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Abstract: Cerebrovascular and neurodegenerative disorders affect one billion people around the
world and result from a combination of genomic, epigenomic, metabolic, and environmental
factors. Diagnosis at late stages of disease progression, limited knowledge of gene biomarkers
and molecular mechanisms of the pathology, and conventional compounds based on symptomatic
rather than mechanistic features, determine the lack of success of current treatments, including current
FDA-approved conventional drugs. The epigenetic approach opens new avenues for the detection of
early presymptomatic pathological events that would allow the implementation of novel strategies in
order to stop or delay the pathological process. The reversibility and potential restoring of epigenetic
aberrations along with their potential use as targets for pharmacological and dietary interventions
sited the use of epidrugs as potential novel candidates for successful treatments of multifactorial
disorders involving neurodegeneration. This manuscript includes a description of the most relevant
epigenetic mechanisms involved in the most prevalent neurodegenerative disorders worldwide,
as well as the main potential epigenetic-based compounds under investigation for treatment of those
disorders and their limitations.

Keywords: Alzheimer’s disease (AD), DNA methyltransferase inhibitors/activators; histone
acetyltransferase activators/inhibitors; Histone deacetylase inhibitors; histone methyltransferase
inhibitors; histone demethylase inhibitors; non-coding RNAs; Parkinson’s disease (PD), sirtuin activators

1. Introduction

Brain disorders with a vascular and/or neurodegenerative component affect one billion people
worldwide, according to the World Health Organization. Most of these pathologies share an onset
of dementia. Disability caused by dementia increases dramatically with aging, by affecting 9 per
1000 of the population aged 65 to 74 years to 83 per 1000 in the population over 85 years old [1].
Alzheimer’s disease (AD) is the major cause of dementia in Western countries, affecting 45 to 60%
of the population, followed by vascular dementia and mixed dementia with prevalences of 30 to
40% and 10 to 20%, respectively [2,3]. Alzheimer’s disease (AD) is a complex polygenic disorder
defined clinically by a progressive neurodegenerative disorder, resulting in a gradual, irreversible
loss of memory and cognitive function and neuropathologically by gross atrophy of the brain and
the accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles. Early
stages of AD are characterized by mild cognitive impairment and several histopathological hallmarks
including neuritic plaques, neurofibrillary tangles, and loss of basal forebrain cholinergic neurons.
AD progression results in senile plates and neurofibrillary tangles corresponding to β-amyloid (Aβ)
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aggregation and hyperphosphorylation of tau protein, respectively, which results in loss of synapses,
neuronal degeneration, and subsequent memory impairment, dementia, and functional decline [2–4].
Parkinson’s disease (PD) is the second in the ranking of the most common neurodegenerative disorders,
after AD, affecting 2% of the population over 60 years of age in the world [5], and involves genetic,
environmental, cerebrovasular, and epigenetic factors [6–10]. PD is a complex neurodegenerative
disease characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars
compacta and the formation of intracytoplasmatic inclusions made of accumulations of α-synuclein
known as Lewy bodies [11,12]. Clinical features of PD include rigidity, resting tremor, bradykinesia,
and postural imbalance.

Neurodegeneration process begins with a series of earlier events, affecting cell development,
metabolism, and axonal transport, which progressively lead to a massive cell death rate. Brain often
compensates those premature features that remain rather asymptomatic. The lack of success of the
current treatment strategies relies on our still limited knowledge of the pathogenic genomic variants.
Importantly, currently detected polymorphic variants in pathogenic genes associate directly with a very
low rate of Alzheimer’s or Parkinson’s disease patients. Personalization of treatments according to
individual pharmacogenomic profiles would also increase the rate of success and reduce unnecessary
costs. In addition, detection of the first symptomatic features normally occurs after a high rate of cell
death and damaged tissue, which significantly affect brain function and hinders potential treatments.
In this regard, novel epigenetically-based treatments are gaining a great interest as a potential novel
treatments for complex multigenic neurodegenerative diseases [3,13–17].

Complex diseases often result from the interplay of genetic variants (genomics) and the
environmental influence on gene function (epigenomics). The epigenetic machinery controls metabolic
pathways by regulating gene expression through chemical and structural modifications on the genome,
such as DNA/RNA methylation, chromatin structure, and non-coding RNA binding. The study of
the epigenetic gene regulation might allow the identification of early biomarkers corresponding to
previously undetectable features in the progression of neurodegeneration. In addition, these epigenetic
aberrations may be restored with the use of appropriate epigenetic-based therapies. In this regard,
during the last decade, scientists have been highly motivated in the search of epigenetic aberrations that
occur during presymptomatic disease stages in order to establish novel treatment approaches using
compounds (epidrugs) which target the epigenetic aberrations occurring during the progression of
neurodegenerative processes [2,13,18–21]. These novel approaches will potentially reduce or delay the
onset of these diseases, which would improve or elongate life quality of the patients, and would reduce
disease management costs. Despite of the promising results on cell and animal models, epidrugs
must fulfill certain requirements for the proper evaluation of their efficacy and safety in clinical
trials, including (i) more physiological IC50 ranges and efficient drug delivery strategies; (ii) more
specific targets; and (iii) personalized treatments according to the individual pharmacogenomic and
pharmacoepigenomic profiles.

2. Current Gene Targets and Pharmacological Treatments for Alzheimer’s and
Parkinson’s Diseases

2.1. Alzheimer’s Disease (AD)

The complexity of AD pathogenesis relies on the combination of genetic, epigenetic, and
environmental factors. Current research accumulates data from over 600 single-nucleotide polymorphisms
(SNPs), as well as Mendelian and mitochondrial mutations, in genes potentially associated with AD
progression [13,22–24]. Mendelian mutations affect AD pathogenic genes, including presenilins (PSEN1
and PSEN2), Aβ-precursor protein (APP), apolipoprotein E (APOE), and the alpha-2-macroglobulin (A2M).

APP cleavage, Aβ clearance, and microtubule stability regulated by phosphorylation of
microtubule-associated tau protein, are key targets of AD progression. Presenilins are important
determinants for the β-secretase-mediated APP cleavage. Polymorphic variants on PSEN1 and PSEN2
genes, detected in some AD patients, correlate with an impaired APP cleavage and Aβ aggregation
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into senile plates. Polymorphisms in the gene encoding the microtubule-associated protein tau (MAPT)
promote tau protein hyperphosphorylation which results in microtubule destabilization leading to
neurofibrillary degeneration [2,3,23,25]. Polymorphic variants in the gene encoding apolipoprotein
E (APOE), which associate with hypercholesterolemia and vascular disorders, constitute one of the
most relevant genetic hallmark s of AD. Presence of the APOE-ε4/ε4 haplotype represents a 60 to 80%
probability of an early AD onset [25–27]. Although the molecular mechanisms are not clear, several
studies associate APOE-ε4 with an impaired APP metabolism leading to Aβ aggregation promoting
tau hyperphosphorylation resulting in the formation of fibrillary tangles, as well as lipid metabolism
and transport impairment and oxidative and neuroinflammatory processes leading to a massive cell
death rate [25,26,28–30]. Importantly, the presence of APOE-ε2, tightly linked to pathologies with
a vascular component, is nevertheless protective against dementia [25,26]. The A2M gene, encoding
for the alpha-2-macroglobulin (a protease inhibitor), is also localized in amyloid plaques and interacts
with Aβ and APOE. The polymorphism 2998 G > A (rs669) in homozygosis increases the risk for the
onset of AD by 4-fold compared with the general population [23,25,26].

Most current pharmacological approaches for AD treatment rely on promoting cholinergic
synapses, reducing neuronal cytotoxicity, or preventing the formation of senile plates [2,13,31–35].
Despite numerous attempts during the last thirteen years, the only five drugs approved by FDA
tacrine, donepezil, rivastigmine, galantamine, and memantine, demonstrated limited success.
AD-related impaired memory and learning tasks as well as lack of attention, associate with a loss of
cholinergic neurons [31,32]. Therefore, the first pharmacological strategies relied on the generation of
cholinesterase inhibitors in order to promote acetylcholine levels at cholinergic synapses. Unfortunately,
the positive effects of these compounds were rather controversial [2,13,33]. The high affinity antagonist
of glutamatergic N-methyl-D-aspartate (NMDA) receptors, memantine, is a current alternative strategy
for patients with moderate or severe stages of the disease. Memantine reduces neuronal excitotoxicity
by inhibiting the prolonged influx of Ca2+ ions from extrasynaptic receptors. Nevertheless, efficacy of
this drug is under debate [2,13,34,35]. Lack of success of alternative approaches based on preventing
the formation of senile plates by β-secretase inhibitors or immunotherapy relied on undesirable side
effects on detriment of the scarce beneficial effects [13].

2.2. Parkinson’s Disease (PD)

Recent studies provide explanations about the implications of α-synuclein in PD at the
molecular level. It has been recently established the interaction of α-synuclein with mitochondrial
membranes [36–40] and its implication in mitochondrial impairment leading to cell death [41,42].
α-synuclein affects Complex I [38] and Complex IV [43] of the mitochondrial respiratory chain, leading
to a bioenergetic dysregulation, resulting in ROS production and cell death. Experiments in vitro and
in yeast mitochondria corroborate these results finding that α-synuclein was able to translocate from
cytosol to the mitochondrial inner membrane through the voltage-dependent anion channel (VDAC)
and target the mitochondrial respiratory chain [44].

Besides the SCNA gene, which encodes α-synuclein, over 100 other pathogeneic genes may be
involved in PD, from which 15 PD loci (PARK1-15) as well as other loci might be a direct cause of the
disease [45]. Mutations in synuclein-alpha (SNCA), parkin 2 (PARK2), PTEN-induced putative kinase 1
(PINK1), parkin 7 (PARK7, DJ1), and leucine-rich repeat kinase 2 (LRRK2) genes are associated with
the genetic etiology of PD, whereas other loci, such as, microtubule-associated protein tau (MAPT),
spatacsin, polymerase (DNA) gamma, catalytic subunit (POLG1), glucosylceramidase beta (GBA), and
ataxin (SCA1, SCA2), might be susceptibility genes associated with sporadic PD, normally associated
with toxic or environmental exposure [8,46].

The loss of dopaminergic neurons during development of PD results in concomitant loss
of dopamine in the affected areas (especially the nigrostriatal system) which is manifested with
classic motor symptoms (resting tremor, rigidity, bradykinesia, postural instability, and slowness
of movements which ends up in muscle atrophy), and other non-motor symptoms (depression,
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obsessive compulsive behavior, sleep disturbance, and cognitive impairment, among others). Current
pharmacological treatments for PD are based on restoring the dopamine levels using different
strategies: (i) increase dopamine availability by treatments with dopamine precursors, such as
L-DOPA (levodopa), or dopaminergic agonists (amantadine, apomorphine, bromocriptine, lisuride,
cabergoline, pergolide, pramipexole, ropinirole, and rotigotine) and (ii) inhibition of dopamine
catabolism or degradation, by using monoamine-oxidase B (MOB) inhibitors, such as rasagiline and
selegiline, or catechol-O-methylatransferase (COMPT) inhibitors, such as entacapone and tolcapone.
Unfortunately, all these pharmacological treatments only provide a symptomatic relief rather than
stopping or delaying the progression of the disease. Furthermore, the chronic administration
of antiparkinsonian drugs currently induces the “wearing-off phenomenon”, with additional
psychomotor and autonomic complications [7,17].

Combination of current drugs with novel compounds, especially bioproducts seem to reduce these
clinical complications and provide dopaminergic neuroprotection in order to enhance dopaminergic
neurotransmission and reduce premature neurodegeneration [17].

3. Main Epigenetic Hallmarks of Neurodegeneration

The analysis of the whole genome sequencing unveils a wide range of gene variants which
facilitate the diagnosis of a number of complex, multigenic disorders. These polymorphic variants
and gene mutations also serve as targets for developing more accurate and less expensive treatments.
Nevertheless, genetic factors define only partially the onset of neurodegenerative diseases, which
normally arouse due a complex interplay of genetic and epigenetic mechanisms. The strict epigenetic
regulatory processes result in the control of gene expression in response to the metabolic demands
of the organism. Epigenetic mechanisms regulate gene expression at both, transcriptionally and
post-transcriptionally levels. While DNA methylation status and modulation of chromatin structure,
mediated by ATP-dependent chromatin regulator complexes (ATP-CRCs) and post-translational
histone modifications, exert a transcriptional control, non-coding RNAs suppress gene expression
post-transcriptionally [47].

Neurophysiologic mechanisms integrated in upper level complex processes, such as memory
acquisition, learning, or motor coordination are, to a large extent, epigenetically regulated [48–50].
Therefore, alterations in this meticulously controlled epigenetic machinery increase the risk for onset
of disorders that involve mental decline, memory and motor impairments, brain deterioration, and
neurodegeneration. These epigenetic aberrations target genes directly related to the pathogenesis,
such as those modulating synaptic plasticity, immune response, cell development, and apoptosis, and
also genes indirectly involved in the disease [2,18,19,21].

3.1. DNA Methylation

DNA methylation consists in the incorporation of methyl groups into cytosine molecule, normally
located at CpG islands where CG content is greater than 60%. The level and location of DNA
methylation affect gene function in different manners. Levels of methylation at the promoter regions
affect gene expression. Generally, the higher is the level of methylation at the promoter region, the lower
is the expression of this gene, and vice versa. Promoter hypermethylation promotes the binding of
transcription repressors or inhibits transcription factors leading to a reduced gene expression [18,51,52].
Three main DNA methyltransferases (DNMTs) are responsible for DNA methylation process in
mammals. DNMT3a and DNMT3b add methyl groups to new unmethylated cytosines, whereas
DNMT1 maintains the methylated status [53,54]. As a counterpart, DNA demethylases reduce DNA
methylation levels and promote transcription. Three enzyme families mediate DNA demethylation
process: (i) the ten-eleven translocation (TET) family, which converts of 5-methyl-cytosine (5mC) into
5-hydroxymethyl-cytosine (5hmC); (ii) the AID/APOBEC family, acting as mediators of 5mC or 5hmC
deamination; and (iii) the BER (base excision repair) glycosylase family involved in DNA repair [19].
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3.1.1. Global DNA Methylation and Neurodegeneration

The two most prevalent neurodegenerative disorders worldwide, Alzheimer’s (AD) and
Parkinson’s diseases (PD), share a reduced DNA methylation in brains and blood from animal models
and human subjects [2,18,46,55–64]. Reduced expression of DNMTs and impaired Vitamin B activity
are the main players of this global hypomethylation. Vitamin B complex (vitamins B2, B6, B12,
and folate) displays important brain protective benefits and restores the proper DNA methylation
levels by promoting homocysteine (Hcy) methylation by the S-adenosyl-L-methionine-dependent
methyltransferase (SAMe) [18,65]. Indeed, both AD [66–69] and PD [62–64] associate with reduced
levels of SAM, which result in a defective methylation of Hcy, which promotes promoter demethylation.
Vitamin B deficiency also induces hypomethylation leading to overexpression of specific genes
involved in AD pathogenesis. In this regard, deprivation of folate and vitamins B6 and B12 led
to hypomethylation and overexpression of the β-secretase 1 (BACE1) and presenilin 1 (PSEN1) genes
in cell cultures, transgenic AD animal models, and post-mortem brains of AD patients [70–74]. This
excessive β-secretase activity resulted in impaired APP cleavage and promoted Aβ aggregation into
senile plates. Some studies also suggest a link between the formation of alpha synuclein protein
(α-Syn) aggregates, a PD hallmark, with reduced SAMe levels [75,76]. According to these studies,
defective SAMe activity may reduce methylation levels at the promoter region of the α-Syn-encoding
gene (SCNA), which would promote the expression and aggregation of α-Syn.

Contrary to AD and PD, the epigenetic pattern of the Amyotrophic Lateral Sclerosis (ALS) involves
a general DNA hypermethylation [77] enforced by increased DNMT expression [78,79] and impaired
demethylation machinery [80]. According to Al-Chalabi and colleges [81], approximately 10% of
ALS forms are familial and caused by gene mutations whereas 90% are sporadic, i.e., influenced by
surrounding environment [81].

3.1.2. Gene Specific Methylation and Neurodegeneration

Most aberrant DNA methylation patterns leading to neurodegeneration target pathogenic genes
directly involved in the disease, genes involved in neuroinflammatory pathways, and genes related to
neurodevelopment and synaptic processes.

