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On non‑Kolmogorov turbulence 
in blood flow and its possible role 
in mechanobiological stimulation
Khalid M. Saqr* & Iham F. Zidane

The study of turbulence in physiologic blood flow is important due to its strong relevance to 
endothelial mechanobiology and vascular disease. Recently, Saqr et al. (Sci Rep 10, 15,492, 2020) 
discovered non‑Kolmogorov turbulence in physiologic blood flow in vivo, traced its origins to the 
Navier–Stokes equation and demonstrated some of its properties using chaos and hydrodynamic‑
stability theories. The present work extends these findings and investigates some inherent 
characteristics of non‑Kolmogorov turbulence in monoharmonic and multiharmonic pulsatile flow 
under ideal physiologic conditions. The purpose of this work is to propose a conjecture for the origins 
for picoNewton forces that are known to regulate endothelial cells’ functions. The new conjecture 
relates these forces to physiologic momentum‑viscous interactions in the near‑wall region of the flow. 
Here, we used high‑resolution large eddy simulation (HRLES) to study pulsatile incompressible flow in 
a straight pipe of L/D = 20 . The simulations presented Newtonian and Carreau–Yasuda fluid flows, at 
Re

m
≈ 250 , each represented by one, two and three boundary harmonics. Comparison was established 

based on maintaining constant time‑averaged mass flow rate in all simulations. First, we report the 
effect of primary harmonics on the global power budget using primitive variables in phase space. 
Second, we describe the non‑Kolmogorov turbulence in frequency domain. Third, we investigate the 
near‑wall coherent structures in time and space domains. Finally, we propose a new conjecture for the 
role of turbulence in endothelial cells’ mechanobiology. The proposed conjecture correlates near‑wall 
turbulence to a force field of picoNewton scale, suggesting possible relevance to endothelial cells 
mechanobiology.

The heart, as a positive displacement pump, drives arterial flow by a multiharmonic pressure waveform that is 
known to correlate with physiologic and pathologic processes and  conditions1–4. Downstream from the heart, as 
blood flows through the anatomically sophisticated arterial  network5, it exhibits complex hemodynamic features 
such as coherent  structures6, helical flow (i.e. swirl)7,8, and wave reflection and  attentuation9.

The circle of Willis represents one of the most complex hemodynamic  environments10 with its highly three-
dimensional and intricately branching  morphology11,12. Studies addressing the hemodynamics of the circle of 
Willis have been primarily motivated by the need to understand its role in neurovascular disease conditions such 
as intracranial aneurysm (IA)13 and carotid stenosis (CS)14,15. Intracranial hemodynamics is a key element in  
neurovascular disease models  and is known to be of influential role in degenerative vascular  mechanisms16,17. The 
mechanobiological paradigm of such disease model is based on the endothelial mechanosensory  functions18–20 
that regulates inflammatory and atherogenic  mechanisms21,22.

While in vivo measurement techniques reveal important information about vascular hemodynamics, they 
lack sufficient spatiotemporal resolution required to explain the biologically relevant flow characteristics. Com-
putational Fluid Dynamics (CFD) offers an efficient framework to simulate vascular hemodynamics in silico by 
solving the notoriously difficult Navier–Stokes  equation23–25. Similar with other CFD application areas, numerous 
simplifications are often adopted in vascular hemodynamics to solve the latter equation successfully and efficiently.

In a  review and meta-analysis of 1733 published studies, Saqr et al.26 showed that over 60%, 90% and 95% 
of IA CFD studies assumed steady, Newtonian or laminar flow, respectively. These assumptions challenge our 
understanding of the intracranial hemodynamic environment. In addition, the major independent flow field 
variable used to characterize vascular hemodynamics is wall shear stress (WSS)27,28. As represented in the general 
form of Navier–Stokes equation, WSS is a scalar-tensor  field29 and its magnitude is calculated as the product of 
the symmetric elements of the stress tensor and viscosity. Therefore, WSS is not sufficient to parametrize vascular 
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 hemodynamics26 in situ hence nor to efficiently link hemodynamic characteristics with endothelial mechanosen-
sory. That is why the correlation between WSS information and pathologic endothelial mechanotransduction 
remain controversial and  debatable30–33.

A research gap can be clearly identified in the works demonstrating endothelial mechanosensory due to flow 
 directionality34,  regime35 and  harmonics36, which cannot be correctly represented by a scalar-tensor field  such 
as WSS. In fact, there are numerous studies demonstrating the role of turbulence in promoting proinflammatory 
pathways in the vascular  endothelium37–39 which cannot find explanatory frame using WSS, as demonstrated 
when similar WSS values were applied under laminar flow  conditions40. To that end, and to the best of the authors’ 
knowledge, there have been no attempts so far to suggest alternative fundamental hemodynamic basis for para-
metrizing and characterizing endothelial mechanobiology. This article is another step in the way of proposing a 
future research agenda in this important field.

The Kolmogorov–Obukhov theory of turbulence assumes stationary, homogenous, and isotropic decay of 
turbulence kinetic energy. Multiharmonic pulsatile flow, by definition, is not subject to such assumptions, and 
in physiologic settings, particularly in arteries, it is further excluded from such assumptions due to the non-
Newtonian whole blood viscosity. The term non-Kolmogorov turbulence is well known in metrology where it is 
used to describe some atmospheric turbulence regimes. There is no unified theory to describe spatiotemporal 
statistics of non-Kolmogorov turbulence until today. The term is borrowed here to describe the regime(s) of 
turbulence observed in multiharmonic pulsatile flow where anisotropy, coherent structures and intermittent 
events do not follow the Kolmogorov–Obukhov theory.

Recently, Saqr et al.41 showed that physiologic blood flow is by definition turbulent and explained how its 
regime of turbulence go beyond the Kolmogorov–Obukhov theory of homogenous isotropic turbulence. A 
direct implication of such work is the necessity of developing new hemodynamic variables that can parametrize 
endothelial mechanosensory with respect to the characteristics of blood turbulence. To achieve this, such rarely 
studied regime of turbulence should be characterized first. This work is an attempt to do so by means of high 
resolution Large Eddy Simulation that has recently showed excellent performance in investigating intracranial 
hemodynamics associated with transient ischemic  attack42, carotid  stenosis43 and cerebral  aneurysm44,45. The 
main objective of this work was to investigate the effects of primary blood waveform harmonics on hemodynam-
ics  and turbulence characteristics. The secondary objective was to qualitatively describe the near-wall turbulence 
region and correlate it with the picoNewton forces that are related to endothelial mechanosensory.

