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This work presents a novel approach to predict functional relations between genes using gene expression data. Genes may have
various types of relations between them, for example, regulatory relations, or theymay be concerned with the same protein complex
or metabolic/signaling pathways and obviously gene expression data should contain some clues to such relations. The present
approach first digitizes the log-ratio type gene expression data of S. cerevisiae to a matrix consisting of 1, 0, and −1 indicating highly
expressed, nomajor change, and highly suppressed conditions for genes, respectively. For each gene pair, a probability density mass
function table is constructed indicating nine joint probabilities. Then gene pairs were selected based on linear and probabilistic
relation between their profiles indicated by the sum of probability density masses in selected points. The selected gene pairs share
many Gene Ontology terms. Furthermore a network is constructed by selecting a large number of gene pairs based on FDR analysis
and the clustering of the network generates many modules rich with similar function genes. Also, the promoters of the gene sets in
many modules are rich with binding sites of known transcription factors indicating the effectiveness of the proposed approach in
predicting regulatory relations.

1. Introduction

The cell works as a system governed by integrated action of
the genes indicating that genes are functionally related; for
example, they may have regulatory relations between each
other or they may be concerned with the same protein com-
plex ormetabolic/signaling pathways and so on.Determining
functional relations between genes enables development of a
genetic network which leads to the prediction of the complex
rolls of the genes in different systems in the cell. Nucleotide
and/or amino acid sequence similarities have been exten-
sively used to predict functional relation between genes [1, 2].
Affinity purification [3, 4] and yeast two-hybrid assays [5,
6] are employed to determine physical association between
proteins which are gene products. Synthetic lethal screens [7]
measure the tendency for genes to compensate the loss of
other genes. Scientists have performed numerous studies in
an attempt to better understand and classify digenic epistatic
relationships [8]. In [9] a probabilistic functional network of

yeast genes was constructed by integrating diverse genomic
data. In [10] an algorithm was proposed for regulatory
networks of gene modules that combines information from
genome wide location and expression data sets. Constraint-
based Bayesian Structure Learning (BSL) techniques, namely,
(a) PC Algorithm, (b) Grow-shrink (GS) algorithm, and
(c) Incremental Association Markov Blanket (IAMB), were
used to model the functional relationships between genes
associated with differentiation potential of aged myogenic
progenitors in the form of acyclic networks from the clonal
expression profiles [11]. Attempts have been made not only to
determine functional relationship between individual genes
but also to measure functional relationship between gene
sets [12]. Many more similar studies can be cited. Microarray
gene expression data incorporating with other information
have been extensively used for predicting regulatory relation
between genes [13–15]. However it is logical to assume that
expression data contains information about various types of
functional relations between genes. In the present work we
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propose an approach for estimating integrated linear and
probabilistic relations between expression profiles of genes
and applied the concept to determine functional relations
between yeast genes solely based on gene expression data.The
proposed method successfully detected functionally related
gene pairs that sharemanyGO terms.Themethod also shows
promise to be utilized in the process of detecting regulatory
relations between genes.

2. Materials and Methods

2.1. Data Used in This Work. The data used in this work was
previously used in other works [16–19]. The data is a 2467 ×

79 matrix containing some missing values. Each data point
produced by a DNA microarray hybridization experiment
represents the log of the ratio of expression levels of a
particular gene under two different experimental conditions.
The result, from an experiment with 𝑛 genes on a single
chip, is a series of 𝑛 log-transformed expression-level ratios.
Typically, the numerator of each ratio is the expression level
of the gene in the varying condition of interest, whereas
the denominator is the expression level of the gene in some
reference condition. The expression measurement is positive
if the gene is induced (turned up)with respect to the reference
state and negative if it is repressed (turned down). The data
were collected at various time points during the diauxic shift,
the mitotic cell division cycle, sporulation, and temperature
and reducing shocks.

2.2.MissingValue Imputation. Inmicroarray gene expression
data missing values often occur due to various reasons, such
as insufficient resolution, image corruption, dust, or scratches
on the slide. Usually, microarray datasets are estimated to
havemore than 5%missing values and up to 90% of genes are
affected [20, 21]. The gene expression data considered in this
work contains 3760 missing values. The missing values were
filled based on principal component analysis (PCA) by using
the 𝑅 package pcaMethods [22]. Using PCA we can model
a matrix 𝑀 by defining two parameter matrices, the scores,
𝑇, and the loadings, 𝑃, such that when multiplied with each
other they well reconstruct the original matrix as follows:

𝑀 = 1 × 𝑚 + 𝑇𝑃

𝑡
+ 𝐸, (1)

where 𝐸 is the error matrix and 1 × 𝑚 denotes the original
variable averages. Now if 𝑀 contains missing values but 𝑃

and 𝑇 can be completely estimated, then we can use

̂

𝑀 = 1 × 𝑚 + 𝑇𝑃

𝑡 (2)

as an estimate for 𝑀
𝑖𝑗
if 𝑀
𝑖𝑗
is missing.