Despite of the importance of β-secretase activity and APP cleavage in the progression of
AD [2,3,23,25], except for some exceptions [82–85], most of the studies find no direct correlation between
APP methylation and AD progression [46,55–59,86]. Hyperphosphorylation of protein tau is one of
the molecular hallmarks of AD-related neurodegeneration. Excessive protein tau phosphorylation
reduces the binding affinity of this protein to cytoskeleton which detaches and accumulates into free
aggregates forming neurofibrillary tangles (NFTs). Protein tau detachment also leads to a concomitant
destabilization of cytoskeleton and cell structure. Vitamin B deficit in AD patients reduces methylation
of the glycogen synthase kinase 3β gene (GSK3β) at the promoter region, which promotes the expression
of this protein kinase that induces tau phosphorylation, NFT aggregation, loss of cytoskeleton integrity,
and cell death [87]. Promoter hypomethylation also induces the expression of genes involved in
cell death and neuroinflammation, such as bridging factor 1 (BIN1), complement receptor 1 (CR1),
the CD33 molecule (CD33), and the tumor necrosis factor (TNF-α) [2,21,56,88]. However, promoter
hypermethylation reduces the expression of the sortilin-related receptor (SORL1) and neprylisin
(NEP) genes involved in the Aβ degradation and clearance. Sanchez-Mut et al. [89] found that
hypermethylation in promoter regions of the thromboxane A2 receptor (TBXA2R), sorbin and SH3
domain containing 3 (SORBS3), and spectrin beta 4 (SPTBN4) genes in AD animal models and human
subjects. Authors suggest that the activation of the cyclic AMP response element-binding protein
(CREB) pathway and the axon initial segment might contribute to the pathogenesis of AD [89].

Although APOE gene haplotypes are among the most reliable biomarkers for AD diagnosis,
information available about the epigenetic modulation of this gene is scarce. Some studies suggest that
the C > T transition in the 3’-CpG island, which is specific of APOE-ε4, might prevent methylation of
this site and promote APOE-ε4 expression in AD patients [18,71,90].
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Genome wide association studies found a direct implication of methylation status of α-synuclein
and development of PD. The putative gene promoter, located in the intron 1 of SCNA gene, was
significantly hypomethylated in blood and brain samples from PD patients as compared to controls [91].
This hypomethylation was associated with the overexpression of α-synuclein and protein aggregation
leading to PD [7]. This hypomethylation/overexpression is observed in substantia nigra, putamen,
and cortex of sporadic PD cases [62,92].

Other genes were also found epigenetically regulated in PD. Increased TNF-α levels are associated
with neuroinflammation and dopaminergic cell death in PD. Therefore, the higher vulnerability to
TNF-α regulation found in dopaminergic neurons suggests the gene promoter is hypomethylated [93].
Importantly, TNF-α overexpression is usually detected in the cerebrospinal fluid of PD patients, as
TNF-α induces apoptosis in neuronal cells [93]. It was recently reported the aberrant expression of clock
genes in animal models of PD [94,95]. Methylation level of seven clock gene promoters was analyzed
finding a reduced methylation in PD compared to controls [96]. In addition, DNA methylation, among
other epigenetic mechanisms, plays an important role in mesodiencephalic dopaminergic neurons,
which are severely affected in PD patients [97].

Other studies revealed that methylation aberrations may associate with imprinting mechanisms,
such as those responsible for huntingtin overexpression in Huntington’s disease patients [98], or the
risk of triggering intergenerational extension or instability of CAG repeat expansions by changes in
DNA methylation during epigenetic reprogramming [99,100].

3.2. Histone Post-Translational Modifications Affecting Chromatin Remodeling

Chromatin stability and conformation regulates gene expression and silencing of transposable
elements, as well as maintains genome integrity. ATP-dependent chromatin regulator complexes
(ATP-CRCs) and post-translational histone modifications control chromatin structure.

Histone post-translational modifications alter the chromatin package into a tight (hetrochromatin)
or loose (euchromatin) conformation, which affects gene accessibility to the transcription machinery.
Histone acetylation, mediated by histone lysine-acetyltransferases (HATs or KATs) reduces
the electrostatic interaction between DNA and histones which results in a looser chromatin
conformation that allows gene accessibility and thus activates transcription [101,102]. Gcn5-related
N-acetyltransferases (GNATs), which include GCN5, p300/cAmp-response element binding protein
(CBP)-associated factor (PCAF), KAT6-8, CREB-binding protein/CBP (CREBBP/CBP), and EP300
promote histone acetylation [55,101–106]. On the other hand, histone deacetylases (HDAC), reduce
the level of acetyl groups and thus the negative charge of histones which enhances the electrostatic
binding to DNA and promotes a compact chromatin conformation with the subsequent repressed
gene transcription [2,18,48,101–105,107]. This conformation limits the access for transcription factors
but also for DNA repair machinery, which negatively affects to the number of synapses leading
to impaired memory and learning abilities. Disruption of HAT/HDAC equilibrium associates
with histone acetylation decay, which increases with aging and drastically declines during AD
progression, especially in the temporal lobe of AD patients [108,109] and in AD animal models [48,110].
Overexpression of nuclear EP300 interacting inhibitor of differentiation 1 (EID1) in cortical neurons
of AD patients and animal models promotes histone hypoacetylation mediated by inhibition of
EP300 and CREBBP [111,112]. HDAC2-mediated acetylation decay located in prefrontal cortex
and hippocampus reduced neuroplasticity, as well as downregulated genes involved in learning,
memory, and synaptic plasticity in AD mice [48,113]. Some studies also suggest that one of the
neurotoxic effects of α-synuclein in PD involves its direct binding to histones, preventing H3
acetylation [114,115]. Indeed, treatment with HDAC inhibitors reduced α-synuclein neurotoxicity in
neuroblastoma cells and transgenic Drosophila [114–116]. Alternatively, the class III NAD+-dependent
HDACs, sirtuins (SIRT), promote lifespan and healthy aging by delaying the onset of neurodegenerative
processes [21,46,117,118]. Importantly, several studies using animal models indicate that sirtuin
expression drifts with aging [119–121] as well as with age-related neurodegenerative disorders [122,123].
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Histone methylation and demethylation, mediated by histone methylases (HMTs) and
demethylases (HDMTs), respectively, also contribute to neurodegenerative progression. Those enzymes
have a high specificity as they usually modify one single lysine per histone which may be translated
into activation or repression of transcription [19,55,101,102,124,125]. Histone methylations H3K4,
H3K36, and H3K79 are associated with the activation of gene expression, whereas methylations at
H3K9, H3K27, and H4K20, correspond to gene silencing. Histone methylation has also been associated
with DNA repair [1,55,101,126].

Histone methylation levels (H3K14, HeK9me2, among others) increased significantly in young
preplaque AD transgenic mice as compared with wild-type mice [110,127,128]. Some studies suggest
the role of histone methylation promotes polarization of microglial activation pathways involving
dopaminergic cell loss during PD progression. Frequency of classical (M1 phenotype) and alternative
(M2 phenotype) activation pathways determines the detrimental or beneficial effects for CNS. Histone
demethylase H3K27me3 Jumonji domain containing 3 (Jmjd3) is essential for M2-type activation.
Suppression of Jmjd3 magnifies M1-mediated microglial overactivation leading to extensive cell death
in substantia nigra in MPTP-intoxicated PD transgenic mice [129]. MPTP-mediated toxicity also
reduces H3K4me3 levels in the striatum of mice and non-human primates, which can be reverted
through chronic treatment with L-DOPA [130].

3.3. Non-Coding RNAs

Differential expression of non-coding RNAs (ncRNAs) modulates gene expression post-
transcriptionally. Aberrant expression of a number of ncRNAs alters expression of genes involved in
metabolic pathways leading to neurodegeneration.

These regulatory RNAs include long ncRNAs (lncRNAs), which target pathogenic genes directly
involved in the disease or epigenetically regulated genes, small interference RNAs (siRNAs), piwi
RNAs (piRNAs), and microRNAs (miRNAs). These last ones induce mRNA degradation by binding to
the 3′ untranslated region and are the most popular biomarkers for disease diagnosis and progression.
Altered expression of miRNAs affects modulation of direct pathogenic genes or those involved in
other neurophysiological roles indirectly associated with the disease. A number of cell free blood and
cerebrospinal fluid-circulating miRNAs are informative biomarkers of the stage and progression of
the disease in vivo, with a rapid and noninvasive liquid biopsy. Circulating miRNAs are thus good
candidates as presymptomatic biomarkers and for early diagnosis of the disease.

3.4. Epigenetic Regulation of Telomeres

Telomeres are protective structures located at the end of the chromosomes, which contain
a number of TTAGGG repeats. Shortening of telomere length increases with aging and age-related and
neurodegenerative disorders enhance this process. Several mechanisms mediate the protection of these
telomeric regions in order to delay their degradation. The efficiency of these protective mechanisms
depends on the length of telomeres, i.e., the number of TTAGGG repeats. Shelterin is a nucleoprotein
complex that binds to those repeats and protects DNA from activation of DNA damage pathways.
Ability of sheltering binding increases with telomeric length, which is modulated by telomerase activity.
Telomerase replaces the missed repeats after each cell division, using an associated RNA molecule,
TERC, as a template. However, aging-related telomerase activity decay leads to telomere shortening,
resulting in a loss of shelterin’s ability to bind these shorter telomeres and activation of the DNA
damage cascade and cell death [131,132].

The epigenetic machinery modulates DNA protection and chromatin structure and stability,
which affects telomerase activity and the rate of telomere degradation. Histone hypoacetylation at
telomeric regions induces a heterochromatin state which protects DNA at telomeric and subtelomeric
regions from activation of DNA damaging pathways [133]. On the other hand, epigenetic alterations,
including decreased histone trimethylation of H3K9 and H4K20 or reduced histone dimethylation
of H3K79, as well as aberrant DNA methylation, and histone H3 and H4 acetylation at telomeric
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and subtelomeric regions, would disrupt chromatin stability in those regions and enhance telomere
shortening [134–136].

Epigenetic mechanisms involving ncRNA also regulate telomere length. A number of subtelomeric
loci express lnRNAs named telomeric repeat-containing RNAs (TERRAs) which control both chromatin
remodeling at those regions and telomerase-mediated telomere elongation [137–139]. TERRA may be
aberrantly upregulated by DNA methylation, histone acetylation, or reduced histone methylation at
telomeric or subtelomeric regions, which may lead to interference with telomere replication.

4. Current Epigenetic-Based Strategies Targeting Neurodegeneration

Available treatments for complex disorders are mostly symptomatic and provide limited beneficial
effects on the progression of the disease, and often with a payback of unacceptable side effects.
Epigenetic mechanisms unveil many hidden pathological alterations of memory and learning
impairment, synaptic loss, and cell death, involved in neurodegenerative processes. Many epigenetic
alterations appear in early asymptomatic stages of the disease and are reversible. Thus, the new age
attempts of treating these disorders involve the use of epigenetic-based drugs (epidrugs) targeting
DNA methylation, chromatin remodeling, and non-coding RNAs as potential candidates for the
treatment of these complex polygenic disorders. These drugs include activators and inhibitors of DNA
methyltransferases, histone deacetylase inhibitors, sirtuin activators, modulators of histone acetylation
and histone methylation, as well as RNA interference analogs.

4.1. DNA Methylation Modulators

4.1.1. DNA Methylation Activators

Strategies attempting to restore DNA methylation may re-establish the proper metabolic pathways
disrupted by the global DNA hypomethylation associated with the progression of most prevalent
neurodegenerative disorders, including AD and PD. In most cases, detrimental Vitamin B- and
SAMe-mediated global hypomethylation associates with high levels of homocysteine (Hcy) and
S-adenosylhomocysteine (SAH) [18,62,66–69,75,140], which promotes expression of pathogenic genes.
Beneficial effects of some dietary interventions may address this issue, with special focus in diets
with high contents of vitamin B complex (B2, B6, B12, and folic acid). Vitamin B and SAMe-mediated
DNA methylation involves several signaling pathways affecting folate/methionine/homocystein
metabolism, using folate, choline, betaine, methionine, and enzyme cofactors [18,65]. Vitamin
B6-dependent serine-hydroxymethyltransferase catalyzes the conversion of tetrahydrofolate (THF) into
5,10-methylenetetrahydrofolate (MTHF), followed by the synthesis of 5-MTHF catalyzed by vitamin
B2-dependent MTHF reductase (MTHFR). 5-MTHF provides the methyl groups for Hcy methylation
by cobalamin-dependent methionine synthase, yielding methionine, which is converted to SAM
by methionine adenosyltransferase. SAM is responsible for methylation of main macromolecules,
including DNA, proteins, phospholipids neurotransmitters, and hormones. Donation of methyl
group promotes the synthesis of SAH, which hydrolyzes to Hcy and adenosine by SAH hydrolase.
According to the consensus statement, based on the Bradford Hill criteria, elevated levels of total Hcy
is a recognizable risk factor for development of dementia and AD in older individuals [141]. Therefore,
methylation restorage and brain protective properties of vitamin B, folic acid, and SAMe sites them
as good diet supplements for treatment of these disorders [76,142–144] (Table 1). Indeed, Vitamin
B6 and folate are currently submitted to clinical trials from which three of them are completed
in phase II (ClinicalTrials.gov Identifier: NCT01320527), phase III (ClinicalTrials.gov Identifier:
NCT00056225), and phase IV (ClinicalTrials.gov Identifier: NCT2457507) to determine whether
reduction of homocysteine levels with these dietary interventions would reduce cognitive impairment
in AD patients [145–148] (Table 1). In Sweden and UK, folate and Vitamin B6 are clinically prescribed
in patients with elevated levels of total Hcy corresponding to high risk of dementia onset [149–151].
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Table 1. Pharmacogenetic profiles of epigenetic-based compounds currently submitted to clinical trials for the treatment of Alzheimer’s and Parkinson’s diseases.