Methods: high resolution large eddy simulation
Six CFD simulations comprising a Newtonian and a non-Newtonian sets, each presenting three sets of boundary 
condition representing different primary harmonics, were solved using Large Eddy Simulation (LES) with the 
wall-adaptive local Eddy-viscosity (WALE) subgrid model on structured Cartesian grid with central-differencing 
spatial discretization and second order implicit time stepping, as reported previously by Rashad et al.42. The 
Courant number in all reported cases was maintained below unity. Eight pulses were solved, three pulses were 
discarded and five were analyzed for each simulation case. Simulations were carried out on 8-core Intel Core 
i7 computing node with 32 GB RAM and each case produced 300 GB of data and consumed approximately 
156 CPU-hours. Spatial convergence was ensured at each time step with absolute residuals below 10−5 for the 
velocity and pressure and 10−6 for turbulent viscosity fields. The models were implemented and solved using 
OpenFOAM  v210646.

Governing equations. The present computational work solves filtered Navier–Stokes equation that can be 
expressed as:

where σij is the viscous stress tensor defined as:

and τij is the subgrid stress tensor defined for incompressible flow as:

where Sij ≡ 1
2
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)

 and µt is calculated from the Wall-Adaptive Local Eddy Viscosity  model47 that is 
expressed as:

where Ls and Sdij are the subgrid filter length and the traceless symmetric part of the square of the velocity gradi-
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(1)
∂ui

∂t
+

∂
(
uiuj

)

∂xj
=

∂σij

∂xj
−

∂p

∂xi
−

∂τij

∂xj

(2)σij ≡

[

µ

(
∂ui

∂xj
+

∂uj

∂xi

)]

−
2

3
µ
∂ui

∂xi
δij

(3)τij = −2µtSij

(4)µt = ρL2s

(

SdijS
d
ij

)3/2

(
SijSij

)5/2
(

S
d
ijS

d
ij

)

(5)Ls = min
(
kd,CwV

1/3
)



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13166  | https://doi.org/10.1038/s41598-022-16079-5

www.nature.com/scientificreports/

where gij is the velocity gradient tensor gij =
∂ui
∂xj

 and δij is the Cartesian Kronecker operator. The value of WALE 
constant Cw was taken as 0.325. The WALE model was chosen as it offers significant advantages in modeling 
wall-bounded turbulence compared to other mainstream SGS  models48.

The Newtonian models had a constant viscosity of 0.0035 pa.s while the non-Newtonian models had effective 
viscosity calculated via the Carreau–Yasuda  model49 expressed as:

where µ∞=0.0022 Pa.s, µ0=0.022 Pa.s, �=0.11 s, a=0.644, n = 0.392 according to Gijsen et al.50 and γ̇ is the local 
instantaneous shear rate magnitude.

It is noteworthy to mention here that the basis of comparison between the Newtonian and non-Newtonian 

models is the global value of the mean shear-dependent viscosity µ(x, t) =
∮

x

t=T∮

t=0

µ(x, t) , as shown in a recent 

study by  Saqr51. In all the six cases presented here, such value was found to be µ(x, t) = 0.0041 Pa.s, which is 
different than the Newtonian viscosity by 17.1%. In experimental  measurements52–54, similar, and sometimes 
higher, differences between Newtonian and non-Newtonian fluids can be generally accepted for comparing both 
viscous and inviscid invariants of the flow field. Therefore, the authors believe that it is an accepted variation 
margin in their computational work and the comparison is therefore representative of the empirical reality.

Boundary conditions. In the carotid artery, where 95% of blood flow harmonic frequencies are below 
12  Hz, the top three harmonics, in terms of amplitude, contain frequencies less than 6   Hz55. Therefore, the 
harmonics used in the present work were selected in the range of 1–4 Hz. A straight tube with L/D = 20 was 
designated to represent ideal flow in the cervical segment (C1) of the internal carotid artery. Boundary condi-
tions were set as a velocity inlet time series and constant pressure on the outlet. The velocity time series was 
expressed as:

where n refers to the waveform harmonic index indicating amplitude An and frequency fn = ωn/2π . The assump-
tion of parabolic velocity profile was skipped in the present work to allow the flow to form coherent structures in 
the near-wall region as it develops along the tube to mimic the structures formed due to morphological features 
such as tortuosity and  bifurcations42. The cases and corresponding boundary conditions are detailed in Table 1 
and the waveform harmonics are shown in Fig. 1.

The mean Reynolds number of the Newtonian and Carreau–Yasuda models was 265 and 228, respectively. 
Non-Newtonian mean Reynolds number was calculated using the generalized Metzner-Reed correlation. The 
values of the harmonic amplitude and frequency were determined such that the time-averaged flow rate at the 
boundary for all cases is kept constant at 435 ± 5% ml/s  to establish inertial basis for comparing the momentum-
viscous interactions, as shown later in the results and discussion.

Computational grid and LES quality assessment. In pulsatile blood flow, turbulence is generated due 
to intermittency resulting from the inherited nonlinearity of the primary harmonics as shown  analytically41 and 
 experimentally56,57. We have conducted a grid sensitivity test to estimate the required mesh resolution and to 
demonstrate the capabilities of our LES solution strategy.

The criteria proposed by  Pope58 was adopted as a measure for LES quality assessment. Such criteria defines 
M(xi , t) = Kres/Ktot as a scalar field that represents the ratio of resolved (Kres) to total (Ktot = Kres + KSGS) tur-
bulence kinetic energy in any LES solution, where subscripts res, SGS, tot represent resolved, sub-grid scale and 
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Table 1.  Details of the boundary conditions of the six LES cases as represented by Eq. (8). N and CY stand for 
Newtonian and Carreau–Yasuda models. The steady velocity component was fixed at: uo = 0.175m/s

Case

An(m/s), fn(Hz)

n = 1 n = 2 n = 3

1 N 0.1, 1 – –

1CY 0.1, 1 – –

2 N 0.1, 1 0.05, 2 –

2CY 0.1, 1 0.05, 2 –

3 N 0.1, 1 0.05, 2 0.025, 4

3CY 0.1, 1 0.05, 2 0.025, 4
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total turbulence kinetic energy, respectively. Pope showed that if such scalar is higher than 0.85, the LES solution 
could be deemed to represent the closest solution to a Direct Numerical Simulation (DNS).