2.3. Digitization of Gene Expression Matrix. After missing
value imputation, let us denote the gene expression data
matrix as 𝑀. For each row of 𝑀 we calculate the average
and standard deviation. Let for the 𝑖th row the average and

Table 1: Nine joint probabilities calculated for each gene pair.

𝑎/𝑏 1 0 −1
1 𝑃(1, 1) 𝑃(1, 0) 𝑃(1, −1)
0 𝑃(0, 1) 𝑃(0, 0) 𝑃(0, −1)
−1 𝑃(−1, 1) 𝑃(−1, 0) 𝑃(−1, −1)

standard deviations be denoted as avg
𝑖
and sd

𝑖
. Now, the

digitized matrix 𝐷 is created as follows:

𝐷

𝑖𝑗
= 1 if 𝑀

𝑖𝑗
≥ avg

𝑖
+ th × sd

𝑖

𝐷

𝑖𝑗
= −1 if 𝑀

𝑖𝑗
≤ avg
𝑖
− th × sd

𝑖

𝐷

𝑖𝑗
= 0 otherwise.

(3)

In the above equations “th” is a threshold which should
be a real number and in most practical cases it is within 0
to 2. We digitized the data using the values of threshold “th”
as 0.5, 1, and 1.5. For each case the distribution of the genes
with respect to the count of 1 s in their profiles is shown in
Figure 1. In case of th = 0.5, the distribution approaches
roughly normal and we observed similar trend in case of −1.
Hence in this work we considered th = 0.5 for the digitization
of the gene expression data.

2.4. Probability Density Mass Function Table. Based on a dig-
itizedmatrix containing only 1, 0, and −1 a probability density
mass function table can be constructed corresponding to
each gene pair indicating nine joint probabilities as shown in
Table 1.

Any element of the above table𝑃(𝑘, 𝑘


) (corresponding to

two genes say, gene 𝑎 and gene 𝑏) where 𝑘, 𝑘


∈ {1, 0, −1} can

be calculated by assuming TRUE = 1 and FALSE = 0 in (4) as
follows:

𝑃 (𝑘, 𝑘


) =

∑

𝑁

𝑖=1
𝐷

𝑎𝑖
== 𝑘 AND 𝐷

𝑏𝑖
== 𝑘



𝑁

.

(4)

Here 𝑁 is the width of matrix 𝐷.
We assume that the joint probabilities of Table 1 and

corresponding conditional probabilities contain important
clues to estimate functional relations between genes.

2.5. Hypothesis. In this work we hypothesize that when gene
𝑎 is positively functionally related to gene 𝑏, then 𝑃(𝑏 = 1 |

𝑎 = 1) should be statistically high. Using Bayes rule we can
write 𝑃(𝑏 = 1 | 𝑎 = 1) = 𝑃(𝑎 = 1, 𝑏 = 1)/𝑃(𝑎 = 1). Now
if 𝑃(𝑎 = 1) is very small, then 𝑃(𝑏 = 1 | 𝑎 = 1) can be
very high and that can sometimes happen because of noisy
data. To avoid this problem we can consider 𝑃(𝑏 = 1, 𝑎 = 1)

as an indicator that gene 𝑎 is positively functionally related
to gene 𝑏. To further strengthen the case we consider that
when both 𝑃(𝑏 = 1, 𝑎 = 1) and 𝑃(𝑏 = 1, 𝑎 = 1) +

𝑃(𝑏 = 0, 𝑎 = 0) + 𝑃(𝑏 = −1, 𝑎 = −1) are statistically
significant then gene a and gene b are positively functionally
related. Considering other joint probability masses might be
useful for finding functional relations between some multi
function genes. By intuition we can realize that the sum of
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Figure 1: Distribution of the genes with respect to the count of 1 in their profiles in the context of the digitized matrix.
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Figure 2: Distribution of gene pairs in the context of (a) 𝑃(1, 1) and (b) LPRpos.

probabilities 𝑃(𝑏 = 1, 𝑎 = 1) + 𝑃(𝑏 = 0, 𝑎 = 0) + 𝑃(𝑏 =

−1, 𝑎 = −1) actually indicates an integrated measure of both
linear and probabilistic relations between the profiles of two
genes and this term will be referred to as positive linear
and probabilistic relation (LPRpos) in the following. To our
knowledge this is the first approach to measure similarity
between two multivariate entities based on joint probability
density masses in selected points giving emphasis on both
linear and probabilistic relations.