Drug Compound Pharmacogenetics Mechanisms of action ClinicalTrials.gov ID
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Pteroylglutamic acid 
IUPAC name: 
(2S)-2-[[4-[(2-amino-4-oxo-1H-pteridin-6-yl)methyla
mino]benzoyl]amino]pentanedioic acid 
Molecular formula: C19H19N7O6 
Molecular Weight: 441.40 g/mol 
Category: SAMe methyl donors 
Targets: SAMe 

Pathogenic genes: 
ADORA2A, AOX1, APOB, CDKN2A, COMPT 
Mechanistic genes: 
ALDH1A1, GSTA1, GSTP1, IL2, IL6, NAT2, SOD3, 
TNF, VGFA 
Metabolic genes: 
Substrate: ABCG2, MTHFR 
Inhibitor: ABCB1, ERCC2, MTHFR 
Inducer: CYP2C9  
Transporter genes: 
ABCC1, ABCC2, ABCC3, SLC19A1, SLC22A8, 
SLC28A2, SLCOB1 
Pleiotropic genes: 
PPAR, TNF, TP53, VCAM1 

 Ameliorates memory and learning tasks 
in dementia patients 

 Restores DNA methylation by 
increasing the SAM/SAH ratio 

 Reduces toxicity mediated by Aβ 
aggregation 

 Reduces neuroinflammation 

NCT00056225-Phase III 
NCT01320527-Phase II 
NCT02457507-Phase IV 

 

Name: EGCG, (-)-epigallocatechin gallate, 
epigallocatechin 3-gallate, tea catechin, teavigo, 
catechin deriv., 989-51-5 
IUPAC name: 
[(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,
4-dihydro-2H-chromen-3-yl] 
3,4,5-trihydroxybenzoate 
Molecular formula: C22H18O11 

Molecular Weight: 458.37 g/mol 
Category: DNMT inhibitors 
Targets: DNMT1 

Pathogenic genes: 
APP, BACE1, CDX2, EGFR, FAS PIK3CA, ROS1 
Mechanistic genes: 
APP, BACE1, BMP2, CDX2, CHRNA7, ECEs, EGFR, 
IRS1, PIK3CA, ROS1 
Metabolic genes: 
Inhibitor: SOD 
Transporter genes: 
CD36, SLC5A1, SLC27A4, SLCO1B1, SLCO1B3 
Pleiotropic genes: 
ACACA, CHRNA7, SCD 

 Prevents misfolded proteins from 
fibrillization 

 Restores respiratory rates and 
membrane potential in isolated 
mitochondria from hippocampus, 
cortex, and striatum  

 Activates α7 nicotinic acetylcholine 
receptor (α7 nAChR) signaling cascade 

 Restores Bcl2 expression, preventing 
cell death in Aβ-treated neurons  

NTC00951834-Phases II, III 

 

Name: Quercetin; Sophoretin; Quercetol; Meletin; 
Xanthaurine; Quercitin; 
3,3′,4′,5,7-Pentahydroxyflavone 
IUPAC name: 
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-
one 
Molecular formula: C15H10O7 

Molecular Weight: 302.24 g/mol 
Category: DNMT inhibitors 
Targets: DNMT1 

Pathogenic genes: 
IL1R, NFkB, Ccl8, IKK, STAT3, CD4, CDK2, IL2 
Mechanistic genes: 
MTND4, CDKN2A, PRDX4, DIO2, HSD17B1, 
MSH2, GSS, COMT, FOS, CRP, NR1I3, PON1 
Metabolic genes: 
Substrate: UGT1A1, UGT1A3, GSTT1, CYP2J2, 
GSTK1, CYP2C8, CYP1A1, CYP1A2, CYP1B1, 
GSTA1, CYP19A1 
Inhibitor: SULT1E1 
Transporter genes: 
ABCB1, ABCG2 

 Modulates immune system 
 Exerts a positive effect in support of 

cognitive function 
NCT01716637-Phase I 

Name: Vitamin B9; Folic acid; Folate; 59-30-3; Folacin;
Pteroylglutamic acid
IUPAC name:
(2S)-2-[[4-[(2-amino-4-oxo-1H-pteridin-6-yl)methylamino]
benzoyl]amino]pentanedioic acid
Molecular formula: C19H19N7O6
Molecular Weight: 441.40 g/mol
Category: SAMe methyl donors
Targets: SAMe

Pathogenic genes:
ADORA2A, AOX1, APOB, CDKN2A, COMPT
Mechanistic genes:
ALDH1A1, GSTA1, GSTP1, IL2, IL6, NAT2, SOD3,
TNF, VGFA
Metabolic genes:
Substrate:ABCG2, MTHFR
Inhibitor: ABCB1, ERCC2, MTHFR
Inducer: CYP2C9
Transporter genes:
ABCC1, ABCC2, ABCC3, SLC19A1, SLC22A8,
SLC28A2, SLCOB1
Pleiotropic genes:
PPAR, TNF, TP53, VCAM1

â Ameliorates memory and learning
tasks in dementia patients

â Restores DNA methylation by
increasing the SAM/SAH ratio

â Reduces toxicity mediated by
Aβ aggregation

â Reduces neuroinflammation

NCT00056225-Phase III
NCT01320527-Phase II
NCT02457507-Phase IV
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Pteroylglutamic acid 
IUPAC name: 
(2S)-2-[[4-[(2-amino-4-oxo-1H-pteridin-6-yl)methyla
mino]benzoyl]amino]pentanedioic acid 
Molecular formula: C19H19N7O6 
Molecular Weight: 441.40 g/mol 
Category: SAMe methyl donors 
Targets: SAMe 

Pathogenic genes: 
ADORA2A, AOX1, APOB, CDKN2A, COMPT 
Mechanistic genes: 
ALDH1A1, GSTA1, GSTP1, IL2, IL6, NAT2, SOD3, 
TNF, VGFA 
Metabolic genes: 
Substrate: ABCG2, MTHFR 
Inhibitor: ABCB1, ERCC2, MTHFR 
Inducer: CYP2C9  
Transporter genes: 
ABCC1, ABCC2, ABCC3, SLC19A1, SLC22A8, 
SLC28A2, SLCOB1 
Pleiotropic genes: 
PPAR, TNF, TP53, VCAM1 

 Ameliorates memory and learning tasks 
in dementia patients 

 Restores DNA methylation by 
increasing the SAM/SAH ratio 

 Reduces toxicity mediated by Aβ 
aggregation 

 Reduces neuroinflammation 

NCT00056225-Phase III 
NCT01320527-Phase II 
NCT02457507-Phase IV 

 

Name: EGCG, (-)-epigallocatechin gallate, 
epigallocatechin 3-gallate, tea catechin, teavigo, 
catechin deriv., 989-51-5 
IUPAC name: 
[(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,
4-dihydro-2H-chromen-3-yl] 
3,4,5-trihydroxybenzoate 
Molecular formula: C22H18O11 

Molecular Weight: 458.37 g/mol 
Category: DNMT inhibitors 
Targets: DNMT1 

Pathogenic genes: 
APP, BACE1, CDX2, EGFR, FAS PIK3CA, ROS1 
Mechanistic genes: 
APP, BACE1, BMP2, CDX2, CHRNA7, ECEs, EGFR, 
IRS1, PIK3CA, ROS1 
Metabolic genes: 
Inhibitor: SOD 
Transporter genes: 
CD36, SLC5A1, SLC27A4, SLCO1B1, SLCO1B3 
Pleiotropic genes: 
ACACA, CHRNA7, SCD 

 Prevents misfolded proteins from 
fibrillization 

 Restores respiratory rates and 
membrane potential in isolated 
mitochondria from hippocampus, 
cortex, and striatum  

 Activates α7 nicotinic acetylcholine 
receptor (α7 nAChR) signaling cascade 

 Restores Bcl2 expression, preventing 
cell death in Aβ-treated neurons  

NTC00951834-Phases II, III 

 

Name: Quercetin; Sophoretin; Quercetol; Meletin; 
Xanthaurine; Quercitin; 
3,3′,4′,5,7-Pentahydroxyflavone 
IUPAC name: 
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-
one 
Molecular formula: C15H10O7 

Molecular Weight: 302.24 g/mol 
Category: DNMT inhibitors 
Targets: DNMT1 

Pathogenic genes: 
IL1R, NFkB, Ccl8, IKK, STAT3, CD4, CDK2, IL2 
Mechanistic genes: 
MTND4, CDKN2A, PRDX4, DIO2, HSD17B1, 
MSH2, GSS, COMT, FOS, CRP, NR1I3, PON1 
Metabolic genes: 
Substrate: UGT1A1, UGT1A3, GSTT1, CYP2J2, 
GSTK1, CYP2C8, CYP1A1, CYP1A2, CYP1B1, 
GSTA1, CYP19A1 
Inhibitor: SULT1E1 
Transporter genes: 
ABCB1, ABCG2 

 Modulates immune system 
 Exerts a positive effect in support of 

cognitive function 
NCT01716637-Phase I 

Name: EGCG, (−)-epigallocatechin gallate, epigallocatechin
3-gallate, tea catechin, teavigo, catechin deriv., 989-51-5
IUPAC name:
[(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-
dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate
Molecular formula: C22H18O11
Molecular Weight: 458.37 g/mol
Category: DNMT inhibitors
Targets: DNMT1

Pathogenic genes:
APP, BACE1, CDX2, EGFR, FAS PIK3CA, ROS1
Mechanistic genes:
APP, BACE1, BMP2, CDX2, CHRNA7, ECEs,
EGFR, IRS1, PIK3CA, ROS1
Metabolic genes:
Inhibitor:SOD
Transporter genes:
CD36, SLC5A1, SLC27A4, SLCO1B1, SLCO1B3
Pleiotropic genes:
ACACA, CHRNA7, SCD

â Prevents misfolded proteins
from fibrillization

â Restores respiratory rates and
membrane potential in isolated
mitochondria from hippocampus,
cortex, and striatum

â Activates α7 nicotinic acetylcholine
receptor (α7 nAChR) signaling cascade

â Restores Bcl2 expression, preventing
cell death in Aβ-treated neurons

NTC00951834-Phases II, III
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catechin deriv., 989-51-5 
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[(2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,
4-dihydro-2H-chromen-3-yl] 
3,4,5-trihydroxybenzoate 
Molecular formula: C22H18O11 

Molecular Weight: 458.37 g/mol 
Category: DNMT inhibitors 
Targets: DNMT1 

Pathogenic genes: 
APP, BACE1, CDX2, EGFR, FAS PIK3CA, ROS1 
Mechanistic genes: 
APP, BACE1, BMP2, CDX2, CHRNA7, ECEs, EGFR, 
IRS1, PIK3CA, ROS1 
Metabolic genes: 
Inhibitor: SOD 
Transporter genes: 
CD36, SLC5A1, SLC27A4, SLCO1B1, SLCO1B3 
Pleiotropic genes: 
ACACA, CHRNA7, SCD 

 Prevents misfolded proteins from 
fibrillization 

 Restores respiratory rates and 
membrane potential in isolated 
mitochondria from hippocampus, 
cortex, and striatum  

 Activates α7 nicotinic acetylcholine 
receptor (α7 nAChR) signaling cascade 

 Restores Bcl2 expression, preventing 
cell death in Aβ-treated neurons  

NTC00951834-Phases II, III 

 

Name: Quercetin; Sophoretin; Quercetol; Meletin; 
Xanthaurine; Quercitin; 
3,3′,4′,5,7-Pentahydroxyflavone 
IUPAC name: 
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-
one 
Molecular formula: C15H10O7 

Molecular Weight: 302.24 g/mol 
Category: DNMT inhibitors 
Targets: DNMT1 

Pathogenic genes: 
IL1R, NFkB, Ccl8, IKK, STAT3, CD4, CDK2, IL2 
Mechanistic genes: 
MTND4, CDKN2A, PRDX4, DIO2, HSD17B1, 
MSH2, GSS, COMT, FOS, CRP, NR1I3, PON1 
Metabolic genes: 
Substrate: UGT1A1, UGT1A3, GSTT1, CYP2J2, 
GSTK1, CYP2C8, CYP1A1, CYP1A2, CYP1B1, 
GSTA1, CYP19A1 
Inhibitor: SULT1E1 
Transporter genes: 
ABCB1, ABCG2 

 Modulates immune system 
 Exerts a positive effect in support of 

cognitive function 
NCT01716637-Phase I 

Name: Quercetin; Sophoretin; Quercetol; Meletin;
Xanthaurine; Quercitin; 3,3′,4′,5,7-Pentahydroxyflavone
IUPAC name:
2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one
Molecular formula: C15H10O7
Molecular Weight: 302.24 g/mol
Category: DNMT inhibitors
Targets: DNMT1

Pathogenic genes:
IL1R, NFkB, Ccl8, IKK, STAT3, CD4, CDK2, IL2
Mechanistic genes:
MTND4, CDKN2A, PRDX4, DIO2, HSD17B1,
MSH2, GSS, COMT, FOS, CRP, NR1I3, PON1
Metabolic genes:
Substrate: UGT1A1, UGT1A3, GSTT1, CYP2J2,
GSTK1, CYP2C8, CYP1A1, CYP1A2, CYP1B1,
GSTA1, CYP19A1
Inhibitor:SULT1E1
Transporter genes:
ABCB1, ABCG2

â Modulates immune system
â Exerts a positive effect in support of

cognitive function
NCT01716637-Phase I
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Name: Valproic acid, 2-propylpentanoic acid, 
depakene, depakine, ergenyl, dipropylacetic acid, 
mylproin, convulex, myproic acid 
IUPAC name: 2-propylpentanoic acid 
Molecular formula: C8H16O2 

Molecular Weight: 144.21 g/mol 
Category: HDAC inhibitors 
Targets: Class I HDAC; Class II HDAC 

Pathogenic genes: 
CREB1, IL6, LEP, SCN2A, TGFB1, TNF, TRNK 
Mechanistic genes: 
ABAT, CDK5, GSK3B, HDAC1, HDAC2, HDAC3, 
HDAC8, HDAC9, LEP, LEPR, SCNs, SMN2 
Metabolic genes: 
Substrate: CYP2A6 (major), CYP2C9 (major), 
CYP4B1 (major), CYP1A1 (minor), CYP2B6 (minor), 
CYP2C19 (minor), CYP2E1 (minor), CYP3A4 
(minor), CYP4F2 (minor), ABCB1 (minor), UGT1A4, 
UGT1A6, UGT1A8, UGT1A10, UGT2B7 
Inhibitor: ABCB1, ACADSB, AKR1A1, CYP2C9 
(strong), CYP2A6 (moderate), CYP2C19 (moderate), 
CYP3A4 (moderate), CYP2D6 (weak), HDAC1, 
HDAC2, HDAC3, HDAC8, HDAC9, UGT1A9, 
UGT2B1, UGT2B7 
Inducer: ABCB1, AKR1C4, CASR, CYP2A6, 
CYP2B6, CYP3A4, CYP7A1, MAOA, NR1I2, 
SLC5A5, SLC6A2, SLC12A3, SLC22A16 
Transporter genes: 
ABCB1, ABCC2, ABCG1, ABCG2, SCNs, SLC5A5, 
SLC6A2, SLC12A3, SLC22A16 
Pleiotropic genes: 
ABL2, AGPAT2, ASL, ASS1, CDK4, CHRNA1, 
COL1A1, CPS1, CPT1A, DRD4, FMR1, FOS, HBB, 
HFE, HLA-A, HLA-B, ICAM1, IFNG, IL6, IL10, 
LEPR, NAGS, NR3C1, OTC, PTGES, STAT3, TGFB1, 
TNF, TP53 

 Promotes the expression of 
brain-derived neurotrophic factors 
involving neuronal growth, survival, 
and synaptic plasticity  

 Induces the expression of the 
heat-shock protein Hsp70 

 Reduces Aβ production and 
aggregation in AD cells and animal 
models, through inhibition of 
γ-secretase cleavage of APP  

 Improves memory tasks by increasing 
histone H4 acetylation, in combination 
with NaB and SAHA  

 Reduces α-synuclein-mediated toxicity 
(via H3 acetylation) and decreased 
pro-inflammatory mediators, in PD cell 
models and animals exposed to toxicant 
agents 

 Rescues dopaminergic neurons death 
induced by the toxic agents  

 Combination of VPA with lithium 
enhances Ser 9 phosphorylation of 
GSK-3β in the lumbar spinal cord and 
brain. 

NTC01729598-Phase I 
NTC00088387-Phase II 
NTC00071721-Phase III 

 

Name: sodium phenylbutyrate, buphenyl, 
4-phenylbutiric acid, 4-phenylbutonoic acid, 
benzenebutanoic acid, benzenebutyric acid, butyric 
acid 
IUPAC name: sodium;4-phenylbutanoate 
Molecular formula: C10H11NaO2 

Molecular Weight: 186.182909 g/mol 
Category: HDAC inhibitors 
Targets: Class I HDAC, Class IIa HDAC, Class IIb 
HDAC  

Pathogenic genes: 
ARG1, ASS1, BCL2, CPS1, NAGS, OTC 
Mechanistic genes: 
BCL2, BDNF, EDN1, HDACs, HSPA8, ICAM1, 
NFKB2, NT3, VCAM1 
Metabolic genes: 
Inhibitor: HDACs 
Inducer: ARG1, CFTR, CYP2B6, NFKB2 
Transporter genes: 
CFTR 
Pleiotropic genes: 
ASL, BDNF, VCAM1 

 Promotes the expression of genes 
involved in synaptic plasticity (via 
histone acetylation)  

 Restores memory and learning 
functions in AD transgenic mice by 
reducing tau phosphorylation  

 Reduces Aβ accumulation, and restores 
memory function in transgenic AD mice 

 Protects dopaminergic neurons of mice 
exposed to toxicant agents 

NCT03533257-Phase II 
NCT02046434-Phase I 

Name: Valproic acid, 2-propylpentanoic acid, depakene,
depakine, ergenyl, dipropylacetic acid, mylproin, convulex,
myproic acid
IUPAC name: 2-propylpentanoic acid
Molecular formula: C8H16O2
Molecular Weight: 144.21 g/mol
Category: HDAC inhibitors
Targets: Class I HDAC; Class II HDAC

Pathogenic genes:
CREB1, IL6, LEP, SCN2A, TGFB1, TNF, TRNK
Mechanistic genes:
ABAT, CDK5, GSK3B, HDAC1, HDAC2, HDAC3,
HDAC8, HDAC9, LEP, LEPR, SCNs, SMN2
Metabolic genes:
Substrate:CYP2A6 (major), CYP2C9 (major),
CYP4B1 (major), CYP1A1 (minor), CYP2B6
(minor), CYP2C19 (minor), CYP2E1 (minor),
CYP3A4 (minor), CYP4F2 (minor), ABCB1
(minor), UGT1A4, UGT1A6, UGT1A8, UGT1A10,
UGT2B7
Inhibitor: ABCB1, ACADSB, AKR1A1, CYP2C9
(strong), CYP2A6 (moderate), CYP2C19
(moderate), CYP3A4 (moderate), CYP2D6
(weak), HDAC1, HDAC2, HDAC3, HDAC8,
HDAC9, UGT1A9, UGT2B1, UGT2B7
Inducer: ABCB1, AKR1C4, CASR, CYP2A6,
CYP2B6, CYP3A4, CYP7A1, MAOA, NR1I2,
SLC5A5, SLC6A2, SLC12A3, SLC22A16
Transporter genes:
ABCB1, ABCC2, ABCG1, ABCG2, SCNs, SLC5A5,
SLC6A2, SLC12A3, SLC22A16
Pleiotropic genes:
ABL2, AGPAT2, ASL, ASS1, CDK4, CHRNA1,
COL1A1, CPS1, CPT1A, DRD4, FMR1, FOS, HBB,
HFE, HLA-A, HLA-B, ICAM1, IFNG, IL6, IL10,
LEPR, NAGS, NR3C1, OTC, PTGES, STAT3,
TGFB1, TNF, TP53

â Promotes the expression of
brain-derived neurotrophic factors
involving neuronal growth, survival,
and synaptic plasticity

â Induces the expression of the
heat-shock protein Hsp70

â Reduces Aβ production and
aggregation in AD cells and animal
models, through inhibition of
γ-secretase cleavage of APP

â Improves memory tasks by increasing
histone H4 acetylation, in combination
with NaB and SAHA

â Reduces α-synuclein-mediated toxicity
(via H3 acetylation) and decreased
pro-inflammatory mediators, in PD cell
models and animals exposed to
toxicant agents

â Rescues dopaminergic neurons death
induced by the toxic agents

â Combination of VPA with lithium
enhances Ser 9 phosphorylation of
GSK-3β in the lumbar spinal cord
and brain.