Three computational grids (i.e. meshes) with cell count of 0.1, 0.5 and 1 million were created and solved with 
LES under five cycles of monoharmonic pulsatile flow conditions corresponding to Rem = 265 and 454, while −

M(xi , t) values were calculated  during runtime  as previously explained by the  authors42. Figure 2 shows the 
results of the grid sensitivity analysis. The minimum and maximum values of of 

−

M(xi , t) correspond to peak 
systole and minimum diastole conditions. It is shown that mesh2 and mesh3 achieve Pope’s criteria for both 
values of Rem with resolution of 0.5 and 1 million cells, respectively. The computing time for mesh3 was 2.1 times 
higher than such of mesh2. Therefore, mesh2 was selected to conduct the LES analysis. This grid had maximum 
y+ value of 0.14 during the solution of all cases.

Results and discussion
Three sets of results were analyzed from each simulation. Two datasets were obtained at two point stations, the 
first (C) is located on the centreline of the computational domain at an axial distance L/D = 10 from the inlet 
plane. The second station (NW) is at the same axial distance, however, located 10 μm from the wall. The third 
dataset was obtained as isovolumetric maps at mid-time, peak systolic, and minimum diastolic instances. The 
frequency analysis was initially conducted with a 1 kHz sampling rate and then resampled to 40 Hz to cut off 
energy levels below 10−16  m2/s2. The resampled datasets represent the frequencies covering 99.1% of the mass 
transfer process in all simulations and therefore they were used to present the results.

Hydrodynamic phase shift. In pulsatile flow, there is an inherent phase shift between velocity and 
 pressure57,59 due to the inertial effects that can be justified by comparing the terms ρV · ∇V  and ∇p under non-
zero acceleration conditions. Considerable efforts have been done to investigate such  phenomena60–62, however, 
most of the works investigated monoharmonic flows and Newtonian fluids.

In monoharmonic flow, the phase shift between pressure and velocity is uniform and constant,  depicting an 
elliptic  profile63. This is shown in Fig. 3 (top row). The phase shift is different from the center to the near-wall 
flow, due to the viscous effects at the wall. When a second harmonic is introduced to the flow, as shown in Fig. 3 
(middle row), the phase shift changes within the cycle forming the non-uniform kidney-shaped map shown in 
the figure. In the near-wall region, the non-uniformity is more evident. Adding a third harmonic brings irregu-
larity to the phase map, as shown in Fig. 3 (bottom row). In this case, the phase shift varies in more complex way 
creating three distinct features in the phase map that is  more skewed near the wall.

The phase shift variation indicates the nonlinear effects of adding a second, then a third, harmonic to the flow. 
The superposition of harmonics complicates the competition between inertia and pressure in space and time. 
The consequences of this phenomena on the biologically relevant flow dynamics could be fundamental. The area 
inside the phase map represents the local dimensionless work exerted in the system. Despite that the mass flow 
rate per cycle was maintained constant in all simulations, the Carreau–Yasuda models (YC) had 7–12% less work 
than the Newtonian models (N). In all cases, nevertheless, the system exerted more work in the near-wall (NW) 

Figure 1.  Boundary conditions waveforms presenting one harmonic (case 1 N/1CY), two harmonics (case 
2 N/2CY) and three harmonics (case 3 N/3CY) where the X and Y axis represent dimensionless time and 
velocity values for one pulse.
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region than in the center region (C), which can be explained by the significance of the viscous term µ(∇2V) in 
the near-wall region.

Turbulence kinetic energy and vortex breakdown. The turbulence kinetic energy (TKE) cascade was 
analyzed in the center and near-wall stations for the six models solved here. It was only possible to present the 
TKE cascade in frequency domain. This is because Taylor’s frozen turbulence hypothesis does not hold and 
there is no way of correlating time and length scales. Figure 4 shows the TKE cascade plots for monoharmonic 
flow (top row) and for pulsatile flow with two harmonics (middle row) and three harmonics (bottom row) for 
Newtonian and Carreau–Yasuda fluids.

Primary harmonics traces in TKE cascade. The primary harmonics (n1− n3) can be traced in the TKE cascade 
plots as spikes at the corresponding frequency values, as depicted in Fig. 4. The primary harmonics represent 
the source of kinetic energy that is provided to the flow while the secondary harmonics, depicted at frequencies 
other than the primary frequencies, represent the development of flow scales and structures. Comparing TKE 
cascade in the center and near-wall, it is observed that primary harmonics have 4 orders of magnitude difference 
between the two locations.

TKE cascade and scaling. In order to illustrate the features of the non-Kolmogorov turbulence reported here, 
it is vital to describe both the cascade (i.e. decay) as well as the levels (i.e. magnitude) of TKE.  In monohar-
monic pulsatile flow, Fig. 4 (top row), the TKE cascade depict a single plateau cascade with a magnitude-range 
from 10−1 to 10−11  m2/s2 at a slope corresponding to −5/3 in the center point of the flow. On the other hand, 
in the near-wall region, it is possible to observe two plateaus. The first has a slope corresponding to −3/2 and 
is bounded by the primary harmonic of 10−5  m2/s2 and 1 Hz and 10−12  m2/s2 and 8 Hz in magnitude and fre-
quency, respectively. The second plateau refers to small scale oscillations with a cascade slope corresponding to 
−7/10 and shows TKE oscillations ranging from 10−12  m2/s2 at 10 Hz to 10−15  m2/s2 at 30 Hz in magnitude and 
frequency, respectively, in the near wall region.

Adding one and two harmonics to the flow, as shown in Fig. 4 (middle and bottom rows, respectively) 
changes the TKE cascade, particularly in the near-wall region. The increasing difference between center (C) 
and near-wall (NW) TKE cascades, in terms of cascade slope, bounds, and magnitude, further demonstrate the 
non-Kolmogorov features of the turbulence field. The near-wall TKE cascade is characterized by an increase in 
the TKE oscillations magnitude at the frequency range of 10 ≤ f ≤ 30.