3. Results

3.1. Effectiveness of LPRpos. The distribution of all gene pairs
in the context of 𝑃(1, 1) is shown in Figure 2(a). The average

value of 𝑃(1, 1) is 0.0819. We calculated LPRpos for the gene
pairs for which 𝑃(1, 1) is larger than the average value.
The distribution of those gene pairs with respect to LPRpos
is shown in Figure 2(b). The average value of LPRpos is
0.429. Initially we selected the highest 1%, 2%, 3%, 4%, and
5% gene pairs from the distribution of Figure 2(b), that is,
gene pairs with higher LPRpos values, and determined the
number of GO terms [23] shared by both the genes of each
pair.

Figure 3(a) shows the percentage of selected gene pairs
that share at least 1, 2, and, 3 GO terms and also that of
equal number of randomly selected gene pairs. In the context
of minimum number of shared GO terms the percentage of
selected gene pairs is always much higher compared to that
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Figure 3: (a) 𝑥-axis is percentage of gene pairs of the distribution of Figure 2(b) selected based on higher LPRpos values and 𝑦-axis is
percentage of selected gene pairs that share at least 1, 2, or 3 GO terms. Empty markers correspond to gene pairs selected by the proposed
method and filledmarkers corresponding to equal number of randomly selected gene pairs. (b) Actual number of GO terms shared by selected
and random gene pairs corresponding to the 1% point of (a).

of randomly selected pairs. Figure 3(a) further shows that
the higher the lower cutoff value of LPRpos for a group of
gene pairs is, the higher proportion of the gene pairs share
common GO terms. To further illustrate the result we show
in Figure 3(b) the actual number of shared GO terms for
the highest 1% selected gene pairs and the equal number of
random gene pairs which implies that the gene pairs selected
based on LPRpos share much more GO terms. Thus LPRpos
is a good measure to determine functional relation between
genes.

3.2. FDR Analysis. We conducted FDR (false discovery rate)
[24, 25] analysis to statistically assess the false positive rates
among the selected gene pairs based on LPRpos. For each
pair of genes for which 𝑃(1, 1) is above average we did the
following.

(i) The numbers of 1 s, 0 s, and −1 s in the digital profile
of both genes are counted.

(ii) Random profiles of both the genes are constructed by
randomly imputing the same numbers of 1 s, 0 s, and
−1 s. This process is repeated 100 times.

(iii) Then, 𝐶(1, 1), 𝐶(0, 0), and 𝐶(−1, −1) are calculated
for both real and random profile pairs. 𝐶(𝑘, 𝑘){𝑘 ∈

1, 0, −1} is the total number of profile points for which
the expression level of both genes is 𝑘. In case of
random profiles the average values corresponding 100
random profile pairs were considered.

(iv) A chi-square value is calculated as follows where𝑁 is
the width of the expression matrix:

𝜒

2
= [ ∑

𝑘=1,0,−1

{𝐶(𝑘, 𝑘)real − 𝐶 (𝑘, 𝑘)random}

2

𝐶 (𝑘, 𝑘)random
]

+

{∑

𝑘=1,0,−1
𝐶 (𝑘, 𝑘)real − ∑

𝑘=1,0,−1
𝐶 (𝑘, 𝑘)random}

2

𝑁 − ∑

𝑘=1,0,−1
𝐶 (𝑘, 𝑘)random

.

(5)

(v) Based on the chi-square value, a 𝑃-value for the
gene pair is determined using 𝑅 statistical soft-
ware. Note that LPRpos is directly proportional to
∑

𝑘=1,0,−1
𝐶(𝑘, 𝑘)real.

Figure 4(a) shows the distribution of the gene pairs with
respect to the𝑃-values with a𝑃-value interval of 0.05. For any
given cutoff 𝑃-value the FDR is calculated as follows:

FDR

=

(Total # of gene pairs) × (𝑃-value)cut-off
# of gene pairs with 𝑃-value less than (𝑃-value)cut-off

.

(6)

Figure 4(b) shows the plot of FDR with respect to cutoff
𝑃-values. As the cutoff 𝑃-value decreases, FDR decreases
rapidly and becomes roughly constant at 𝑃-value of 0.001.
There are 25559 gene pairs for which the 𝑃-value is less than
0.001.