NTC01729598-Phase I
NTC00088387-Phase II
NTC00071721-Phase III
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 Reduces Aβ production and 
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Name: sodium phenylbutyrate, buphenyl, 
4-phenylbutiric acid, 4-phenylbutonoic acid, 
benzenebutanoic acid, benzenebutyric acid, butyric 
acid 
IUPAC name: sodium;4-phenylbutanoate 
Molecular formula: C10H11NaO2 

Molecular Weight: 186.182909 g/mol 
Category: HDAC inhibitors 
Targets: Class I HDAC, Class IIa HDAC, Class IIb 
HDAC  

Pathogenic genes: 
ARG1, ASS1, BCL2, CPS1, NAGS, OTC 
Mechanistic genes: 
BCL2, BDNF, EDN1, HDACs, HSPA8, ICAM1, 
NFKB2, NT3, VCAM1 
Metabolic genes: 
Inhibitor: HDACs 
Inducer: ARG1, CFTR, CYP2B6, NFKB2 
Transporter genes: 
CFTR 
Pleiotropic genes: 
ASL, BDNF, VCAM1 

 Promotes the expression of genes 
involved in synaptic plasticity (via 
histone acetylation)  

 Restores memory and learning 
functions in AD transgenic mice by 
reducing tau phosphorylation  

 Reduces Aβ accumulation, and restores 
memory function in transgenic AD mice 

 Protects dopaminergic neurons of mice 
exposed to toxicant agents 

NCT03533257-Phase II 
NCT02046434-Phase I 

Name: sodium phenylbutyrate, buphenyl, 4-phenylbutiric
acid, 4-phenylbutonoic acid, benzenebutanoic acid,
benzenebutyric acid, butyric acid
IUPAC name: sodium;4-phenylbutanoate
Molecular formula: C10H11NaO2
Molecular Weight: 186.182909 g/mol
Category: HDAC inhibitors
Targets: Class I HDAC, Class IIa HDAC, Class IIb HDAC

Pathogenic genes:
ARG1, ASS1, BCL2, CPS1, NAGS, OTC
Mechanistic genes:
BCL2, BDNF, EDN1, HDACs, HSPA8, ICAM1,
NFKB2, NT3, VCAM1
Metabolic genes:
Inhibitor:HDACs
Inducer: ARG1, CFTR, CYP2B6, NFKB2
Transporter genes:
CFTR
Pleiotropic genes:
ASL, BDNF, VCAM1

â Promotes the expression of genes
involved in synaptic plasticity (via
histone acetylation)

â Restores memory and learning
functions in AD transgenic mice by
reducing tau phosphorylation

â Reduces Aβ accumulation, and
restores memory function in transgenic
AD mice

â Protects dopaminergic neurons of mice
exposed to toxicant agents

NCT03533257-Phase II
NCT02046434-Phase I
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Name: Nicotinamide, niacinamide, vitamin PP, 
aminicotin, nicotinic acid amide, amixicotyn, 
3-pyridinecarboxamide, papulex, nicotylamide 
IUPAC name: pyridine-3-carboxamide 
Molecular formula: C6H6N2O 
Molecular Weight: 122.12 g/mol 
Category: SIRT inhibitors 
Targets: class III HDAC (SIRT1-7) 

Pathogenic genes: 
IL6, IL8, PTGS2, TNF 
Mechanistic genes: 
ARTs, CAT, CLOCK, FOXO3, GPXs, IL6, IL8, 
PARP1, PTGS2, SIRT1, SOD1, TNF 
Metabolic genes: 
Inhibitor: CYP2D6, CYP3A4, CYP2E1, SIRT1-7 
Pleiotropic genes: 
CAT, PARP1 

 Improves the stability of microtubules 
by reducing phosphorylated tau in 
triple transgenic 3xTg-AD mice  

 restores cognitive deficits in triple 
transgenic 3xTg-AD mice 

NTC00580931-Phases I, II 
NTC03061474-Phase II 

 

Name: Resveratrol, trans-resveratrol, 501-36-0, 
3,4′,5-trihydroxystilbene, (E)-resveratrol, resvida 
IUPAC name: 
5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol 
Molecular formula: C14H12O3 
Molecular Weight: 228.24 g/mol 
Category: SIRT inhibitors 
Targets: class III HDAC (SIRT1) 

Pathogenic genes: 
BCL2, CAV1, ESR1, ESR2, GRIN2B, NOS3, PTGS2, 
TNFRSF10A, TNFRSF10B 
Mechanistic genes: 
APP, ATF3, BAX, BAK1, BBC3, BCL2, BCL2L1, 
BCL2L11, BIRC5, CASP3, CAV1, CFTR, ESR1, ESR2, 
GRIN1, GRIN2B, HTR3A, NFKB1, NOS3, PMAIP1, 
PTGS1, PTGS2, SIRT1, SIRT3, SIRT5, SRC, 
TNFRSF10A, TNFRSF10B, TRPs 
Metabolic genes: 
Substrate: CYP1A1, CYP1A2, CYP1B1, CYP2E1, 
GSTP1, PTGS1, PTGS2  
Inhibitor: CYP1A1, CYP1B1, CYP2C9, CYP2D6, 
CYP3A4, NQO2 
Inducer: CYP1A2, SIRT1 
Transporter genes: 
ABCC1, ABCC2, ABCC3, ABCC4, ABCC8, ABCG1, 
ABCG2, CFTR, TRPs 

 Neuroprotective role through inhibition 
of Aβ aggregation, along with 
anti-oxidative and anti-inflammatory 
pathways  

 Improves long-term memory formation 
by promoting SIRT1 activity and 
inhibiting Aβ-induced apoptosis  

 Upregulates cAMP response 
element-binding protein (CBP) levels 
and promotes synthesis of neurotrophic 
factors by downregulation of miR-124 
and miR-134 expression  

NCT01504854-Phase II 
NCT00678431-Phase III 
NCT00743743-withdrown 
NCT02502253-Phase I 

 

Name: Curcumin, diferuloylmethane, turmeric 
yellow, turmeric, gelbwurz, kacha haldi, curcuma, 
haldar, souchet 
IUPAC name: 
(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,
6-diene-3,5-dione 
Molecular formula: C21H20O6 
Molecular Weight: 368.38 g/mol 
Category: HAT inhibitors 
Targets: HATs 

Pathogenic genes: 
BACE1, CCND1, CDH1, GSK3B, IL1A, IL6, JUN, 
MSR1, PSEN1, PTGS2, SNCA, SREBF1, TNF 
Mechanistic genes: 
AKT1, PRKAs, BACE1, CCND1, CDH1, CDKs, 
CRM1, CTNNB1, EGF, GSK3B, HDACs, HIF1A, 
IL1A, IL6, JUN, MMPs, MSR1, NFKB1, NOS2, 
PDGFRs, PSEN1, PTGS2, SNCA, SOCS1, SOCS3, 
SREBF1, STAT3, TNF, VEGFA 
Metabolic genes: 
Inhibitor: CYP2C8, CYP2C9, EP300 
Inducer: CYP2C8, CYP2C9, CYP2D6, CYP3A4 
Transporter genes: 
ABCA1, SNCA 
Pleiotropic genes: 
CTNNB1, MSR1 

 Prevents oxidation by promoting heme 
oxygenase 1 and Phase II detoxification 
enzymes in neurons  

 Enhances mitochondrial metabolism in 
brains of rats treated with aluminum  

 Prevents neuroinflammation, 
Aβ-mediated cell signaling 
disturbances, and tau phosphorylation  

 Combination of curcumin with other 
derivatives, constitute the turmeric, 
which improves the behavioral 
symptoms of AD 

NTC00164749-Phases I, II 
NTC00099710-Phase II 
NTC01716637-Phase I 
NTC01811381-Recruting 
NTC02114372-Recruting 

Name: Nicotinamide, niacinamide, vitamin PP, aminicotin,
nicotinic acid amide, amixicotyn, 3-pyridinecarboxamide,
papulex, nicotylamide
IUPAC name: pyridine-3-carboxamide
Molecular formula: C6H6N2O
Molecular Weight: 122.12 g/mol
Category: SIRT inhibitors
Targets: class III HDAC (SIRT1-7)

Pathogenic genes:
IL6, IL8, PTGS2, TNF
Mechanistic genes:
ARTs, CAT, CLOCK, FOXO3, GPXs, IL6, IL8,
PARP1, PTGS2, SIRT1, SOD1, TNF
Metabolic genes:
Inhibitor:CYP2D6, CYP3A4, CYP2E1, SIRT1-7
Pleiotropic genes:
CAT, PARP1

â Improves the stability of microtubules
by reducing phosphorylated tau in
triple transgenic 3xTg-AD mice

â restores cognitive deficits in triple
transgenic 3xTg-AD mice

NTC00580931-Phases I, II
NTC03061474-Phase II
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Name: Nicotinamide, niacinamide, vitamin PP, 
aminicotin, nicotinic acid amide, amixicotyn, 
3-pyridinecarboxamide, papulex, nicotylamide 
IUPAC name: pyridine-3-carboxamide 
Molecular formula: C6H6N2O 
Molecular Weight: 122.12 g/mol 
Category: SIRT inhibitors 
Targets: class III HDAC (SIRT1-7) 

Pathogenic genes: 
IL6, IL8, PTGS2, TNF 
Mechanistic genes: 
ARTs, CAT, CLOCK, FOXO3, GPXs, IL6, IL8, 
PARP1, PTGS2, SIRT1, SOD1, TNF 
Metabolic genes: 
Inhibitor: CYP2D6, CYP3A4, CYP2E1, SIRT1-7 
Pleiotropic genes: 
CAT, PARP1 

 Improves the stability of microtubules 
by reducing phosphorylated tau in 
triple transgenic 3xTg-AD mice  

 restores cognitive deficits in triple 
transgenic 3xTg-AD mice 

NTC00580931-Phases I, II 
NTC03061474-Phase II 

 

Name: Resveratrol, trans-resveratrol, 501-36-0, 
3,4′,5-trihydroxystilbene, (E)-resveratrol, resvida 
IUPAC name: 
5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol 
Molecular formula: C14H12O3 
Molecular Weight: 228.24 g/mol 
Category: SIRT inhibitors 
Targets: class III HDAC (SIRT1) 

Pathogenic genes: 
BCL2, CAV1, ESR1, ESR2, GRIN2B, NOS3, PTGS2, 
TNFRSF10A, TNFRSF10B 
Mechanistic genes: 
APP, ATF3, BAX, BAK1, BBC3, BCL2, BCL2L1, 
BCL2L11, BIRC5, CASP3, CAV1, CFTR, ESR1, ESR2, 
GRIN1, GRIN2B, HTR3A, NFKB1, NOS3, PMAIP1, 
PTGS1, PTGS2, SIRT1, SIRT3, SIRT5, SRC, 
TNFRSF10A, TNFRSF10B, TRPs 
Metabolic genes: 
Substrate: CYP1A1, CYP1A2, CYP1B1, CYP2E1, 
GSTP1, PTGS1, PTGS2  
Inhibitor: CYP1A1, CYP1B1, CYP2C9, CYP2D6, 
CYP3A4, NQO2 
Inducer: CYP1A2, SIRT1 
Transporter genes: 
ABCC1, ABCC2, ABCC3, ABCC4, ABCC8, ABCG1, 
ABCG2, CFTR, TRPs 

 Neuroprotective role through inhibition 
of Aβ aggregation, along with 
anti-oxidative and anti-inflammatory 
pathways  

 Improves long-term memory formation 
by promoting SIRT1 activity and 
inhibiting Aβ-induced apoptosis  

 Upregulates cAMP response 
element-binding protein (CBP) levels 
and promotes synthesis of neurotrophic 
factors by downregulation of miR-124 
and miR-134 expression  

NCT01504854-Phase II 
NCT00678431-Phase III 
NCT00743743-withdrown 
NCT02502253-Phase I 

 

Name: Curcumin, diferuloylmethane, turmeric 
yellow, turmeric, gelbwurz, kacha haldi, curcuma, 
haldar, souchet 
IUPAC name: 
(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,
6-diene-3,5-dione 
Molecular formula: C21H20O6 
Molecular Weight: 368.38 g/mol 
Category: HAT inhibitors 
Targets: HATs 

Pathogenic genes: 
BACE1, CCND1, CDH1, GSK3B, IL1A, IL6, JUN, 
MSR1, PSEN1, PTGS2, SNCA, SREBF1, TNF 
Mechanistic genes: 
AKT1, PRKAs, BACE1, CCND1, CDH1, CDKs, 
CRM1, CTNNB1, EGF, GSK3B, HDACs, HIF1A, 
IL1A, IL6, JUN, MMPs, MSR1, NFKB1, NOS2, 
PDGFRs, PSEN1, PTGS2, SNCA, SOCS1, SOCS3, 
SREBF1, STAT3, TNF, VEGFA 
Metabolic genes: 
Inhibitor: CYP2C8, CYP2C9, EP300 
Inducer: CYP2C8, CYP2C9, CYP2D6, CYP3A4 
Transporter genes: 
ABCA1, SNCA 
Pleiotropic genes: 
CTNNB1, MSR1 

 Prevents oxidation by promoting heme 
oxygenase 1 and Phase II detoxification 
enzymes in neurons  

 Enhances mitochondrial metabolism in 
brains of rats treated with aluminum  

 Prevents neuroinflammation, 
Aβ-mediated cell signaling 
disturbances, and tau phosphorylation  

 Combination of curcumin with other 
derivatives, constitute the turmeric, 
which improves the behavioral 
symptoms of AD 

NTC00164749-Phases I, II 
NTC00099710-Phase II 
NTC01716637-Phase I 
NTC01811381-Recruting 
NTC02114372-Recruting 

Name: Resveratrol, trans-resveratrol, 501-36-0,
3,4′,5-trihydroxystilbene, (E)-resveratrol, resvida
IUPAC name:
5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol
Molecular formula: C14H12O3
Molecular Weight: 228.24 g/mol
Category: SIRT inhibitors
Targets: class III HDAC (SIRT1)