It is also important to note that the viscous effects appear only in the near-wall region where the Car-
reau–Yasuda fluid demonstrate less levels of energy, by approximately one order of magnitude, than the Newto-
nian fluid. In a physical sense, it means that the dissipation of TKE from inertial to viscous scales is more rapid 
in Carreau–Yasuda fluid. In the low-frequency range 1 ≤ f < 8 , viscous effects do not exist as the strain-rate is 
negligible compared to vorticity in large scales. The dominant effect of momentum transfer spans the primary 
harmonics range and replaces the Kolmogorov-inertial subrange commonly observed in fully developed turbu-
lence. In the case of three harmonics, however, there is an intermediate plateau appears after the third harmonic 
spike (n = 3) and brings an abrupt four-orders of magnitude drop in energy at 4 ≤ f ≤ 7 , as in Fig. 3 (bottom 
row). This effect is observed in the center (C) and near-wall (NW), however, with an evident quantitative differ-
ence between Newtonian and Carreau–Yasuda fluids in (NW).

Figure 2.  The minimum and maximum values of 
−

M(xi , t) on y-axis for computational grids of 0.1, 0.5 and 1 
million mesh cells for mesh1, mesh2 and mesh3, respectively.
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Near-wall coherent structures. In physiologic conditions, the irregularity and complex 3D morphology of the 
vascular network produce vortex structures in blood flow. Streamwise vortex structures are the dominant type 
of structures in  arteries64–66. To synthesize streamwise vortex structures in the present ideal model, flow was 
admitted to the computational domain with a plug-flow  profile67. Differential drag in the entrance region pro-
duced ring vortices of significant scales that propagates in streamwise direction and undergoes shedding and 
breakdown.

We used Q-criterion68 ( Q = 1
2

(
�ζ�2 − �S�2

)
 , where ζ and S are the vorticity and strain rate tensors) to 

investigate the qualitative features of coherent structures and their variation according to harmonics, viscosity, 
and cardiac cycle. Although it is important to investigate the coherent structures quantitatively, the authors 
could not find an appropriate method in literature and are currently developing one. In Fig. 5, iso-volumes of 
positive Q-criterion regions (0 < Q ≤ 0.02) are plotted with a colour map representing vorticity magnitude. 

Figure 3.  Non-dimensional phase diagrams of pulsatile flow showing the effect of harmonics (one, two and 
three harmonics depicted in the top, middle and bottom rows, respectively). Black and red lines indicate 
Newtonian (N) and Carreau–Yasuda (CY) fluid models, respectively. Spatial non-similarity is shown by 
comparing the phase diagrams obtained at a center point (left column) and a near-wall pint 10 µm from the wall 
(right column). Average values are calculated over one cycle for each simulation.
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These iso-volumes represent the near-wall persisting structures that form along the flow domain due to the 
breakdown on the entrance ring vortex. It is obvious that the effects of local acceleration, as represented by dif-
ferent instances (rows, right) of the cardiac cycle, control the vorticity field magnitude. It is also clear that the 
viscosity (N, CY, sub-rows left) has diminishing effect on the structure and magnitude of the near-wall structures. 
The number of harmonics affects the vorticity magnitude at the same instance of time ( n = 1, 2, 3 , columns). In 
minimum diastole, cases 2 N and 2CY exhibit near-zero vorticity field. In mid deceleration, cases 3 N and 3CY 
have approximately 20% increase in the vorticity magnitude compared to cases 1 N and 1CY.

Figure 4.  Turbulence Kinetic Energy E(f) cascade in frequency domain (f) at the center point (left column) and 
10 µm near-wall (right column). The depicted cascades present flows with one harmonic (n1), two harmonics 
(n1,n2) and three harmonics (n1,n2,n3) in the first, second and third rows, respectively. Black and red lines 
represent Newtonian and non-Newtonian fluids, respectively.
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Discussion
Experimental measurements carried out by Brindise and  Vlachos69 showed that blood flow turbulence is always 
generated at the wall. Their PIV measurements showed that hemodynamic turbulence depends on the boundary 
waveform (i.e. harmonics). Feaver et al70 showed that the blood flow harmonics regulate endothelial inflam-
mation, including NF-kB and downstream inflammatory phenotype. Molla et al71 used Large Eddy Simulation 
(LES) to study transitional pulsatile flow through a stenotic channel. They showed that TKE cascade slopes vary 
significantly from Kolmogorov’s scaling laws. Their work was later supported by Lancellotti et al72, Mancini 
et al73, Ozden et al74, and most recently by Saqr et al75.

Our results showed that boundary harmonics  play key-roles in the near-wall flow field by controlling TKE 
cascade and underlying vortex breakdown dynamics. The near-wall flow field is the hemodynamic environment 
of endothelial cells. Such environment  is conjectured to be  regulated by harmonics. Low frequency harmonics 
inherited from cardiac waveforms, mostly associated with coherent structures, regulate mass flow and quasi-
steady events related to kinetic energy dissipation and vortex breakdown. High frequency harmonics, generated 
in the flow from vortex breakdown, regulate viscous dissipation and its associated TKE cascade rates. Persisting 
near-wall coherent structures communicate a vortex force field to the wall that is lined with endothelial cells in 
physiologic conditions. The association between TKE intermittency and vortex breakdown is well documented 
in the literature of fully developed  turbulence76. However, there is no generalized exact mathematical definition 
for vortex breakdown while there is consensus that it can be generally described as sudden change in vortex 
 structure77. The generation and dissipation of a vortex is associated with the change of forces on the walls from 
where the vortex originates and can be expressed as fζ = ρ dI

dt where I is the Lamb vector I = V × ζ that balances 
the solenoidal part of the convective derivative V · ∇V = 1

2
∇V

2

︸︷︷︸
−V × ζ . The impulse of a vortex ring of a 

circulation Ŵ =
∫∫

Sζds and radius R has only one streamwise component that can be expressed as Mx = ρŴπR2 . 
If the time variation of the radius can be neglected with respect to the circulation variation, the vortex force 
becomes a function of the rate of change of circulation, as fζ ∼= ρπR2 dŴ

dt  . This vortex force is resulting from the 
local acceleration field ∂V

∂t  that is inherent in physiologic flows. In which, the vortex force produces a continuous 
 hammering78 localized onto the region of the tissues where the vortex develops. Such hammering can rationally 
be correlated with the cell-scale response to picoNewton  forces79.