3.3. Network andModules of the SelectedGene Pairs. Based on
the FDR analysis of the above section, we selected 25559 gene
pairs having highest LPRpos values. Such selected gene pairs
make a network consisting of 2131 nodes.Wedetermined high
densitymodules in that network using the network clustering
algorithm DPClusO [26] and found 1154 modules of size 3
ormore (see Supplementary File 1 in supplementarymaterial
available online at http://dx.doi.org/10.1155/2014/154594).

3.3.1. Richness of Similar Function Genes. To evaluate the
richness of similar function genes in the modules we
calculated their hypergeometric 𝑃-values by using the 𝑅

package GOstats [27] in the context of all three types of
GO terms: biological process (BP), cellular compartment
(CC), and molecular function (MF). Figures 5(a), 5(b), and
5(c) show the distribution of the modules with respect to

http://dx.doi.org/10.1155/2014/154594
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Figure 4: (a) Distribution of the gene pairs with respect to the 𝜒-square 𝑃-values. (b) Plot of FDR with respect to cutoff 𝑃-values.
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Figure 5: Distribution of the modules with respect to −log(𝑃-value). 𝑃-values determined in the context of all three types of GO terms (a)
biological process (BP), (b) molecular function (MF), and (c) cellular compartment (CC). The lower part of each graph is enlarged in the
insets.

−log(𝑃-value) which implies that almost all the modules
are statistically significant. We selected 10 lowest 𝑃-value
clusters corresponding to different GO terms from each
of the three distributions of Figure 5 and their set union
resulted in 22 clusters. Some biological information from the
SGD database [28] about those 22 clusters is summarized
in Table 2. Column 3 in Table 2 shows the 𝑃-values and
corresponding GO terms determined by GOstats. Column
4 in Table 2 shows other GO terms retrieved from SGD
database associated to the clusters covering many genes
which implies that almost all the genes of each of the
clusters could be associated to important GO terms which

confirms the fact that the proposed method is a promising
way to establish functional relation between genes based on
expression data.

3.3.2. Richness of Similar Binding Sites. Furthermore to verify
the presence of similar binding sites in the promoters of
the genes included in individual modules we used the
tool PRIMA (PRomoter Integration in Microarray Analysis)
[29] from the software package EXPANDER [30]. Total 180
modules were found to have 𝑃-values less than 10−3 in the
context of binding site enrichment of 57 various transcription
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Table 2: Richness of similar function genes in selected clusters. For each cluster, hypergeometric 𝑃-values, corresponding GO terms, and
also the actual number of genes of a particular function are indicated.

CID Total number of genes 𝑃-value/GO ID
(From GOstats result)

Some relevant GO terms (corresponding number of genes)
(From SGD database)

4 97
1.20𝐸 − 131/GO:0022626 (CC)
2.62𝐸 − 117/GO:0002181 (BP)
4.80𝐸 − 129/GO:0003735 (MF)

Cytosolic ribosome (94), structural constituent of ribosome
(94), cytoplasmic translation (93), ribosome (96)

16 76 6.42𝐸 − 24/GO:0044391 (CC)
7.23𝐸 − 17/GO:0006412 (BP) Ribosomal subunit (37), structural molecule activity (38)

19 73
3.29𝐸 − 23/GO:0030529 (CC) Ribonucleoprotein complex (47), intracellular part (73)

226 8 1.50𝐸 − 20/GO:0000788 (CC)
1.93𝐸 − 14/GO:0006333 (BP) Nuclear nucleosome (8), DNA bending complex (8)

1 113
1.42𝐸 − 17/GO:0042254 (BP) Cellular metabolic process (104), intracellular part (109)

44 34
2.89𝐸 − 16/GO:0005840 (CC) Cytosolic part (21), cytoplasm (34)

35 44
3.35𝐸 − 16/GO:0010467 (BP) Gene expression (41), primary metabolic process (43)

85 17
4.76𝐸 − 14/GO:0044429 (CC) Mitochondrial part (14), mitochondrion (16)

155 11 6.28𝐸 − 14/GO:0051082 (MF)
4.97𝐸 − 13/GO:0006457 (BP)

Protein folding (9), protein binding (11), cellular protein
metabolic process (10)

278 7
3.00𝐸 − 13/GO:0000502 (CC) Proteasome complex (7), proteasome storage granule (5)