Pathogenic genes:
BCL2, CAV1, ESR1, ESR2, GRIN2B, NOS3,
PTGS2, TNFRSF10A, TNFRSF10B
Mechanistic genes:
APP, ATF3, BAX, BAK1, BBC3, BCL2, BCL2L1,
BCL2L11, BIRC5, CASP3, CAV1, CFTR, ESR1,
ESR2, GRIN1, GRIN2B, HTR3A, NFKB1, NOS3,
PMAIP1, PTGS1, PTGS2, SIRT1, SIRT3, SIRT5,
SRC, TNFRSF10A, TNFRSF10B, TRPs
Metabolic genes:
Substrate:CYP1A1, CYP1A2, CYP1B1, CYP2E1,
GSTP1, PTGS1, PTGS2
Inhibitor: CYP1A1, CYP1B1, CYP2C9, CYP2D6,
CYP3A4, NQO2
Inducer:CYP1A2, SIRT1
Transporter genes:
ABCC1, ABCC2, ABCC3, ABCC4, ABCC8, ABCG1,
ABCG2, CFTR, TRPs

â Neuroprotective role through
inhibition of Aβ aggregation, along
with anti-oxidative and
anti-inflammatory pathways

â Improves long-term memory formation
by promoting SIRT1 activity and
inhibiting Aβ-induced apoptosis

â Upregulates cAMP response
element-binding protein (CBP) levels
and promotes synthesis of
neurotrophic factors by
downregulation of miR-124 and
miR-134 expression

NCT01504854-Phase II
NCT00678431-Phase III
NCT00743743-withdrown
NCT02502253-Phase I
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Name: Nicotinamide, niacinamide, vitamin PP, 
aminicotin, nicotinic acid amide, amixicotyn, 
3-pyridinecarboxamide, papulex, nicotylamide 
IUPAC name: pyridine-3-carboxamide 
Molecular formula: C6H6N2O 
Molecular Weight: 122.12 g/mol 
Category: SIRT inhibitors 
Targets: class III HDAC (SIRT1-7) 

Pathogenic genes: 
IL6, IL8, PTGS2, TNF 
Mechanistic genes: 
ARTs, CAT, CLOCK, FOXO3, GPXs, IL6, IL8, 
PARP1, PTGS2, SIRT1, SOD1, TNF 
Metabolic genes: 
Inhibitor: CYP2D6, CYP3A4, CYP2E1, SIRT1-7 
Pleiotropic genes: 
CAT, PARP1 

 Improves the stability of microtubules 
by reducing phosphorylated tau in 
triple transgenic 3xTg-AD mice  

 restores cognitive deficits in triple 
transgenic 3xTg-AD mice 

NTC00580931-Phases I, II 
NTC03061474-Phase II 

 

Name: Resveratrol, trans-resveratrol, 501-36-0, 
3,4′,5-trihydroxystilbene, (E)-resveratrol, resvida 
IUPAC name: 
5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol 
Molecular formula: C14H12O3 
Molecular Weight: 228.24 g/mol 
Category: SIRT inhibitors 
Targets: class III HDAC (SIRT1) 

Pathogenic genes: 
BCL2, CAV1, ESR1, ESR2, GRIN2B, NOS3, PTGS2, 
TNFRSF10A, TNFRSF10B 
Mechanistic genes: 
APP, ATF3, BAX, BAK1, BBC3, BCL2, BCL2L1, 
BCL2L11, BIRC5, CASP3, CAV1, CFTR, ESR1, ESR2, 
GRIN1, GRIN2B, HTR3A, NFKB1, NOS3, PMAIP1, 
PTGS1, PTGS2, SIRT1, SIRT3, SIRT5, SRC, 
TNFRSF10A, TNFRSF10B, TRPs 
Metabolic genes: 
Substrate: CYP1A1, CYP1A2, CYP1B1, CYP2E1, 
GSTP1, PTGS1, PTGS2  
Inhibitor: CYP1A1, CYP1B1, CYP2C9, CYP2D6, 
CYP3A4, NQO2 
Inducer: CYP1A2, SIRT1 
Transporter genes: 
ABCC1, ABCC2, ABCC3, ABCC4, ABCC8, ABCG1, 
ABCG2, CFTR, TRPs 

 Neuroprotective role through inhibition 
of Aβ aggregation, along with 
anti-oxidative and anti-inflammatory 
pathways  

 Improves long-term memory formation 
by promoting SIRT1 activity and 
inhibiting Aβ-induced apoptosis  

 Upregulates cAMP response 
element-binding protein (CBP) levels 
and promotes synthesis of neurotrophic 
factors by downregulation of miR-124 
and miR-134 expression  

NCT01504854-Phase II 
NCT00678431-Phase III 
NCT00743743-withdrown 
NCT02502253-Phase I 

 

Name: Curcumin, diferuloylmethane, turmeric 
yellow, turmeric, gelbwurz, kacha haldi, curcuma, 
haldar, souchet 
IUPAC name: 
(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,
6-diene-3,5-dione 
Molecular formula: C21H20O6 
Molecular Weight: 368.38 g/mol 
Category: HAT inhibitors 
Targets: HATs 

Pathogenic genes: 
BACE1, CCND1, CDH1, GSK3B, IL1A, IL6, JUN, 
MSR1, PSEN1, PTGS2, SNCA, SREBF1, TNF 
Mechanistic genes: 
AKT1, PRKAs, BACE1, CCND1, CDH1, CDKs, 
CRM1, CTNNB1, EGF, GSK3B, HDACs, HIF1A, 
IL1A, IL6, JUN, MMPs, MSR1, NFKB1, NOS2, 
PDGFRs, PSEN1, PTGS2, SNCA, SOCS1, SOCS3, 
SREBF1, STAT3, TNF, VEGFA 
Metabolic genes: 
Inhibitor: CYP2C8, CYP2C9, EP300 
Inducer: CYP2C8, CYP2C9, CYP2D6, CYP3A4 
Transporter genes: 
ABCA1, SNCA 
Pleiotropic genes: 
CTNNB1, MSR1 

 Prevents oxidation by promoting heme 
oxygenase 1 and Phase II detoxification 
enzymes in neurons  

 Enhances mitochondrial metabolism in 
brains of rats treated with aluminum  

 Prevents neuroinflammation, 
Aβ-mediated cell signaling 
disturbances, and tau phosphorylation  

 Combination of curcumin with other 
derivatives, constitute the turmeric, 
which improves the behavioral 
symptoms of AD 

NTC00164749-Phases I, II 
NTC00099710-Phase II 
NTC01716637-Phase I 
NTC01811381-Recruting 
NTC02114372-Recruting 

Name: Curcumin, diferuloylmethane, turmeric yellow,
turmeric, gelbwurz, kacha haldi, curcuma, haldar, souchet
IUPAC name:
(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-
diene-3,5-dione
Molecular formula: C21H20O6
Molecular Weight: 368.38 g/mol
Category: HAT inhibitors
Targets: HATs

Pathogenic genes:
BACE1, CCND1, CDH1, GSK3B, IL1A, IL6, JUN,
MSR1, PSEN1, PTGS2, SNCA, SREBF1, TNF
Mechanistic genes:
AKT1, PRKAs, BACE1, CCND1, CDH1, CDKs,
CRM1, CTNNB1, EGF, GSK3B, HDACs, HIF1A,
IL1A, IL6, JUN, MMPs, MSR1, NFKB1, NOS2,
PDGFRs, PSEN1, PTGS2, SNCA, SOCS1, SOCS3,
SREBF1, STAT3, TNF, VEGFA
Metabolic genes:
Inhibitor: CYP2C8, CYP2C9, EP300
Inducer:CYP2C8, CYP2C9, CYP2D6, CYP3A4
Transporter genes:
ABCA1, SNCA
Pleiotropic genes:
CTNNB1, MSR1

â Prevents oxidation by promoting heme
oxygenase 1 and Phase II detoxification
enzymes in neurons

â Enhances mitochondrial metabolism in
brains of rats treated with aluminum

â Prevents neuroinflammation,
Aβ-mediated cell signaling
disturbances, and tau phosphorylation

â Combination of curcumin with other
derivatives, constitute the turmeric,
which improves the behavioral
symptoms of AD

NTC00164749-Phases I, II
NTC00099710-Phase II
NTC01716637-Phase I
NTC01811381-Recruting
NTC02114372-Recruting
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Name: S-adenosylmethionine, ademetionine, 
AdoMet, donamet, methioninyladenylate, 
S-adenosyl-L-methionine, SAM-e 
IUPAC name: 
[(3S)-3-amino-3-carboxypropyl]-[[(2S,3S,4R,5R)-5-(6-a
minopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl]-m
ethylsulfanium 
Molecular formula: C15H23N6O5S+ 
Molecular Weight: 399.45 g/mol 
Category: HMT inhibitors 
Targets: HMTs 

Pathogenic genes: 
AKT, ERK, GNMT, MAT1A, PSEN1 
Mechanistic genes: 
AMD1, CAT, CBS, GCLC, GNMT, GSS, NOS2, 
ROS1, STAT1, TNF 
Metabolic genes: 
Substrate: COMT, GNMT, TPMT, SRM 
Inhibitor: ABCB1, CYP2E1, NOS2 
Transporter genes: 
SLC25A26 
Pleiotropic genes: 
CAT, TNF 

 One of the main methyl donors in the 
body, as well as DNA and histone 
methylation activator 

 Restores global DNA and gene specific 
methylation levels resulting in 
neuroprotection, improved memory 
functions, and reduced AD and PD 
symptoms 

NTC01320527-Phase II 
NTC00070941-Phases II, III 

ABAT: 4-aminobutyrate aminotransferase; ABCA1: ATP-binding cassette, subfamily A, member 1; ABCB1: ATP-binding cassette, subfamily B, member 1; ABCC1: 
ATP-binding cassette, subfamily C, member 1; ABCC2: ATP-binding cassette, subfamily C, member 2; ABCC3: ATP-binding cassette, subfamily C, member 3; 
ABCC4: ATP-binding cassette, subfamily C, member 4; ABCC8: ATP-binding cassette, subfamily C, member 8; ABCG1: ATP-binding cassette, subfamily G, 
member 1; ABCG2: ATP-binding cassette, subfamily G, member 2; ABL2: c-abl proto-oncogene 2, non-receptor tyrosine kinase; ACACA: acetyl-CoA carboxylase 
alpha; ACADSB: acyl-CoA dehydrogenase, short/branched chain; ADORA2A: adenosine 2A2 receptor; AGPAT2: 1-acylglycerol-3-phosphate O-acyltransferase 2; 
AKR1A1: aldo-keto reductase family 1 member A1; AKT1: AKT serine/threonine kinase 1; ALDH1A1: Aldehyde dehydrogenase 1 family, member A1; AMD1: 
adenosylmethionine decarboxylase 1; AOX1: aldehyde oxidase 1; APOB: apolipoprotein B; APP: amyloid beta precursor protein; ARG1: arginase 1; ARTS: ADP 
ribosyltransferases; ASL: argininosuccinate lyase; ASS1: argininosuccinate synthase 1; ATF3: activating transcription factor 3; BACE1: beta-secretase 1; BAK1: BCL2 
antagonist/killer 1; BAX: BCL2 associated X, apoptosis regulator; BBC3: BCL2 binding component 3; BCL2: B-cell lymphoma 2, apoptosis regulator; BCL2L1: BCL2 
like 1; BCL2L11: BCL2 like 11; BDNF: brain-derived neurotrophic factor; BIRC5: baculoviral IAP repeat containing 5; BMP2: bone morphogenetic protein 2; CASP3: 
caspase 3; CASR: calcium sensing receptor; CAT: catalase; CAV1: caveolin 1; CBS: cystathionine-beta-synthase; Ccl8: C-C motif chemokine ligand 8; CCND1: cyclin 
D1; CD36: CD36 molecule; CD4: CD4 molecule; CDH1: cadherin 1; CDK: cyclin-dependent kinase; CDK2: cyclin-dependent kinase 2; CDK4: cyclin-dependent 
kinase 4; CDK5: cyclin-dependent kinase 5; CDKN2A: cyclin-dependent kinase inhibitor 2A; CDX2: caudal type homeobox 2; CFTR: cystic fibrosis transmembrane 
conductance regulator; CHRNA1: cholinergic receptor nicotinic alpha 1 subunit; CHRNA7: cholinergic receptor nicotinic alpha 7 subunit; CLOCK: circadian 
locomotor output cycles kaput; COL1A1: collagen type I alpha 1 chain; COMT: catechol-O-methyltransferase; CPS1: carbamoyl-phosphate synthase 1; CPT1A: 
carnitine palmitoyltransferase 1A; CREB1: cAMP responsive element binding protein 1; CRM1: exportin CRM1; CRP: C-reactive protein; CTNNB1: catenin beta 1; 
CYP19A1: cytochrome P450 family 19 subfamily A member 1; CYP1A1: cytochrome P450 family 1 subfamily A member 1; CYP1A2: cytochrome P450 family 1 
subfamily A member 2; CYP1B1: cytochrome P450 family 1 subfamily B member 1; CYP2A6: cytochrome P450 family 2 subfamily A member 6; CYP2B6: 
cytochrome P450 family 2 subfamily B member 6; CYP2C19: cytochrome P450 family 2 subfamily C member 19; CYP2C8: cytochrome P450 family 2 subfamily C 
member 8; CYP2C9: cytochrome P450 family 2 subfamily C member 9; CYP2D6: cytochrome P450 family 2 subfamily D member 6; CYP2E1: cytochrome P450 
family 2 subfamily E member 1; CYP2J2: cytochrome P450 family 2 subfamily J member 2; CYP3A4: cytochrome P450 family 3 subfamily A member 4; CYP4B1: 
cytochrome P450 family 4 subfamily B member 1; CYP4F2: cytochrome P450 family 4 subfamily F member 2; CYP7A1: cytochrome P450 family 7 subfamily A 
member 1; DIO2: iodothyronine deiodinase 2; DR4: drought-repressed 4; ECEs: endothelin converting enzymes; EDN1: endothelin 1; EGF: epidermal growth 
factor; EGFR: epidermal growth factor receptor; EP300: E1A binding protein p300; ERCC2: excision repair, complementing defective, in Chinese hamster, 2; ERK: 
extracellular regulated MAP kinase; ESR1: estrogen receptor 1; ESR2: estrogen receptor 1; FAS: Fas (TNF receptor superfamily member 6); FMR1: fragile X mental 
retardation 1; FOS: FBJ osteosarcoma oncogene; FOXO3: forkhead box O3; GCLC: glutamate-cysteine ligase catalytic subunit; GNMT: glycine N-methyltransferase; 

Name: S-adenosylmethionine, ademetionine, AdoMet,
donamet, methioninyladenylate, S-adenosyl-l-methionine,
SAM-e
IUPAC name:
[(3S)-3-amino-3-carboxypropyl]-[[(2S,3S,4R,5R)-5-
(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl]-
methylsulfanium
Molecular formula: C15H23N6O5S+

Molecular Weight: 399.45 g/mol
Category: HMT inhibitors
Targets: HMTs

Pathogenic genes:
AKT, ERK, GNMT, MAT1A, PSEN1
Mechanistic genes:
AMD1, CAT, CBS, GCLC, GNMT, GSS, NOS2,
ROS1, STAT1, TNF
Metabolic genes:
Substrate:COMT, GNMT, TPMT, SRM
Inhibitor: ABCB1, CYP2E1, NOS2
Transporter genes:
SLC25A26
Pleiotropic genes:
CAT, TNF

â One of the main methyl donors in the
body, as well as DNA and histone
methylation activator

â Restores global DNA and gene specific
methylation levels resulting in
neuroprotection, improved memory
functions, and reduced AD and
PD symptoms