While it is important to explore the coherent structures in vascular flows, it is important to realize that such 
exploration is still an open problem until  today80. Vascular flows produce surprisingly complex patterns in space 
and time such that fluid dynamicists have yet to find the perfect variables to study them. The use of Q-Criterion 
expresses the mainstream direction in the community where coherent structures are identified as persistent 
vortex rings and  formations81,82. However, attempts to provide better ways of visualizing coherent structures have 

Figure 5.  Iso-volumes of Q-criterion coloured by vorticity magnitude at (0 < Q ≤ 0.02, 0 ≤ �ζ� ≤ 500) 
for different harmonics ( n=1,2,3, columns) at different time instances of the cardiac cycle (rows, right) for 
Newtonian and non-Newtonian viscosity (N and CY, rows, left).
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been recently reported. Calò et al83 proposed, for the first time, a complex network based-approach to capture 
the large-scale coherent structures from 4D MRI imaging data of ascending aortic aneurysm (AAo). They dem-
onstrated how their complex networks approach could be useful to quantitatify in vivo the hemodynamic risk  of 
such fatal condition. It should also be noted that the integration of CFD-based hemodynamic markers is essential 
in developing next-generation personalized management systems and digital twins for cardiovascular patients.

Conclusion
This study compliments a growing body of literature by the author and other research teams exploring vascular 
hemodynamics beyond the WSS paradigm. Despite the invariance of time-averaged flow rate, harmonics was 
evidently shown to regulate both viscous and inviscid flow field variables of both Newtonian and non-Newtonian 
fluids. By increasing the number of harmonics, the power budget of the flow increased and a noticeable influence 
of viscosity on TKE cascade rates is found. The turbulence regime of the flow demonstrates non-Kolmogorov fea-
tures with observable differences between the near-wall and main flows, particularly in high-frequency regimes. 
The corresponding coherent structures were found to have vorticity magnitude regulated by harmonics. The 
authors find it reasonable to conclude that the resulting vortex force field, that corresponds to TKE energy levels 
within 10−11 − 10−15m2/s−2, regulates endothelial cells mechano-functions and represent a rational mechanis-
tic explanation of the cell-scale mechano-response to piconewton forces that has been previously reported in 
literature.

Data availability
Data would be made available upon request from the authors.

Received: 11 May 2022; Accepted: 4 July 2022

References
 1. Liao, C.-K. et al. Characteristics of harmonic indexes of the arterial blood pressure waveform in type 2 diabetes mellitus. Front. 

Bioeng. Biotechnol. https:// doi. org/ 10. 3389/ fbioe. 2020. 00638 (2020).
 2. Kuo, T.B.-J., Chern, C.-M., Sheng, W.-Y., Wong, W.-J. & Hu, H.-H. Frequency domain analysis of cerebral blood flow velocity 

and its correlation with arterial blood pressure. J. Cereb. Blood Flow Metab. 18, 311–318. https:// doi. org/ 10. 1097/ 00004 647- 19980 
3000- 00010 (1998).

 3. McVeigh, G. et al. Vascular abnormalities in non-insulin-dependent diabetes mellitus identified by arterial waveform analysis. 
Am. J. Med. 95, 424–430 (1993).

 4. Razavi, M. K., Flanigan, D. P. T., White, S. M. & Rice, T. B. A real-time blood flow measurement device for patients with peripheral 
artery disease. J. Vasc. Interv. Radiol. 32, 453–458 (2021).

 5. Zamir, M. On fractal properties of arterial trees. J. Theor. Biol. 197, 517–526 (1999).
 6. Shadden, S. C. & Taylor, C. A. Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36, 

1152–1162 (2008).
 7. Morbiducci, U. et al. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase 

contrast magnetic resonance imaging. Ann. Biomed. Eng. 37, 516 (2009).
 8. Morbiducci, U. et al. Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. 

Biomech. Model. Mechanobiol. 10, 339–355 (2011).
 9. Davies, J. E. et al. Attenuation of wave reflection by wave entrapment creates a “horizon effect” in the human aorta. Hypertension 

60, 778–785 (2012).
 10. Fahy, P. et al. An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries. J. 

Biomech. Eng. 136, 2 (2014).
 11. Alnæs, M. S. et al. Computation of hemodynamics in the circle of willis. Stroke 38, 2500–2505. https:// doi. org/ 10. 1161/ STROK 

EAHA. 107. 482471 (2007).
 12. Zhu, G., Yuan, Q., Yang, J. & Yeo, J. H. Experimental study of hemodynamics in the circle of willis. Biomed. Eng. Online 14, S10. 

https:// doi. org/ 10. 1186/ 1475- 925X- 14- S1- S10 (2015).
 13. Kayembe, K., Sasahara, M. & Hazama, F. Cerebral aneurysms and variations in the circle of Willis. Stroke 15, 846–850 (1984).
 14. Cassot, F., Zagzoule, M. & Marc-Vergnes, J.-P. Hemodynamic role of the circle of Willis in stenoses of internal carotid arteries. An 

analytical solution of a linear model. J. Biomech. 33, 395–405 (2000).
 15. Guanghui, D., Choi, K. S., Binghe, M., Tomonori, K. & Weizheng, Y. Transitional pulsatile flows with stenosis in a two-dimensional 

channel. Phys. Fluids 33, 34115. https:// doi. org/ 10. 1063/5. 00427 53 (2021).
 16. Lindegaard, K.-F. et al. Assessment of intracranial hemodynamics in carotid artery disease by transcranial Doppler ultrasound. J. 

Neurosurg. 63, 890. https:// doi. org/ 10. 3171/ jns. 1985. 63.6. 0890 (1985).
 17. Xiang, J. et al. Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011).
 18. Diagbouga, M. R., Morel, S., Bijlenga, P. & Kwak, B. R. Role of hemodynamics in initiation/growth of intracranial aneurysms. Eur. 

