x FOR PEER REVIEW 8 of 12 
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4. Discussion

ANNs have been used in various fields and have shown good performance, especially in the
fields of medicine and biomedical engineering [39]. Kipp et al. (2018) estimated articular joint torque
using only weight and trajectory information of the barbell during weight-lifting [40]. The coefficient
of determination between calculated and predicted values was 0.79 to 0.95, and the relative error was
5% to 16%. In addition, Ngoh et al. (2018) conducted a study using IMU sensor signals to predict the
vertical ground reaction force using acceleration information in humans running, and they showed
high accuracy with a correlation coefficient of 0.99 and an RMSE of 0.017 (N/BW) [20]. The results of
the LSTM model of the present study showed that the correlation coefficient was 0.90–0.96 and the
rRMSE accuracy was about 10%, similar to those of previous studies (Table 1). Liu et al. [41] concluded
that the model is highly accurate if the correlation coefficient is 0.9 or more and the rRMSE is 15%
or less, although their studies are limited to artificial neural network studies predicting joint torque.
Therefore, the performance of the model in this study is considered to be excellent, although it is rather
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difficult to directly compare the performance of the neural network model, because various parameters,
including the input and output and training data, are different.

In the present study, two types of artificial neural networks (FFANN vs. LSTM) were developed
and compared. Comparing the prediction accuracy of COM-COP IA values between the sagittal and
coronal planes, the correlation coefficients were about 0.14, and the error was reduced by about 8%
(Figure 5 & Table 1). These results show that the LSTM neural network can influence the output of the
LSTM neural network by inputting data at the previous time point, unlike the conventional FFANN
model which predicts the present time point data with the present data only. LSTM, a kind of recurrent
neural network, is composed of a composite network that uses both an output of t-1 and an input of t
to output the result of t in time series information [42]. Therefore, time-series based output information
can be estimated continuously at every time point. Similar results were obtained in the present study.
The FFANN model showed that the high-frequency component of the input was present as the output
(Figure 4A). In the case of LSTM, the effect of the high-frequency component was canceled out in the
training process with the result of the previous output (Figure 4B).

In addition, the performance of the model was analyzed by changing the cutoff frequency of the
low-pass filter to eliminate signal noise. In general, for human walking, the analysis of the harmonic
motion signal of each joint’s gesture showed the highest frequency in the forefoot and heel, and 99.7% of
total signals were distributed below 7 Hz [43]. In IMU-based walking studies, various cutoff frequencies
from 2 to 25 Hz have been applied [23,24]. Actually, if a machine learning model is constructed by
inputting nine sensor data extracted from the IMU, the output value may be influenced, because the
sensor value is changed according to the cutoff frequency. If the cutoff frequency is too small and
the original signal is smoothed as well, the learning of the model may not be efficient (Figure 6A).
In the FFANN model of this study, the high-frequency component of the sensor signal according to
the cutoff frequency (Figure 3) affected the training of the model. Thus, the high-frequency component
was reflected directly in the prediction result (Figure 4A). Nevertheless, the LSTM model was less
affected by the cutoff frequency variation. It exhibited a stable performance (Figure 6B). Therefore,
when using the FFANN model, an appropriate cutoff frequency should be considered. If the influence
of the high-frequency component on the output remains, an additional high-frequency filtering process
or data smoothing technique will be needed.

The proposed neural network models in this study had an architecture to predict the output
(COM-COPIAs) of the current framework from the input (sensor signals) at a given frame step. Many
previous studies have developed machine learning models for the classification of fall or activities
of daily life using sensor signals with a proper window size [44]. Using time-window strategies
allowed us to increase the dimension of input variables, leading to an increased possibility of model
performance through feature extraction. However, there are several limitations associated with
increased computational costs and latency of detection [45]. Because the accuracy of the proposed
models was fairly high with correlations coefficient above 0.9 without any time-window strategies, a
cost-effective and real-time system can be implemented at the commercialization stage as future work.

This study has the following limitations. First, the model was trained with only normal walking
data, while data from patients with assorted diseases were not applied. However, this study is the first
attempt to suggest whether the neural network and three sensor signals extracted from the IMU can be
used to estimate the COM-COP IA parameter during walking. Further studies are needed to reinforce
the usability of this model using walking data from the elderly and patients with impaired balancing
ability. The second limitation was that the model’s performance was analyzed based on three fixed
cutoff frequencies, while other diverse cutoff frequencies were not considered. Yet, the main purpose
of this research was to determine whether the cutoff frequency could affect the model’s performance.
Further research is needed to find the cutoff frequency that can maximize the model accuracy via
performance analysis or an optimization technique. Third, noise control due to the potential magnetic
field interference was not addressed in this study. Although these signals were used to train neural
network models, the prediction accuracy of LSTM network was fairly high with a correlation coefficient
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above 0.9. In future studies, greater attention to the quality of the raw signals of the magnetometer is
needed to improve the prediction ability of the model. Fourth, the time-series signals acquired from
VICON and IMU system were manually synchronized using heel strike and toe-off events during
walking, while synchronization error was not addressed in this study. Further study is needed to better
improve the accuracy and precision of the prediction models by using a real-time operating system
of integration systems. Last, the number of machine learning techniques was limited. This study
developed a conventional FFANN model and a LSTM model that performed strongly on time-series
data. The use of other various machine learning techniques such as random forest and the support
vector machine (SVM) will further improve the performance of the model.

5. Conclusions

This study suggests that artificial neural networks can estimate the COM-COP IA parameter
during walking using a wearable IMU attached to the waist. The accuracy of the proposed conventional
FFANN model was compared to that of LSTM. It was also compared between filtering cutoff frequencies
of 2 vs. 10 vs. 25 Hz applied to input signals. The FFANN model showed a correlation coefficient of
0.73–0.86 with an rRMSE of 15%, while the LSTM model showed a correlation coefficient of 0.90–0.96
and an rRMSE of 9%, showing an improved accuracy. For the FFANN model, the best result was
obtained when the cutoff frequency of 10 Hz was applied to the input signals, showing a correlation
coefficient of 0.84 and an rRMSE value of 14%, while the LSTM model displayed a stable accuracy
regardless of the cutoff frequency of the input signal. This study shows that estimating the COM-COP
IA parameter is possible with cheap, wearable IMU equipment. Further, the results of this study could
be implemented in systems to monitor the balancing ability of the elderly or patients with impaired
balancing ability.
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