NTC01320527-Phase II
NTC00070941-Phases II, III

ABAT: 4-aminobutyrate aminotransferase; ABCA1: ATP-binding cassette, subfamily A, member 1; ABCB1: ATP-binding cassette, subfamily B, member 1; ABCC1: ATP-binding cassette,

subfamily C, member 1; ABCC2: ATP-binding cassette, subfamily C, member 2; ABCC3: ATP-binding cassette, subfamily C, member 3; ABCC4: ATP-binding cassette, subfamily C,

member 4; ABCC8: ATP-binding cassette, subfamily C, member 8; ABCG1: ATP-binding cassette, subfamily G, member 1; ABCG2: ATP-binding cassette, subfamily G, member 2; ABL2:

c-abl proto-oncogene 2, non-receptor tyrosine kinase; ACACA: acetyl-CoA carboxylase alpha; ACADSB: acyl-CoA dehydrogenase, short/branched chain; ADORA2A: adenosine 2A2

receptor; AGPAT2: 1-acylglycerol-3-phosphate O-acyltransferase 2; AKR1A1: aldo-keto reductase family 1 member A1; AKT1: AKT serine/threonine kinase 1; ALDH1A1: Aldehyde

dehydrogenase 1 family, member A1; AMD1: adenosylmethionine decarboxylase 1; AOX1: aldehyde oxidase 1; APOB: apolipoprotein B; APP: amyloid beta precursor protein; ARG1:

arginase 1; ARTS: ADP ribosyltransferases; ASL: argininosuccinate lyase; ASS1: argininosuccinate synthase 1; ATF3: activating transcription factor 3; BACE1: beta-secretase 1; BAK1: BCL2

antagonist/killer 1; BAX: BCL2 associated X, apoptosis regulator; BBC3: BCL2 binding component 3; BCL2: B-cell lymphoma 2, apoptosis regulator; BCL2L1: BCL2 like 1; BCL2L11: BCL2

like 11; BDNF: brain-derived neurotrophic factor; BIRC5: baculoviral IAP repeat containing 5; BMP2: bone morphogenetic protein 2; CASP3: caspase 3; CASR: calcium sensing receptor;

CAT: catalase; CAV1: caveolin 1; CBS: cystathionine-beta-synthase; Ccl8: C-C motif chemokine ligand 8; CCND1: cyclin D1; CD36: CD36 molecule; CD4: CD4 molecule; CDH1: cadherin 1;

CDK: cyclin-dependent kinase; CDK2: cyclin-dependent kinase 2; CDK4: cyclin-dependent kinase 4; CDK5: cyclin-dependent kinase 5; CDKN2A: cyclin-dependent kinase inhibitor 2A;

CDX2: caudal type homeobox 2; CFTR: cystic fibrosis transmembrane conductance regulator; CHRNA1: cholinergic receptor nicotinic alpha 1 subunit; CHRNA7: cholinergic receptor

nicotinic alpha 7 subunit; CLOCK: circadian locomotor output cycles kaput; COL1A1: collagen type I alpha 1 chain; COMT: catechol-O-methyltransferase; CPS1: carbamoyl-phosphate

synthase 1; CPT1A: carnitine palmitoyltransferase 1A; CREB1: cAMP responsive element binding protein 1; CRM1: exportin CRM1; CRP: C-reactive protein; CTNNB1: catenin beta 1;

CYP19A1: cytochrome P450 family 19 subfamily A member 1; CYP1A1: cytochrome P450 family 1 subfamily A member 1; CYP1A2: cytochrome P450 family 1 subfamily A member

2; CYP1B1: cytochrome P450 family 1 subfamily B member 1; CYP2A6: cytochrome P450 family 2 subfamily A member 6; CYP2B6: cytochrome P450 family 2 subfamily B member 6;

CYP2C19: cytochrome P450 family 2 subfamily C member 19; CYP2C8: cytochrome P450 family 2 subfamily C member 8; CYP2C9: cytochrome P450 family 2 subfamily C member

9; CYP2D6: cytochrome P450 family 2 subfamily D member 6; CYP2E1: cytochrome P450 family 2 subfamily E member 1; CYP2J2: cytochrome P450 family 2 subfamily J member 2;

CYP3A4: cytochrome P450 family 3 subfamily A member 4; CYP4B1: cytochrome P450 family 4 subfamily B member 1; CYP4F2: cytochrome P450 family 4 subfamily F member 2;

CYP7A1: cytochrome P450 family 7 subfamily A member 1; DIO2: iodothyronine deiodinase 2; DR4: drought-repressed 4; ECEs: endothelin converting enzymes; EDN1: endothelin 1; EGF:

epidermal growth factor; EGFR: epidermal growth factor receptor; EP300: E1A binding protein p300; ERCC2: excision repair, complementing defective, in Chinese hamster, 2; ERK:

extracellular regulated MAP kinase; ESR1: estrogen receptor 1; ESR2: estrogen receptor 1; FAS: Fas (TNF receptor superfamily member 6); FMR1: fragile X mental retardation 1; FOS: FBJ
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osteosarcoma oncogene; FOXO3: forkhead box O3; GCLC: glutamate-cysteine ligase catalytic subunit; GNMT: glycine N-methyltransferase; GPX: phage tail protein; GRIN1: glutamate

ionotropic receptor NMDA type subunit 1; GRIN2B: glutamate ionotropic receptor NMDA type subunit 2B; GSK3B: glycogen synthase kinase 3 beta; GSS: glutathione synthetase;

GSTA1: glutathione S-transferase alpha 1; GSTK1: glutathione S-transferase kappa 1; GSTP1: glutathione S-transferase pi 1; GSTT1: glutathione S-transferase theta 1; HATs: Histone

acetyltransferases; HBB: hemoglobin subunit beta; HDACs: histone deacetylases; HDAC 1-9: histone deacetylases 1–9; HFE: hemochromatosis; HIF1A: hypoxia inducible factor 1 alpha

subunit; HLA-A: major histocompatibility complex, class I, A; HLA-B: major histocompatibility complex, class I, B; HMTs: Histone Methyl Transferases; HSD17B1: hydroxysteroid

17-beta dehydrogenase 1; HSPA8: heat-shock 70-KD protein 8; HTR3A: 5-hydroxytryptamine receptor 3A; ICAM1: intercellular adhesion molecule 1; IFNG: interferon gamma; IKK:

I-kappaB kinase beta; IL10: interleukin 10; IL1A: interleukin 1A; IL1R: interleukin receptor; IL2: interleukin 2; IL6: interleukin 6; IL8: interleukin 8; IRS1: insulin receptor substrate 1;

JUN: Jun proto-oncogene, AP-1 transcription factor subunit; LEP: leptin; LEPR: leptin receptor; MAOA: monoamine oxidase A; MAT1A: methionine adenosyltransferase 1A; MMP:

matrix metalloproteinase; MSH2: mutS homolog 2; MSR1: macrophage scavenger receptor 1; MTHF: 5,10 methylenetetrahydrofolate; MTHFR: 5,10 methylenetetrahydrofolate receptor;

MTND4: mitochondrially encoded NADH dehydrogenase 4; NAGS: N-acetylglutamate synthase; NAT2: N-actyltransferase 2; NFkB: nuclear factor kappa-B; NFkB1: nuclear factor kappa

B subunit 1; NFkB2: nuclear factor kappa B subunit 2; NOS2: nitric oxide synthase 2; NOS3: nitric oxide synthase 3; NQO2: N-ribosyldihydronicotinamide:quinone reductase 2; NR1I2:

nuclear receptor subfamily 1 group I member 2; NR1I3: nuclear receptor subfamily 1 group I member 3; NR3C1: nuclear receptor subfamily 3 group C member 1; NT3: neurotrophin 3;

OTC: ornithine carbamoyltransferase; PARP1: poly(ADP-ribose) polymerase 1; PDGFR: platelet derived growth factor receptor; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase

catalytic subunit alpha; PMAIP1: phorbol-12-myristate-13-acetate-induced protein 1; PON1: paraoxonase 1; PPAR: peroxisome proliferator-activated receptor; PRDX4: peroxiredoxin 4;

PRKA: serine protein kinase PrkA; PSEN1: presenilin 1; PTGS1: prostaglandin-endoperoxide synthase 1; PTGS2: prostaglandin-endoperoxide synthase 2; ROS1: ROS proto-oncogene 1,

receptor tyrosine kinase; SAMe: S-adenosylmethionine; SCD: stearoyl-CoA desaturase; SCN2A: sodium voltage-gated channel alpha subunit 2; SIRT1-7: sirtuins 1–7; SLC12A3: solute

carrier family 12 member 3; SLC22A16: solute carrier family 22 member 16; SLC25A26: solute carrier family 25 member 26; SLC27A4: solute carrier family 27 member 4; SLC5A1: solute

carrier family 5 member 1; SLC5A5: solute carrier family 5 member 5; SLC6A2: solute carrier family 6 member 2; SLC19A1: solute carrier family 19 member 1; SLC22A8: solute carrier

family 22 member 8; SLC28A2: solute carrier family 28 member 8; SLCO1B1: solute carrier organic anion transporter family member 1B1; SLCO1B3: solute carrier organic anion transporter

family member 1B3; SMN2: survival of motor neuron 2, centromeric; SNCA: synuclein alpha; SOCS1: suppressor of cytokine signaling 1; SOCS3: suppressor of cytokine signaling 3;

SOD1: superoxide dismutase 1; SOD3: superoxide dismutase 3; SRC: SRC proto-oncogene, non-receptor tyrosine kinase; SREBF1: sterol regulatory element binding transcription factor 1;

SRM: spermidine synthase; STAT1: signal transducer and activator of transcription 1; STAT3: signal transducer and activator of transcription 3; SULT1E1: sulfotransferase family 1E

member 1; TGFB1: transforming growth factor beta 1; THF: Tetrahydrofolate; TNF: tumor necrosis factor; TNFRSF10A: TNF receptor superfamily member 10A; TNFRSF10B: TNF receptor

superfamily member 10B; TP53: tumor protein p53; TPMT: thiopurine S-methyltransferase; TRNK: mitochondrially encoded tRNA lysine; UGT1A1: UDP glucuronosyltransferase family 1

member A1; UGT1A10: UDP glucuronosyltransferase family 1 member A10; UGT1A3: UDP glucuronosyltransferase family 1 member A3; UGT1A4: UDP glucuronosyltransferase family 1

member A4; UGT1A6: UDP glucuronosyltransferase family 1 member A6; UGT1A8: UDP glucuronosyltransferase family 1 member A8; UGT1A9: UDP glucuronosyltransferase family 1

member A9; UGT2B1: UDP glucuronosyltransferase family 2 member B1; UGT2B7: UDP glucuronosyltransferase family 2 member B7; VCAM1: vascular cell adhesion molecule 1; VEGFA:

vascular endothelial growth factor A.
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4.1.2. DNA Methylation Inhibitors

Hypermethylation of pathogenic genes also promotes neurodegeneration. Therefore, approaches
using DNA methylation inhibitors may also be appropriate [2,19,26,53,54,152–155]. Indeed, several
DNMT inhibitors are currently submitted to clinical trials for AD treatment [145,156–160]. DNMT
inhibitors are often small molecules and natural products, although nucleoside analogs and ncRNAs
also target DNMTs.

The epigallocatechin-3-gallate (EGCG) is the main polyphenol of the green tea (Camilla sinensis).
EGCG prevents misfolded proteins from fibrillization [156] and restores respiratory rates and
membrane potential in isolated mitochondria from hippocampus, cortex, and striatum [157].
In addition, ECGC activates the signaling pathway involving the α7 nicotinic acetylcholine receptor
(α7 nAChR) and restores Bcl2 expression, preventing cell death in Aβ-treated neurons [158]. This
DNMT inhibitor is currently under clinical trials in phases II and III to test the effects of this compound
on the prevention of Aβ aggregation to toxic oligomers in AD through the direct binding to the
unfolded peptide (ClinicalTrials.gov Identifier: NCT00951834) [145] (Table 1). Other natural products
include non-nucleosides, such as curcumin derivatives RG-108 and SGI-1027 [54], psammaplins (inhibit
both DNMT1 and HDACs [53]), catechins (catechin and epicatechin), and bioflavonoids (quercetin,
genistein, and fisetin). Quercetin is one of the components of the Etanercept (Enbrel®), which is
an approved drug for the treatment of several forms of arthritis when administered by injection. Some
studies suggest that perispinally injected Etanercept may modulate certain aspects of the immune
system and provide some beneficial effect for people with Alzheimer’s disease. Studies suggest
that supplementation with specific nutrients may also have a positive effect in support of cognitive
function [159,160]. Etanercept is currently under phase I clinical trials (ClinicalTrials.gov Identifier:
NCT01716637) for treatment of mild to moderate AD [37] (Table 1).

Other DNMT inhibitors, such as the nucleoside analogs 5-aza-2′-deoxycytidine (Decitabine) and
5-azacytidine (Azacitidine) and the small molecules hydralazine and procainamide are also potential
treatments for neurodegeneration, although they are not yet submitted to clinical trials. However,
these epidrugs are currently FDA approved for other prevalent disorders including diverse types of
cancer, myelodisplastic syndrome, thalasemia, hypertension, and cardiac arrhythmia [53].

4.2. Histone Deacetylase (HDAC) Modulators

4.2.1. Class I, II, and IV HDAC Inhibitors

HDAC inhibitors (HDACi) potentially restore global histone deacetylation, which is a common
feature of most neurodegenerative processes. Most of HDACi under development provide beneficial
effects at cognitive and memory levels in animal models of AD [2,46,53,55,71,156,161] and PD [162–169].
However, only valproic acid (VPA), nicotinamide, and sodium phenylbutyrate (4-PBA) are currently
under clinical trials as epidrugs for treatment of neurodegeneration [145] (Table 1).

The most effective HDACi tested in those models are (i) the short-chain fatty acids, class I
HDACi (valproic acid (VPA)) and class I and II HDACis (sodium butyrate (NaB) and sodium
phenylbutyrate (NaPBA, 4-PBA)); (ii) the hydroxamic acids, class I and II HDACis (suberoylanilide
hydroxamic acid (SAHA, vorinostat) and trichostatin (TSA)); (iii) some benzamides, class I and II
HDACi (entinostat (MS-275), W2); (iv) miscellaneous compounds, class I and II HDACi (FRM-0334)
and HDAC6 specific inhibitors (Tubacin, Tubastatin A, quinazolin-4-one, (E)-3-(2-Ethyl-7-fluoro-4-
oxo-3-phenethyl-3,4-dihydroquinazolin-6-yl)-N-hydorxyacrylamide (4b), and N-hydroxy-3-(2-methyl-
4-oxo-3-phenethyl-3,4-dihydro-quinazolin-7-yl)-acrylamide (3f)); and (v) the class III HDACi or
SIRT inhibitor nicotinamide/niacinamide and SIRT activators as resveratrol and derivatives. Other
benzamides, cyclic peptides, and ketones showed powerful HDAC inhibition properties and some of
them are currently FDA approved for cancer treatment.

Low toxicity of NaB makes this drug tolerable for treatment in animals and humans [169–171].
NaB increases the peripheral levels of hypothalamic–pituitary–adrenal axis hormones and glucose.
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NaB administration reinstated memory and learning activities in transgenic AD mice. In addition,
prolonged exposure to NaB improved associative learning and memory in APP/PS1-21-AD transgenic
mice, even at a very advanced stage of pathology. This effect might be due to the NaB-mediated histone
acetylation in the hippocampus, modifying chromatin structure and enhancing the transcription of
genes involved in these tasks [161]. This compound may also be effective in reducing α-synuclein
aggregation and toxicity and rescuing cognitive deficits associated with PD in animal models [172,173].

4-PBA constitutes one of the most promising HDACi-based therapeutic agents due to the
successful results obtained in animal models. Histone acetylation mediated by 4-PBA, promotes
transcription of genes associated with synaptic plasticity and promotes the active form of GSK-3β,
preventing tau phosphorylation and restoring memory and learning activities in AD transgenic
mice [174]. Among these effects, other studies show an additional Aβ clearance in alternative
AD animal models [53]. Combination of 4-PBA with Tauroursodeoxycholic Acid is currently in
phase II clinical trials (ClinicalTrials.gov Identifier: NCT03533257) [145] in order to evaluate diverse
AD-relevant markers and produce an informative dataset that will allow for evaluation and correlation
of imaging-based markers, neurobiological changes, functional measures, and cognitive outcomes.
Treatment with 4-PBA also protects dopaminergic neurons, possibly through increased DJ-1 expression
and activation of tyrosine hydroxylase promoter in the substantia nigra of mice exposed to the
PD-promoting toxic agent 1-methyl-4-phenyl-pyridinium (MPTP) [172,175]. A current phase I clinical
trial (ClinicalTrials.gov Identifier: NCT02046434) [145] is attempting to investigate the potential effects
of phenylbutyrate on the removal of alpha-synuclein from the brain into the bloodstream.