J. Clin. Invest. 48, e12992 (2018).
 19. Baratchi, S. et al. Molecular sensors of blood flow in endothelial cells. Trends Mol. Med. 23, 850–868 (2017).
 20. Nam, D. et al. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and 

atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 297, H1535–H1543 (2009).
 21. Nerem, R. M. Hemodynamics and the vascular endothelium. (1993).
 22. Korshunov, V. A., Schwartz, S. M. & Berk, B. C. Vascular remodeling: hemodynamic and biochemical mechanisms underlying 

Glagov’s phenomenon. Arterioscler. Thromb. Vasc. Biol. 27, 1722–1728 (2007).
 23. Shojima, M. & Saito, N. Translation of computational fluid dynamics study to neurosurgery. World Neurosurg. 83, 15–16. https:// 

doi. org/ 10. 1016/j. wneu. 2013. 07. 085 (2015).
 24. Strother, C. M. & Jiang, J. Intracranial aneurysms, cancer, X-rays, and computational fluid dynamics. Am. J. Neuroradiol. 33, 

991–992. https:// doi. org/ 10. 3174/ ajnr. A3163 (2012).
 25. Rouhi, A., Piomelli, U. & Vlachos, P. Numerical investigation of pulsatile flow in endovascular stents. Phys. Fluids 25, 091905. 

https:// doi. org/ 10. 1063/1. 48216 18 (2013).
 26. Saqr, K. M. et al. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical 

review. J. Cereb. Blood Flow Metab. 40, 1021–1039. https:// doi. org/ 10. 1177/ 02716 78X19 854640 (2020).
 27. Cecchi, E. et al. Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214, 249–256. https:// doi. org/ 10. 

1016/j. ather oscle rosis. 2010. 09. 008 (2011).

https://doi.org/10.3389/fbioe.2020.00638
https://doi.org/10.1097/00004647-199803000-00010
https://doi.org/10.1097/00004647-199803000-00010
https://doi.org/10.1161/STROKEAHA.107.482471
https://doi.org/10.1161/STROKEAHA.107.482471
https://doi.org/10.1186/1475-925X-14-S1-S10
https://doi.org/10.1063/5.0042753
https://doi.org/10.3171/jns.1985.63.6.0890
https://doi.org/10.1016/j.wneu.2013.07.085
https://doi.org/10.1016/j.wneu.2013.07.085
https://doi.org/10.3174/ajnr.A3163
https://doi.org/10.1063/1.4821618
https://doi.org/10.1177/0271678X19854640
https://doi.org/10.1016/j.atherosclerosis.2010.09.008
https://doi.org/10.1016/j.atherosclerosis.2010.09.008


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13166  | https://doi.org/10.1038/s41598-022-16079-5

www.nature.com/scientificreports/

 28. Dolan, J. M., Kolega, J. & Meng, H. High wall shear stress and spatial gradients in vascular pathology: A review. Ann. Biomed. Eng. 
41, 1411–1427. https:// doi. org/ 10. 1007/ s10439- 012- 0695-0 (2013).

 29. Saqr, K. M. Wall shear stress in the Navier-Stokes equation: A commentary. Comput. Biol. Med. 106, 82–83. https:// doi. org/ 10. 
1016/j. compb iomed. 2019. 01. 012 (2019).

 30. Rashad, S. et al. Epigenetic response of endothelial cells to different wall shear stress magnitudes: A report of new mechano-
miRNAs. J. Cell. Physiol. https:// doi. org/ 10. 1002/ jcp. 29436 (2020).

 31. Meng, H., Tutino, V. M., Xiang, J. & Siddiqui, A. High WSS or Low WSS? Complex interactions of hemodynamics with intracranial 
aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. Am. J. Neuroradiol. 35, 1254–1262. https:// doi. org/ 10. 
3174/ ajnr. A3558 (2014).

 32. Zălar, D.-M., Pop, C., Buzdugan, E., Todea, D. & Mogoșan, C. I. The atherosclerosis-inflammation relationship—a pathophysi-
ological approach. (2019).

 33. Eshtehardi, P. et al. High wall shear stress and high-risk plaque: An emerging concept. Int. J. Cardiovasc. Imaging 33, 1089–1099 
(2017).

 34. Wang, C., Baker, B. M., Chen, C. S. & Schwartz, M. A. Endothelial cell sensing of flow direction. Arterioscler. Thromb. Vasc. Biol. 
33, 2130–2136 (2013).

 35. Nakajima, H. & Mochizuki, N. Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 
16, 1893–1901 (2017).

 36. Feaver, R. E., Gelfand, B. D. & Blackman, B. R. Human haemodynamic frequency harmonics regulate the inflammatory phenotype 
of vascular endothelial cells. Nat. Commun. 4, 1–11 (2013).

 37. Kliche, K., Jeggle, P., Pavenstädt, H. & Oberleithner, H. Role of cellular mechanics in the function and life span of vascular endothe-
lium. Pflügers Arch.-Eur. J. Physiol. 462, 209–217 (2011).

 38. Li, M., Scott, D. E., Shandas, R., Stenmark, K. R. & Tan, W. High pulsatility flow induces adhesion molecule and cytokine mRNA 
expression in distal pulmonary artery endothelial cells. Ann. Biomed. Eng. 37, 1082–1092 (2009).

 39. Zhang, X. et al. Endothelial cell dysfunction and glycocalyx–A vicious circle. Matrix Biol. 71, 421–431 (2018).
 40. Rashad, S. et al. Epigenetic response of endothelial cells to different wall shear stress magnitudes: A report of new mechano-

miRNAs. J. Cell. Physiol. 235, 7827–7839. https:// doi. org/ 10. 1002/ jcp. 29436 (2020).
 41. Saqr, K. M. et al. Physiologic blood flow is turbulent. Sci. Rep. 10, 15492. https:// doi. org/ 10. 1038/ s41598- 020- 72309-8 (2020).
 42. Rashad, S., Saqr, K. M., Fujimura, M., Niizuma, K. & Tominaga, T. The hemodynamic complexities underlying transient ischemic 

attacks in early-stage Moyamoya disease: An exploratory CFD study. Sci. Rep. https:// doi. org/ 10. 1038/ s41598- 020- 60683-2 (2020).
 43. Mancini, V., Bergersen, A. W., Vierendeels, J., Segers, P. & Valen-Sendstad, K. High-frequency fluctuations in post-stenotic patient 

specific carotid stenosis fluid dynamics: A computational fluid dynamics strategy study. Cardiovasc. Eng. Technol. 10, 277–298 
(2019).