87 16
5.26𝐸 − 13/GO:0005730 (CC) Nucleolus (12), non-membrane-bounded organelle (14)

107 14
1.97𝐸 − 12/GO:0007005 (BP) Mitochondrion organization (12), cellular component

organization (13)

121 13
5.32𝐸 − 12/GO:0006094 (BP) Glycolysis (7), generation of precursor metabolites and

energy (9)

442 5
1.55𝐸 − 11/GO:0022904 (BP) Mitochondrial respiratory chain (5), oxidoreductase complex

(5)

173 10 1.56𝐸 − 11/GO:0006457 (BP)
2.58𝐸 − 08/GO:0051082 (MF)

Protein folding (7), unfolded protein binding (5), protein
binding (8)

282 7
5.58𝐸 − 11/GO:0004298 (MF)

Modification-dependent protein catabolic process (7),
roteasomal ubiquitin-independent protein catabolic process
(5)

71 15
5.90𝐸 − 11/GO:0005840 (CC) Ribosome (13), ribonucleoprotein complex (14)

725 3
1.61𝐸 − 09/GO:0003993 (MF) Acid phosphatase activity (2)

214 9
2.88𝐸 − 09/GO:0008121 (MF) Hydrogen ion transmembrane transporter activity (5),

single-organism metabolic process (7)
736 3

4.03𝐸 − 09/GO:0004067 (MF) Asparaginase activity (3)
1092 3

2.26𝐸 − 08/GO:0015002 (MF) Heme-copper terminal oxidase activity (3)
270 7

2.32𝐸 − 08/GO:0015078 (MF) Ion transmembrane transporter activity (6)

Table 3: Richness of binding sites in the promoters of the module genes corresponding to 10 different transcription factors.

CID Size TF Number of Promo. (PRIMA) 𝑃-value Known regulatory relations
(YEASTRACT)

3 98 YP00066 [SFP1] 58 2.82𝐸 − 42 98
5 95 M00213 [RAP1] 55 3.82𝐸 − 28 93
72 18 YP00036 [MBP1] 10 4.40𝐸 − 12 12
155 11 M00169 [HSF] 7 2.38𝐸 − 09 11
230 8 YP00068 [SIP4] 5 7.89𝐸 − 09 4
227 8 YP00064 [RPN4] 8 1.01𝐸 − 08 8
725 3 M00064 [PHO4] 3 1.08𝐸 − 08 3
259 7 YP00076 [STB1] 5 8.97𝐸 − 08 2
736 3 YP00013 [DAL82] 3 3.65𝐸 − 07 0
233 8 YP00043 [MSN4] 8 1.03𝐸 − 06 7
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factors. The enrichment table generated by EXPANDER is
in supplementary material (Supplementary Table 1). Table 3
shows information about 10modules corresponding to lowest
𝑃-values involving 10 different transcription factors. We
downloaded a list of known regulatory relations from the
YEASTRACT database [31] and verified whether the genes
in a module have regulatory relation with the associated
transcription factor. Column 6 of Table 3 shows that a large
number of genes in individual modules are already reported
to be regulated by the corresponding transcription factor.
Only in case of CID736, though all 3 genes contain in their
promoters the binding site of the transcription factor DAL82,
no regulatory relation between those genes is reported in
the YEASTRACT database presently. However based on our
analysis regulatory relations between DAL82 and those three
genes may be predicted. Thus the proposed measure can also
be integrated to other types of information for developing a
method to predict regulatory relations between genes which
is one of our future works.

4. Conclusions

In this work we propose a novel measure to determine
functional relation between genes based on gene expression
data. The present approach first digitizes the log-ratio type
gene expression data to a matrix consisting of 1, 0, and −1
indicating highly expressed, no major change and highly
suppressed conditions for genes, respectively. Then a prob-
ability density mass function table is constructed indicating
nine joint probabilities for each pair of genes. Those pairs
of genes were considered as functionally related for which
the sum of probability density masses in selected points
are statistically significant. We applied the method to a
sample gene expression data of S. cerevisiae. It was found
that substantial majority of the selected gene pairs share
many GO terms. Also the network consisting of the selected
gene pairs contains high density modules. It was shown
that those modules were rich with similar function genes.
Furthermore, it was verified that for many modules many
of the genes contain similar binding sites in their promoters
corresponding to known transcription factors of yeast and
those transcription factors are known regulators of many of
the genes in the corresponding module. Above all this work
introduces a new approach for simultaneously measuring
both linear and probabilistic relations between multivariate
entities which is useful for handlingmultivariate data and big
data biology.
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