The anticonvulsant VPA is a fatty acid originally used as treatment for epilepsy and as a mood
stabilizing agent. This is one of the most studied compounds for as a potential treatment for
neurodegeneration. VPA treatment promotes the expression of brain-derived neurotrophic factor
(BDNF) and glial-derived neurotrophic factor (GDNF), which play critical roles in the growth, survival,
and synaptic plasticity of neurons. In addition, VPA induces the expression of the heat-shock protein
Hsp70, accompanied by increased levels of H3 lysine di- and trimethylation (H3K4Me2 and H3K4Me3),
which promote the recruitment of HAT p300 [166]. Several studies show the ability of VPA to reduce Aβ

production and aggregation in AD cells and animal models, normally by inhibiting GSK-3β-mediated
γ-secretase cleavage of APP [176,177]. VPA, in combination with NaB and SAHA, promotes histone H4
acetylation, which results in a mitigated memory impairment [178]. VPA is currently submitted to three
clinical trials for AD and dementia patients: in phase I (ClinicalTrials.gov Identifier: NCT01729598) to
test the effect of VPA on the expression of clusterin, which is a currently studied epigenetic biomarker of
AD; in phase III (ClinicalTrials.gov Identifier: NCT00071721) to evaluate the effects of VPA in memory
tasks of individuals with dementia; and in phase II (ClinicalTrials.gov Identifier: NCT00088387) using
lithium alone or in combination with VPA (divalproex) in order to evaluate the potential decrease
of altered tau protein in the spinal fluid of patients with Alzheimer’s disease. [145,179,180]. Diverse
studies show that VPA enhanced H3 acetylation and consequently reduced α-synuclein-mediated
toxicity and decreased pro-inflammatory mediators, in PD cell models and animals exposed to
PD-promoting toxic agents, such as MPTP, rotenone, or lipopolysaccaride [162–165]. Furthermore,
VPA, as well as NaB and TSA, were able to rescue dopaminergic neurons death induced by the toxic
agents [167,181]. Combination of VPA with lithium enhances Ser 9 phosphorylation of GSK-3β in the
lumbar spinal cord and brain. Despite the undergoing clinical trials and the beneficial effects of VPA
in animal models, some human clinical studies revealed unsuccessful results or treatments required
significantly high doses that result toxic and lead to unacceptable adverse effects [108,182,183]. In this
regard, the pharmacogenetic profile of those patients would anticipate the interindividual tolerance
levels of this treatment.

Hydroxamic acids constitute another important class of HDAC inhibitors. Among them,
the antifungal protein synthesis inhibitor Trichostatin (TSA) and the HDAC6-specific inhibitor
Vorinostat (SAHA) are the most widely explored compounds for the treatment of neurodegenerative
diseases [48,108–114,116,167,168,184–186].
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Trichostatin (TSA) is class I HDAC inhibitor that enhances the expression of genes involved in
memory consolidation, possibly by promoting the acetylation of the histone H4 [108–110]. Some
studies also reflect restorage of memory function in APP/PS1-AD transgenic mice [48,112]. TSA also
reduces neurotoxicity in α-synuclein overexpressing Drosophila models of PD, improving locomotor
impairment, and reducing early mortality rates [114,116], as well as promoting H3 acetylation-mediated
GDNF upregulation in astrocytes [168,185,186].

The HDAC6-selective inhibitor Vorinostat (SAHA) is one of the most developed HDAC inhibitors
and was approved by FDA in 2006 for the treatment of advanced cutaneous T-cell lymphoma.
SAHA treatment enhances basal postsynaptic excitatory, but not inhibitory, synaptic function and
restores memory function in animal models of impaired learning tasks [113] and in the transgenic
APPswe/PS1dE9-AD mouse [111,184].

Some benzamides, such as entinostat and W2, provided promising results as HDACi in animal
models of AD. The selective HDAC1 inhibitor entinostat (MS-275) improved behavioral activities in
the AD-APPPS1-21 mouse model by reducing amyloid plaque deposition and neuroinflammatory
processes [187], while the mercaptoacetamide-based class II HDACi (W2) improved memory tasks
and reduced tau phosphorylation rates and Aβ deposition in triple transgenic 3xTg-AD mice [188].

Several miscellaneous HDAC inhibitors are under testing for neurodegenerative diseases,
especially for those involving dementia. Among this group, one of the most promising epidrugs
is the Forum Pharmaceutical compound (FRM-0334), specifically tested for dementia, which inhibits
a subset of class I and II human HDACs with a high efficiency (nanomolar IC50 values) and addresses
the issue of crossing the blood–brain barrier [189]. FRM-0334, also called EPV-0334, promotes histone
2A, 3, and 4 acetylation in the brain and exerts a potential neuroprotective role by restoring the levels
of the growth factor progranulin, which results in a significant improvement of cognitive performance
in mice and rat models of frontotemporal dementia [171]. This compound is currently under phase II
clinical trials in individuals with mutations in the progranulin gene diagnosed with mild to moderate
frontotemporal dementia [145,153].

HDACs, and specially HDAC6, correlate with neuronal impairment and cell death, normally via
microtubule destabilization. These high levels of HDAC6 frequently lead to neurodegeneration in
hippocampi of AD patients. Along with SAHA, other compounds including Tubacin, Tubastatin A,
and quinazolin-4-one derivatives are HDAC6-selective inhibitors with valuable potential benefits on
enhancing neurite extension and reducing cell death. Tubacin (EC50 = 2.5 µM in A549 cells) exhibits
70-fold higher selectivity for HDAC6 as compared to other HDAC inhibitors in alveolar basal epithelial
A549 adenocarcinoma cells. Tubacin inhibits HDAC6-targeted α-tubulin deacetylation and migration
in cancer cells expressing HDAC6. Furthermore, this compound attenuates tau phosphorylation
in vitro [181,190,191]. Similar to Tubacin, the affinity of the hydroxamic acid derivative, Tubastatin
A, for HDAC6 is 50 to 2000-fold higher compared to other isozymes [192]. The quinazolin-4-one
derivative N-hydroxy-3-(2-methyl-4-oxo-3-phenethyl-3,4-dihydro-quinazolin-7-yl)-acrylamide (3f)
is the synthetic compound with the highest affinity and efficiency to inhibit HDAC6 in vitro
(IC50, 29 nM). This compound promoted the expression of the growth-associated protein 43 which
favored neurite outgrowth and enhanced the synaptic activities of PC12 and SH-SY5Y neuronal
cells without toxic or mitogenic effects, and decreased zinc-mediated β-amyloid aggregation without
affecting membrane channel (IC50 >10 µM) or cytochrome P450 activity (IC50 > 6.5 µM) in vitro.
In addition this quinazolin-4-one derivative enhanced memory performances in AD animal models
with β-amyloid-induced hippocampal lesions. [193].

4.2.2. Class III HDAC (SIRT) Inhibitors

A number of studies demonstrate the beneficial effect of class III HDAC (SIRT) modulators for
the treatment of several types of cancer; some of them are promising treatments for neurodegenerative
disorders. Although SIRT inhibition often associates with activation of cell death pathways in multiple
models of cancer, we will focus on those several SIRT inhibitors (SIRTi) that provide physiologically
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relevant benefits for neurodegenerative processes. Indeed, sirtuins, particularly SIRT2, favor the
pathological progression of PD by promoting α-synuclein expression and aggregation. In this regard,
SIRT2 inhibition rescued α-synuclein-mediated toxicity in several animal models of PD [115]. Some
of these epidrugs, such as Nicotinamide, show pan-sirtuin inhibition properties, whereas other SIRT
inhibitors target only SIRT1/2 or either one alone.

Among the pan inhibitors, Nicotinamide is the most widely tested for treatment of
neurodegenerative diseases, especially Alzheimer’s and Huntington diseases (Table 1). Nicotinamide
is a competitive and selective inhibitor of class III NAD+-dependent HDACs (SIRT inhibitor) used in
gene regulation experiments [194]. This compound improves the stability of microtubules by reducing
phosphorylated tau (at Thr231 level) and restored cognitive deficits in triple transgenic 3xTg-AD
mice [195]. Nicotinamide is being currently tested, versus placebo, in two clinical trials as a potential
treatment for mild to moderate AD. One of the trials completed the phase I (and phase II for placebo)
(ClinicalTrials.gov Identifier: NTC00580931) and the other trial is recruiting patients for phase II
(ClinicalTrials.gov Identifier: NTC03061474) [145,195,196].

SIRT2 inhibitors are also widely tested in animal models of neurodegeneration [117,197–199].
Among them, the brain-permeable inhibitor AK-7 displayed important neuroprotective properties in
animal models of PD by improving motor functions, extending survival, and reducing alpha-synuclein
aggregation [197,198].

The vinyl nitrile compound AGK2 significantly reduces tubulin deacetylation and formation of
large α-synuclein inclusions, resulting in the rescue of dopaminergic neurons in vitro and in animal
PD models [117]. AGK2 targets SIRT2 with a 10-fold higher selectivity as compared with the SIRTs 1
and 3 (IC50 of 3.5 µM), although SirReal2 is considered as the highest specific SIRT2 inhibitor, with
an IC50 within the nM range [199]. Substrate competition chemical analyses demonstrated that this
compound is able to bind and induce conformational changes in a previously unexploited binding
pocket of SIRT2.

Other relevant SIRT inhibitors are sirtinol and selisistat [200–204]. Sirtinol is a SIRT1/2 inhibitor
discovered in 2001 by a high-throughput cell-based screening and plays important roles in different
physiological pathways, such as axonal protection following nerve injury or modulation of sirtuins in
cardioprotection [200,201]. Selisistat was the first identified potent and cell permeable SIRT1-specific
inhibitor [202,203].

4.2.3. Class III HDAC (SIRT) Activators

Stress signaling pathways resulting in DNA damage and impaired DNA repair mechanisms are
common hallmarks of neurodegeneration. The brain protective roles of sirtuins (SIRT), which include
response to stress and activation of DNA repair pathways, site SIRT activating compounds as good
potential candidates for treatment of neurodegeneration [204–209]. Resveratrol and derivatives are the
most widely-tested SIRT activators in animal models of neurodegeneration.

Resveratrol is a neuroprotective compound extracted from red grapes, with important antioxidant
and anti-inflammatory roles which result in the inhibition of Aβ aggregation and Aβ-induced
apoptosis [210,211]. This compound might reduce miR-124 and miR-134 expressions, which would
enhance cAMP response element-binding protein (CBP) levels and promote BDNF synthesis [212].
All these effects result in increased cell viability through the stabilization of Ca2+ homeostasis, reduction
of Aβ25–35 neurotoxicity, and Rho-associated kinase 1 downregulation [212]. Resveratrol belongs to
the family of drugs regulating GABA receptors. Much research has corroborated the importance
of GABA receptors in the regulation of the neuronal pathways involved in memory and learning
and, therefore, the GABAergic system has come to be seen as a promising therapeutic target for
AD [213,214]. Currently, for resveratrol, four clinical trials are underway to test the potential of
resveratrol in the prevention of cognitive impairment and cerebrovascular dysfunction in AD. Of these,
two studies have already been completed: in phase II (ClinicalTrials.gov Identifier: NCT01504854)
and phase III (ClinicalTrials.gov Identifier: NCT00678431). Of the remaining two trials, one has been
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withdrawn (ClinicalTrials.gov Identifier: NCT00743743) and the other is still recruiting participants
(ClinicalTrials.gov Identifier: NCT02502253) [147,214] (Table 1).

Some Resveratrol structural derivatives, such as the stilbene Piceatannol, the chalcones Butein and
Isoliquiritigenin, and the flavones Fisetin and Quercetin [2,215–217], are SIRT1 deacetylase activators
that significantly extended the lifespan of Saccharomyces cerevisiae [218] and in Drosophila melanogaster
S2 cells [216]. Furthermore, a diet containing 100 µM Fisetin extended Drosophila lifespan at a rate of
23%, as compared with Resveratrol, which increased lifespan of the flies at a rate of 29% [216].

4.3. Histone Acetyltransferase (HAT) Modulators

HAT-activating compounds, targeting CBP, p300, and p300/PCAF, would be an alternative
strategy of promoting histone acetylation levels, although the poor solubility and membrane
permeability of these compounds make them rather unsuitable for this purpose [2,19,26].

Importantly, a variety of chemical modifications of different nonspecific HAT inhibitors in attempts
to identify enzyme-specific inhibitors, came up with the synthesis of the N-(4-chloro-3-trifluoromethyl-
phenyl)-2-ethoxy-6-pentadecyl benzamide (CTPB), which is considered as one of the unique p300- specific
activator with the capability of crossing the blood brain barrier after intraperitoneal injection [53,54].

Alternative strategies also consider natural products as HAT inhibitors [218]. The most popular
HAT-inhibiting compounds are curcumin and derivatives. Other HAT-specific inhibitors include
Lys-Coa targeting p300 and H3-Coa-20 for PCAF. Other HAT inhibitors are less specific but capable of
permeating cells in culture [53].

Curcumin is a phytochemical compound extracted from the rhizome of Curcuma longa, L., used
for dyspepsia, stress, and mood disorders [219]. Curcumin is a cell-permeable compound and specific
inhibitor for p300/CBP, having no effect on PCAF, HDAC, and DNMT [53]. This compound protects
neurons from oxidation by enhancing phase II detoxification enzymes and heme oxygenase 1 and
restored mitochondrial function in brains of animal models treated with aluminum [220]. Some studies
associate curcumin with a behavioral improvement, prevention of neuroinflammation, and inhibition
of signaling pathways leading to Aβ aggregation and tau phosphorylation [221]. The combination
of curcumin with other derivatives, such as demethoxycurcumin and bisedethoxycurcumin, which
constitute turmeric [222], enhances curcumin’s properties as a potential AD treatment [222,223].
Three completed clinical trials, in phases I and II (ClinicalTrials.gov Identifier: NCT00164749),
phase II (ClinicalTrials.gov Identifier: NCT00099710), and phase I (ClinicalTrials.gov Identifier:
NCT01716637) [224–227] are underway to test the properties of combinations of curcumin with other
natural compounds as potential treatment for AD and mild cognitive impairment [145] (Table 1).
Two additional trials (ClinicalTrials.gov Identifier: NCT01811381) and (ClinicalTrials.gov Identifier:
NCT02114372) are recruiting patients [147,228,229] (Table 1).

4.4. Modulators of Histone Methylation

Histone Methyltransferase Inhibitors

This subgroup of epidrugs includes histone methyltransferase and histone demethylase inhibitors.
The first ones modulate gene expression and promote DNA repair by inducing histone acetylation.
Despite of their potential activity, these compounds are not often good candidates for preclinical
studies due to their high toxicity and low specificity in different cell lines. SAMe, one of the most
important methyl donors in the body, along with L-methylfolate, also used as a DNA methylation
activator, was the first HMT inhibitor used for treatment of cancer. Importantly, this compound is also
submitted to a phase II clinical trial (ClinicalTrials.gov Identifier: NCT01320527) as an additive for
a nutraceutical compound versus placebo for treatment of mild to moderate AD [145,147,148] and,
also, in phases II and III for the treatment of depression in PD patients (ClinicalTrials.gov Identifier:
NCT00070941) [145] (Table 1). Some studies indicate that SAMe induces PSEN1 promoter methylation
resulting in gene downregulation, which meliorate AD symptoms [142,143,230].
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The most analyzed histone demethylase family is the Lysine-specific demethylase 1 (LSD1), which
is a flavin-dependent monoamine oxidase (MAO) that can demethylate mono- and dimethylated
lysines, specifically histone 3 and lysines 4 and 9 (H3K4 and H3K9) and shares catalytic sites with
MAO-A and MAO-B [231]. Inhibition of these MAO catalytic sites is a current strategy for treatment of
anxiety and depressive disorders, as well as neurodegenerative PD progression [232]. Tranylcypromine
(2-PCPA) is the most widely analyzed and relatively potent LSD1 inhibitor in vivo (IC50 20.7) that
irreversibly blocks MAO A and MAO B with IC50 values of 2.3 and 0.95 µM and Ki values of 101.9 and
16 µM, respectively [233].

4.5. Non-Coding RNAs

Non-coding RNAs (ncRNAs) modulate the expression of genes involved in brain development
and function. A number of diseases link with aberrant expression of those ncRNAs, which requires
the implementation of new strategies that regulate ncRNA expression and function. Indeed several
approaches include RNA interference as a novel and promising therapeutic strategy for the treatment
of neurodegenerative diseases. These ncRNA-based treatment strategies include the use or modulation
of miRNA analogs, miRNA precursors, and anti-miRNAs.