 44. Matsuda, T. et al. Modification of hemodynamics in basilar artery aneurysm by the single and Y stent placement. Technol. Health 
Care 25, 831–842 (2017).

 45. Brielle, C. L. S. A Qualitative Simulation of Blood Flow through an Elastic Cerebral Saccular Aneurysm Using an Immersed Boundary 
Method (Delaware State University, 2018).

 46. Jasak, H., Jemcov, A. & Tukovic, Z. in International workshop on coupled methods in numerical dynamics. 1–20 (IUC Dubrovnik 
Croatia).

 47. Nicoud, F. & Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 
62, 183–200. https:// doi. org/ 10. 1023/A: 10099 95426 001 (1999).

 48. de la Llave Plata, M., Couaillier, V. & Le Pape, M.-C. On the use of a high-order discontinuous Galerkin method for DNS and LES 
of wall-bounded turbulence. Comput. Fluids 176, 320–337 (2018).

 49. Panchal, P. M., Hathi, D. S., Shah, N. K. & Lakdawala, A. M. A numerical study on pulsatile non-Newtonian hemodynamics in 
double-fusiform abdominal aortic aneurysms. Phys. Fluids https:// doi. org/ 10. 1063/5. 00846 00 (2022).

 50. Gijsen, F. J., van de Vosse, F. N. & Janssen, J. The influence of the non-Newtonian properties of blood on the flow in large arteries: 
Steady flow in a carotid bifurcation model. J. Biomech. 32, 601–608 (1999).

 51. Saqr, K. M. Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic 
blood viscosity models. Proc. Inst. Mech. Eng. [H] 234, 711–719 (2020).

 52. Amaratunga, M., Rabenjafimanantsoa, H. A. & Time, R. W. Comparison of oscillatory flow conditions in Newtonian and non-
Newtonian fluids using PIV and high-speed image analysis. Flow Meas. Instrum. 70, 101628. https:// doi. org/ 10. 1016/j. flowm easin 
st. 2019. 101628 (2019).

 53. Moravia, A. et al. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid. J. 
Biomech. 130, 110899. https:// doi. org/ 10. 1016/j. jbiom ech. 2021. 110899 (2022).

 54. Dörner, P., Schröder, W. & Klaas, M. Experimental quantification of oscillating flow in finite-length straight elastic vessels for 
Newtonian and non-Newtonian fluids. Eur. J. Mech. B. Fluids 87, 180–195. https:// doi. org/ 10. 1016/j. eurom echflu. 2021. 02. 001 
(2021).

 55. Holdsworth, D., Norley, C., Frayne, R., Steinman, D. & Rutt, B. Characterization of common carotid artery blood-flow waveforms 
in normal human subjects. Physiol. Meas. 20, 219 (1999).

 56. Xu, D. et al. Nonlinear hydrodynamic instability and turbulence in pulsatile flow. Proc. Natl. Acad. Sci. 117, 11233–11239. https:// 
doi. org/ 10. 1073/ pnas. 19137 16117 (2020).

 57. Tupin, S., Saqr, K. M. & Ohta, M. Effects of wall compliance on multiharmonic pulsatile flow in idealized cerebral aneurysm models: 
comparative PIV experiments. Exp. Fluids 61, 1–11 (2020).

 58. Ten Pope, S. B. questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 35 (2004).
 59. McDonald, D. The relation of pulsatile pressure to flow in arteries. J. Physiol. 127, 533–552 (1955).
 60. Uchida, S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. Zeitschrift 

für angewandte Mathematik und Physik ZAMP 7, 403–422 (1956).
 61. Ponalagusamy, R. Role of pulsatility on blood flow in an arterial stenosis. Int. J. Math. Eng. Comput. 1, 21–26 (2010).
 62. Chang, W., Pu-Zhen, G., Si-Chao, T. & Chao, X. Theoretical analysis of phase-lag in low frequency laminar pulsating flow. Prog. 

Nucl. Energy 58, 45–51 (2012).
 63. Yakhot, A. & Grinberg, L. Phase shift ellipses for pulsating flows. Phys. Fluids 15, 2081–2083. https:// doi. org/ 10. 1063/1. 15801 23 

(2003).
 64. Kazemi, A., Nath, R., Negahdar, M. J., Stodddard, M. & Amini, A. 4D flow MRI and CFD simulations of pulsatile flow in a phantom 

model of arterial stenosis: visualizing the vortex dynamics. Vol. 11600 MI (SPIE, 2021).
 65. Biasetti, J., Hussain, F. & Gasser, T. C. Blood flow and coherent vortices in the normal and aneurysmatic aortas: A fluid dynamical 

approach to intra-luminal thrombus formation. J. R. Soc. Interface 8, 1449–1461. https:// doi. org/ 10. 1098/ rsif. 2011. 0041 (2011).
 66. Bulusu, K. & Plesniak, M. Insights on arterial secondary flow structures and vortex dynamics gained using the MRV technique. 

Int. J. Heat Fluid Flow 73, 143–153. https:// doi. org/ 10. 1016/j. ijhea tflui dflow. 2018. 08. 002 (2018).
 67. Cox, C. & Plesniak, M. W. The effect of entrance flow development on vortex formation and wall shear stress in a curved artery 

model. Phys. Fluids 33, 101908. https:// doi. org/ 10. 1063/5. 00625 65 (2021).
 68. Dubief, Y. & Delcayre, F. On coherent-vortex identification in turbulence. J. Turbul. 1, 011 (2000).

https://doi.org/10.1007/s10439-012-0695-0
https://doi.org/10.1016/j.compbiomed.2019.01.012
https://doi.org/10.1016/j.compbiomed.2019.01.012
https://doi.org/10.1002/jcp.29436
https://doi.org/10.3174/ajnr.A3558
https://doi.org/10.3174/ajnr.A3558
https://doi.org/10.1002/jcp.29436
https://doi.org/10.1038/s41598-020-72309-8
https://doi.org/10.1038/s41598-020-60683-2
https://doi.org/10.1023/A:1009995426001
https://doi.org/10.1063/5.0084600
https://doi.org/10.1016/j.flowmeasinst.2019.101628
https://doi.org/10.1016/j.flowmeasinst.2019.101628
https://doi.org/10.1016/j.jbiomech.2021.110899
https://doi.org/10.1016/j.euromechflu.2021.02.001
https://doi.org/10.1073/pnas.1913716117
https://doi.org/10.1073/pnas.1913716117
https://doi.org/10.1063/1.1580123
https://doi.org/10.1098/rsif.2011.0041
https://doi.org/10.1016/j.ijheatfluidflow.2018.08.002
https://doi.org/10.1063/5.0062565


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13166  | https://doi.org/10.1038/s41598-022-16079-5

www.nature.com/scientificreports/

 69. Brindise, M. C. & Vlachos, P. P. Pulsatile pipe flow transition: Flow waveform effects. Phys. Fluids https:// doi. org/ 10. 1063/1. 50214 
72 (2018).

 70. Feaver, R. E., Gelfand, B. D. & Blackman, B. R. Human haemodynamic frequency harmonics regulate the inflammatory phenotype 
of vascular endothelial cells. Nat. Commun. 4, 1525. https:// doi. org/ 10. 1038/ ncomm s2530 (2013).

 71. Molla, M. M., Wang, B. & Kuhn, D. C. S. Numerical study of pulsatile channel flows undergoing transition triggered by a modelled 
stenosis. Phys. Fluids https:// doi. org/ 10. 1063/1. 47716 04 (2012).

 72. Lancellotti, R. M., Vergara, C., Valdettaro, L., Bose, S. & Quarteroni, A. Large eddy simulations for blood dynamics in realistic 
stenotic carotids. Int. J. Numer. Methods Biomed. Eng. https:// doi. org/ 10. 1002/ cnm. 2868 (2017).

 73. Mancini, V., Bergersen, A. W., Vierendeels, J., Segers, P. & Valen-Sendstad, K. High-frequency fluctuations in post-stenotic patient 
specific carotid stenosis fluid dynamics: A computational fluid dynamics strategy study. Cardiovasc. Eng. Technol. https:// doi. org/ 
10. 1007/ s13239- 019- 00410-9 (2019).

 74. Ozden, K., Yazicioglu, Y. & Sert, C. Simulation of turbulence induced sound generation inside stenosed femoral artery models 
with different severities and eccentricities. Comput. Methods Programs Biomed. 208, 106253. https:// doi. org/ 10. 1016/j. cmpb. 2021. 
106253 (2021).

 75. Saqr, K. M. et al. Non-Kolmogorov turbulence in carotid artery stenosis and the impact of carotid stenting on near-wall turbulence. 
AIP Adv. 12, 015124. https:// doi. org/ 10. 1063/5. 00762 71 (2022).

 76. Oberleithner, K., Paschereit, C. O., Seele, R. & Wygnanski, I. Formation of turbulent vortex breakdown: Intermittency, criticality, 
and global instability. AIAA J. 50, 1437–1452 (2012).

 77. Pierro, B. D. & Abid, M. Energy spectra in a helical vortex breakdown. Phys. Fluids 23, 025104. https:// doi. org/ 10. 1063/1. 35534 
66 (2011).

 78. Pedrizzetti, G. Fluid Mechanics for Cardiovascular Engineering: A Primer. (Springer International Publishing AG, 2021).
 79. Harlepp, S., Thalmann, F., Follain, G. & Goetz, J. G. Hemodynamic forces can be accurately measured in vivo with optical tweezers. 

Mol. Biol. Cell 28, 3252–3260. https:// doi. org/ 10. 1091/ mbc. e17- 06- 0382 (2017).
 80. Darwish, A., Norouzi, S., Labbio, G. D. & Kadem, L. Extracting Lagrangian coherent structures in cardiovascular flows using 

Lagrangian descriptors. Phys. Fluids 33, 111707. https:// doi. org/ 10. 1063/5. 00640 23 (2021).
 81. Vergara, C., Le Van, D., Quadrio, M., Formaggia, L. & Domanin, M. Large eddy simulations of blood dynamics in abdominal 

aortic aneurysms. Med. Eng. Phys. 47, 38–46 (2017).
 82. Gülan, U. et al. Investigation of atrial vortices using a novel right heart model and possible implications for atrial thrombus forma-

tion. Sci. Rep. 7, 16772. https:// doi. org/ 10. 1038/ s41598- 017- 17117-3 (2017).
 83. Calò, K. et al. Combining 4D flow MRI and complex networks theory to characterize the hemodynamic heterogeneity in dilated 

and non-dilated human ascending aortas. Ann. Biomed. Eng. 49, 2441–2453. https:// doi. org/ 10. 1007/ s10439- 021- 02798-9 (2021).

Author contributions
K.S. conceived the study, designed the methodology and planned the parametric study. I.Z. conducted the CFD 
setup and simulations. K.S. & I.Z. conducted the verification and LES grid quality assessment. K.S. & I.Z. inter-
preted the results and conducted the post-processing. K.S. wrote the manuscript.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in coopera-
tion with The Egyptian Knowledge Bank (EKB).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to K.M.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1063/1.5021472
https://doi.org/10.1063/1.5021472
https://doi.org/10.1038/ncomms2530
https://doi.org/10.1063/1.4771604
https://doi.org/10.1002/cnm.2868
https://doi.org/10.1007/s13239-019-00410-9
https://doi.org/10.1007/s13239-019-00410-9
https://doi.org/10.1016/j.cmpb.2021.106253
https://doi.org/10.1016/j.cmpb.2021.106253
https://doi.org/10.1063/5.0076271
https://doi.org/10.1063/1.3553466
https://doi.org/10.1063/1.3553466
https://doi.org/10.1091/mbc.e17-06-0382
https://doi.org/10.1063/5.0064023
https://doi.org/10.1038/s41598-017-17117-3
https://doi.org/10.1007/s10439-021-02798-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	On non-Kolmogorov turbulence in blood flow and its possible role in mechanobiological stimulation
	Methods: high resolution large eddy simulation
	Governing equations. 
	Boundary conditions. 
	Computational grid and LES quality assessment. 

	Results and discussion
	Hydrodynamic phase shift. 
	Turbulence kinetic energy and vortex breakdown. 
	Primary harmonics traces in TKE cascade. 
	TKE cascade and scaling. 
	Near-wall coherent structures. 


	Discussion
	Conclusion
	References