One of the most popular strategies to reduce the detrimental effects involves downregulation
of pathogenic genes. This may be achieved posttranscriptional levels by RNA interference mediated
by small interference RNAs (siRNAs), short-hairpin RNAs (shRNAs), and micro-RNAs (miRNAs).
Altering the expression of ncRNAs targeting pathogenic genes associated with the disease may
be an acceptable strategy. However, the extremely high number of gene targets and associated
ncRNAs would make the approach rather difficult. In this regard, different studies suggest more
specific targets that may be suitable as potential treatments. In this regard, overexpression of
miR-124 and miR-195 reduce Aβ levels by targeting BACE1 [234,235], or miR-323-3p, might reduce
AD-related neuroinflammation [236]. Other ncRNAs, such as miR-34b/c, miR-132 [237–241], and
miR-221 [237,242], are also potential biomarkers and therapeutic targets for PD. Inhibition of miR-34b/c
leads to parkin and DJ-1 downregulation in SH-SY5Y cells [238], while downregulation of miR-132
results in α-synuclein accumulation [239,240]. In addition, serum levels of miR-29c, miR-146b, miR-214,
and miR-221 were significantly downregulated in patients, resulting in miR-221 being a potential
predictor and therapeutic target of disease [237,242]. A recent study supports the consideration of
miR-221 as a potential treatment for PD due to its protective role by regulating PC12 cell viability and
apoptosis by targeting phosphatase and tensin homolog (PTEN) [243].

Other strategies deal with the regulation of other ncRNAs involved in cell growth, development,
and homeostasis, such as miR-485 and miR-26a [244,245]. The synaptic vesicle glycoprotein SV2A,
along with miR-485, regulates neuron homeostasis by controlling the number of dendritic spines
and the establishment of synapses, as well as miR-26a. Interestingly, high miR-485 levels reduce
spontaneous synaptic responses, which might have implications in AD progression [245], whereas
miR-26a overexpression enhances synaptic plasticity and regulates neuronal morphogenesis [244].
Indeed, miR-26a inhibition via PTEN attenuates neuronal outgrowth. Thus, PTEN suppression
by miR-26a may enhance synaptic plasticity and regulate neuronal morphogenesis [244]. Another
important ncRNA involved in neurodevelopment and neurodegeneration, miR-132, is considered
a potential biomarker for diagnosis and treatment of PD [237,241].

Other miRNA-based approaches target the components of the epigenetic machinery and exert
direct control in DNA methylation and chromatin remodeling processes [246]. These miRNAs
may target DNMT inhibitors, alternatively or synergistically, such as miRNAs targeting DNMT3A
(miR-29, miR-29c, miR370, and miR-450A) and DNMT3B (miR-29, miR-148, and miR-29b) induced
hypomethylation-mediated enhanced expression of tumor suppression genes, which may also be
achieved by miRNAs targeting EZH2 (miR-26a, miR-101, miR138, and miR-124) and decreasing histone
methylation. Other miRNAs target HDACs, such as miR-449 and miR-874 for HDAC1, and miR-1 and
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miR-155 target HDAC4 reducing transcriptional activity of B-cell lymphoma 6. Other miRNAs, such
as miR-155 and miRNA-627, reduced histone dimethylation and hypoxic gene expression [246].

4.6. Other Potential Epigenetic Treatments

Other promising epigenetic-based therapeutic approaches, currently submitted to preclinical
studies [2,145,152,153,247,248], include the following, (i) small molecule inhibitors to chromatin-
associated proteins, especially those targeting histone methyltransferases and histone demethylases;
(ii) bromodomain/chromodomain inhibitors, which regulate chromatin structure and inhibit targeting
gene transcription, respectively; and (iii) dietary regimens based on B vitamins and folate, in order to
restore global methylation by increasing the SAMe levels in the organism, or low caloric-based regimes
that might promote SIRT-mediated DNA repair mechanisms.

5. Neurodegeneration-Mediated DNA Methylation Patterns of Genes Involved in Drug
Metabolism and Transport

Drug pharmacodynamics and pharmacokinetics influence drug response in terms of efficiency,
required dosage, and toxicity. The variability of genetic and epigenetic profiles, as well as disease
determinants, explain the individual differences in drug response. Pharmacogenomics accounts for
30 to 90% of the variability in pharmacokinetics and pharmacodynamics. This variability depends
on polymorphic variants of five different categories of genes: (i) pathogenic genes associated with
disease development or potential risk. Not all individuals carrying the same disease present the same
affected pathogenic genes; (ii) genes associated with the mechanism of action of drugs (enzymes,
receptors, messengers, etc.); (iii) genes associated with drug metabolism. This category includes
genes associated with Phase I enzymes, such as, alcohol dehydrogenases (ADHs), monoamine
oxidases (MAOs), cytochrome p450 family genes (CYPs), and Phase II enzymes, which include UDP
glucuronosyltransferases (UGTs), gluthatione S-transferase family genes (GSTs), N-acetyltransferase
(NATs), and sulfonotransferases (SULTs); (iv) genes encoding drug transporters (Phase III), such as
ATP-binding cassette family members (ABCs), solute carrier superfamily (SLCs), and the solute carrier
organic transporter family (SLCOs); and (v) pleiotropic genes involved in multiple pathways and
metabolic reactions [2,3,13,15,16,19,26]. The efficiency of drug metabolizing products is influenced by
genetic and epigenetic modifications on these genes [3,13,105,106].

Pharmacoepigenomics deals with the influence of epigenetic modifications on the pharmacogenomic
network responsible for the pharmacokinetics and pharmacodynamics of drugs, as well as with the effects
that drugs may have on the epigenetic machinery. Despite of the scarce available information on the
pharmacoepigenomics of most drugs, growing evidence indicates that epigenetic changes are determinant
in the pathogenesis of many medical conditions and in drug response and drug resistance [2,249,250].
The drug response varies according to polymorphic variants of genes involved in the pharmacogenomic
response, as well as by epigenetic modifications in these genes that alter their expression patterns.
The acquisition of drug resistance involves post-transcriptional regulators, such as RNA-binding proteins
(RBPs) and miRNAs, which alter the stability and expression of genes and gene clusters involved in cell
survival, proliferation, and drug metabolism [2,249,250].

The implication of cytochrome P450 enzymes (CYPs) in PD pathophysiology is fairly well-
demonstrated [251], although there is no clear-cut evidence whether polymorphisms in these genes confer
susceptibility to PD or what could be the effects of these polymorphisms on enzyme activity [252,253].
In the CNS, CYP2E1 colocalizes to tyrosine hydroxylase-positive neurons in the substantia nigra [254,255].
Enhanced CYP2E1 activity promoted ROS production, inhibited dopamine release in animal models,
and facilitated the production of isoquinolines, structurally related to the PD-inducing toxicant MPTP,
which may thus contribute to dopaminergic neurodegeneration in PD [251–253,256]. A genome-wide
methylation analysis of PD with quantitative DNA methylation levels of 27,500 CpG sites corresponding
to 14,495 genes showed a significant methylation decrease of the CYP2E1 gene with the corresponding
mRNA overexpression in brains from PD patients, suggesting that epigenetic variants of this cytochrome
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contribute to PD susceptibility [257] (Table 2). These results suggest that altered methylation of CYP2E1
in PD may contribute to the individual susceptibility and help to explain the conflicting findings with
regard to environmental toxins and genetic vulnerability [257].

Table 2. Epigenetic modifications in genes involved in the pharmacogenomic response to drugs
associated with the onset and/or progression of Alzheimer’s and Parkinson’s diseases.

Category Gene Locus OMIM Pathology Epigenetic changes

Phase I Drug
Metabolizers CYP2E1 10q26.3 124,040 Parkinson’s Disease Hypomethylated Up-regulated mRNA

Phase II Drug
Metabolizers

GSTT1 22q11.23 600,436 Parkinson’s Disease Hypomethylated Upregulated mRNA
GSTTP1 22q11.23 600,436 Parkinson’s Disease Hypermethylated Downregulated mRNA
GSTTP2 22q11.23 600,436 Parkinson’s Disease Hypermethylated Downregulated mRNA

Phase III Drug
Transporters

ABCA1 9q31.1 600,046 Alzheimer’s Disease Hypermethylated Downregulated mRNA
ABCB1 7q21.12 171,050 Alzheimer’s Disease Hypermethylated Downregulated mRNA
ABCG2 4q22.1 603,756 Parkinson’s Disease Hypermethylated Downregulated mRNA
ABCA3 16p13.3 601,615 Parkinson’s Disease Hypomethylated Upregulated mRNA
ABCA7 19p13.3 605,414 Alzheimer’s Disease Hypomethylated Upregulated mRNA

SLC12A5 20q13.12 606,726 Parkinson’s Disease Hypomethylated Upregulated mRNA
SLC24A4 14q32.12 609,840 Alzheimer’s Disease Hypomethylated Upregulated mRNA
SLC25A24 1p13.3 608,744 Parkinson’s Disease Hypomethylated Upregulated mRNA

ABCA1: ATP-binding cassette, subfamily A (ABCA), member 1; ABCA3: ATP-binding cassette, subfamily A
(ABCA), member 3; ABCA7: ATP binding cassette subfamily A member 7; ABCB1: ATP-binding cassette, subfamily
B (ABCB), member 1; ABCG2: ATP-binding cassette, subfamily G (ABCG), member 2; CYP2E1: cytochrome P450
family 2 subfamily E member 1; GSTT1: Glutathione S-transferase theta 1; GSTTP1: Glutathione S-transferase
theta pseudogene 1; GSTTP2: Glutathione S-transferase theta pseudogene 2; SLC12A5: Solute carrier family 12
(potassium/chloride transporter), member 5; SLC24A4: solute carrier family 24 member 4; SLC25A24: solute carrier
family 25 member 24.

Genome-wide DNA methylation analyses in brain and blood samples from PD patients displayed
a number of epigenetic biomarkers associated with the pathological mechanisms of the disease.
Importantly, authors identified concordant methylation alterations in brain and blood, suggesting that
the blood might hold promise as a surrogate for brain tissue to detect DNA methylation in PD and
as a source for biomarker discovery [10]. Among these biomarkers, they found altered methylation
and gene expression levels in the phase II metabolizing genes encoding glutathione S-transferase
GSTT1 [10,258–260], GSTTP1 [10,258–260], and GSTTP2 [10,258,261], involved in conjugation of
electrophiles and protection against reactive oxygen species (Table 2). Polymorphisms in these
genes have been previously associated with increased risk to PD after exposure to the herbicide
Paraquat [10]. Other studies found correlation in brain and blood biomarkers associated with PD
progression, reinforcing the idea that detection of differential methylation events pertinent to PD
pathology is feasible from blood samples [10,261–264]. Among these biomarkers, they found significant
hypomethylation levels at the promoter region of the drug ABC and solute carrier organic transporter
genes ABCA3 [10,261,262], SLC12A5 [10,263,265], and SLC25A24 [10,264,265] (Table 2).

Several transporter genes are involved in the control of cholesterol homeostasis and influence
the pathogenesis of neurodegenerative diseases. ABCA1, ABCB1, and ABCG2 influence AD and Aβ

deposition in extracellular senile plaques [266–271] (Table 2). Brain ABCA1 mediates cholesterol
and phospholipid efflux and lipidates APOE to allow its interaction with Aβ and inhibits formation
of Aβ deposits [272]. ABCA2, the most abundant ABC transporter in human and rodents, may
regulate esterification of plasma membrane-derived cholesterol by modulation of the sphingolipid
metabolism. Some authors suggest that dysregulation of ABCA2 gene may be involved in AD
pathogenesis [273]. The epigenetic machinery controls the expression of these ABC transporter genes
through interaction with miRNAs, such as miR-33a/b-5p, miR-106b, and miR-758–5p, regulating
ABCA1 gene expression [274].

Brain DNA methylation and mRNA expression patterns in the genes coding for the ABC
transporter ABCA7 and the solute carrier organic transporter SLC24A4 also associated with AD
progression in a study with 740 autopsied participants older than 66 years old [262] (Table 2).
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The authors suggest that altered methylation in these loci might involve both Aβ and tau tangle
pathologies [264]. Previous studies associate ABCA7 with the regulation of APP processing in vitro,
inhibition of Aβ secretion in cultured cells, and regulation of Aβ homeostasis in the brain and deletion
of ABCA7 doubles cerebral Aβ accumulation in transgenic mouse models [275,276]. The functional
relationship between SLC24A4 and AD is rather indirect. Some authors suggest that SLC24A4 may be
involved in neural development [277] or may interact with genes directly involved in AD progression,
such as BIN1 [278]. A recent study also concluded that the ABCA7 mRNA expression level in peripheral
blood may be an early diagnostic and disease progression AD biomarker regardless of the genetic
polymorphism and the promoter methylation level [265].

6. Conclusions and Future Directions

Neurodegenerative diseases, as well as other complex multifactorial disorders, result from
a complex interplay of genetic and epigenetic factors, influenced by environmental factors, which
makes understanding the molecular mechanisms underlying their pathological progression difficult.
Neurodegeneration involves premature events affecting cell metabolism, growth, and development
only detected after several years of disease progression, when the rate of cell loss is high enough to
hinder treatment possibilities. Therefore, the attempts to achieve effective treatments for those diseases
have been rather unsuccessful, expensive, and limited to a symptomatic relief. It is therefore important
to find diagnostic strategies for detection of neurodegenerative diseases during early, preferably
asymptomatic stages, when a pharmacological intervention is still possible.

The analysis of epigenetic alterations during disease progression allows the detection of early
diagnostic biomarkers of the disease. Furthermore, assuming that these epigenetic modifications are
reversible and potentially targeted by pharmacological interventions, a number of epigenetic-based
drugs (epidrugs), are opening a novel, promising approach for the treatment of such complex
diseases [2,13,18–20]. However, in spite of the promising results of these epidrugs in vitro, in cell, and
in animal models of neurodegeneration, only a few of them are currently submitted to clinical trials
for the treatment of these diseases and none of them are yet approved by any of the main regulatory
agencies [145]. A number of these epidrugs, like some DNMT inhibitors or pan HDAC inhibitors,
induce toxicity and cell death due to global hypomethylation or histone acetylation, respectively, the
high doses required, or the incapability to cross the blood–brain barrier [2,248,249]. Furthermore, the
wide range of epigenetic alterations directly and indirectly linked to these diseases hinders the accurate
selection of specific targets for effective treatments. Specific gene targeting by using ncRNAs may be
a potential strategy to overcome these issues, especially by their relatively easy detection as cell-free
biomarkers using noninvasive techniques that allow the tracking of the patient’s disease progression.
However, most ncRNAs are not gene-specific but recognize several targets. In addition, the major
problem with ncRNA approaches includes delivery systems and off-target effects. Exosomes and
conjugation with cholesterol molecules may help delivery of ncRNA across the blood–brain barrier,
although the detrimental effects of the moiety of these molecules to the human brain still needs to be
tested [2,279–282].

Alternative strategies in order to minimize clinical complications include the development of novel
natural bioproducts with neuroprotective properties and additional benefits including antioxidant,
anti-inflammatory, and neurotrophic effects. E-PodoFavalin-15999 (Atremorine) is an example of
a novel bioproduct obtained by means of nondenaturing biotechnological procedures from structural
components of Vicia faba L., for the prevention and treatment of PD [17,283–287]. The high content of
natural L-DOPA (average concentration 20 mg/g) in the composition of Atremorine provides its high
dopaminergic effect on dopaminergic neurons [17,283,286,287], whereas the neuroprotective effect of
this compound relies on other intrinsic constituents, such as selective neurotrophic factors [17,283].
The combination of Atremorine with conventional antiparkinsonian drugs minimizes the “wearing
off” effect, as it extends the beneficial effects of the last ones with a dose reduction of 25 to 50%, which
minimizes the adverse effects of the conventional antiparkinsonian compounds [17,283,286,287].
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Since therapeutic outcomes are highly dependent upon the individual genomic and epigenomic
profiles, personalized treatments should rely on pharmacogenetic and pharmacoepigenetic procedures
to optimize therapeutics. Versatility of the epigenetic machinery allows the manipulation of epigenetic
aberrations leading to drug resistance. Thus, routine procedures should incorporate pharmacoepigenetic
studies for the proper evaluation of efficacy and safety issues in drug development and clinical trials.
However, there is not information about long-term effects of epigenetic-based using targets without
any particular cell specificity. Thus, despite substantial progress, the field of pharmacoepigenetics
and the role of epigenetic modifications in human health and the treatment of disease require
further investigation.
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