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Background: The dysregulation of RNA binding proteins (RBPs) is involved in

tumorigenesis and progression. However, information on the overall function of

RNA binding proteins in Uterine Corpus Endometrial Carcinoma (UCEC)

remains to be studied. This study aimed to explore Uterine Corpus

Endometrial Carcinoma-associated molecular mechanisms and develop an

RNA-binding protein-associated prognostic model.

Methods: Differently expressed RNA binding proteins were identified between

Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues by R

packages (DESeq2, edgeR) from The Cancer Genome Atlas (TCGA) database.

Hub RBPs were subsequently identified by univariate and multivariate Cox

regression analyses. The cBioPortal platform, R packages (ggplot2), Human

Protein Atlas (HPA), and TIMER online database were used to explore the

molecular mechanisms of Uterine Corpus Endometrial Carcinoma. Kaplan-

Meier (K-M), Area Under Curve (AUC), and the consistency index (c-index) were

used to test the performance of our model.

Results: We identified 128 differently expressed RNA binding proteins between

Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues.

Seven RNA binding proteins genes (NOP10, RBPMS, ATXN1, SBDS, POP5,

CD3EAP, ZC3H12C) were screened as prognostic hub genes and used to

construct a prognostic model. Such a model may be able to predict patient

prognosis and acquire the best possible treatment. Further analysis indicated

that, based on our model, the patients in the high-risk subgroup had poor

overall survival (OS) compared to those in the low-risk subgroup. We also

established a nomogram based on seven RNA binding proteins. This nomogram
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could inform individualized diagnostic and therapeutic strategies for Uterine

Corpus Endometrial Carcinoma.

Conclusion: Our work focused on systematically analyzing a large cohort of

Uterine Corpus Endometrial Carcinoma patients in the The Cancer Genome

Atlas database. We subsequently constructed a robust prognostic model based

on seven RNA binding proteins that may soon inform individualized diagnosis

and treatment.

KEYWORDS

uterine corpus endometrial carcinoma, RNA-binding proteins, prognostic model, The
Cancer Genome Atlas, survival

Background

Uterine Corpus Endometrial Carcinoma (UCEC) is one of

the most prevalent malignant tumors in females, with an

estimated incidence of ~4.4% (Bray et al., 2018). Recently, the

incidence of UCEC has gradually increased, which accounts for

20%–30% of all gynecologic malignancies. UCEC is the second

most common gynecologic malignancy after cervical cancer

(Ascano et al., 2012). Most patients diagnosed with

endometrial cancer are postmenopausal, and the median age

at diagnosis is 60. However, up to 14% of cases occur in pre-

menopausal women, mainly due to an elevated body mass index

(BMI) (Garg and Soslow, 2014; Wise et al., 2016).

Five-year survival rates for endometrial cancer vary depending

on the stage at diagnosis. Five-year survival is ≥ 95% in patients with

tumors confined to the uterus but drops sharply when tumors

spread outside the uterus, with survival estimated at 69% in patients

with regional metastases and 17% in patients with distantmetastases

(Creasman et al., 2006; Zanders et al., 2013).

Approximately 90% of patients with UCEC present with

early clinical symptoms, such as vaginal bleeding, and about 75%

of patients can be diagnosed and treated early. Unfortunately,

some patients with early-stage UCEC are at high risk of

recurrence, with approximately 18% dying from the recurrent

disease (Amant et al., 2005). Therefore, prognostic indicators and

models may inform individualized diagnosis and treatment.

RNA binding proteins (RBPs) bind to RNA and regulate RNA

function (Zhu et al., 2019). RBPs recruit various factors and enzymes

and form different compounds in different combinations to regulate

the fate and/or function of the target RNAs (Lukong et al., 2008;

Hong, 2017). Dysfunctional RBPs are associated with various

human diseases. Central nervous system RNA-binding protein

mutations can lead to the aggregation of abnormal proteins that

contribute to the progression of various neurodegenerative diseases

(Johnson et al., 2018; Duan et al., 2019). Abnormalities in the

cardiovascular system RNA-binding proteins may contribute to

cardiovascular disease by their effects on a wide range of post-

transcriptional events (de Bruin et al., 2017). RBPs are abnormally

expressed in tumors, affect the translation of mRNA into protein,

and contribute to carcinogenesis (Johnson et al., 2018; Duan et al.,

2019). In cancer, abnormal expression of RBPs regulates the

expression levels of target RNAs associated with cancer cell

proliferation, apoptosis, angiogenesis, senescence, and epithelial-

mesenchymal transition (EMT)/invasion/metastasis. RBP-

mediated regulation ultimately contributes to cancer development

and pathology (Pereira et al., 2017a; Hentze et al., 2018). However,

there are relatively few systematic studies of RBP associated with

UCEC in gynecological malignancies.

Therefore, we collected UCEC expression profiles and clinical

information from the TCGA database to explore the relationships

among hub RBPs, clinicopathological characteristics, and prognosis

in UCEC patients. We first obtained genes that were differentially

expressed between tumor and normal tissues and systematically

explored their potential mechanisms. This process produced a

seven-RBP model with a high prognostic value. Finally, we

developed a clinically applicable nomogram that may be useful to

clinicians for clinical diagnosis and prognosis prediction.

Methods

Data processing

The flowchart of this study is displayed in Figure 1. RNA-seq

and clinical information data of UCEC patients were collected

from TCGA database with the following steps: 552 UCEC

patients with RNA-seq data were included in this study, nine

samples with unknown survival time or no survival status were

removed. Finally, 543 patients with UCEC and the corresponding

clinical information, such as survival information, age, grade and

stage were enrolled for further study (Table 1). Then we

identified differential expressed genes and got expression

matrix from the counts data using R packages (DESeq2 and

edgeR). |log2 fold change | > 1 and False discovery rate <0.05 are
used as the threshold to screen differently expressed RBPs, these

data were used for subsequent analysis.

Considering the number of normal tissue from TCGA

database is less, we then downloaded 142 normal tissue datasets

from the GTEx database (https://gtexportal.org/home/) to verify

our results.
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GO and KEGG functional enrichment
analysis

In order to explore the main biological functions and

signaling pathways of differently expressed RBPs, g: GOSt tool

at g:Profiler website (https://biit.cs.ut.ee/gprofiler/gost) was used

for functional enrichment analysis (Raudvere et al., 2019). The

false discovery rate (FDR) < 0.05 was thought to be statistically

signifificant. And the results were visualized via “GOplot” R

package.

PPI network construction and key module
analysis

The differently expressed RBPs were submitted to the STRING

database (http://www.string-db.org/) to identify protein-protein

interaction. An interaction score of 0.4 (median confidence) was

set in the system configuration (Damian et al., 2015; Guerrero, 2020).

Analyzing functional interactions between proteins can provide new

insights into protein function and help discover functional

connections between proteins at the genomic level (Armendáriz-

Castillo et al., 2020; López-Cortés et al., 2020). Submit the data to

Cytoscape 3.7.1 software for network visualization.

In addition, Cytoscape Plugin Molecular Complex Detection

(MCODE) was used to screen out important functional modules of

PPI network using score and number of nodes >2 as thresholds.

Identification and validation of prognostic
hub RNA binding proteins

First, univariate Cox analysis was applied to analyze the

relationship between the 128 differently expressed genes previously

screened and the survival status of the samples in the UCEC cohort in

the TCGA database, then 30 RBPs were identified to go for

multivariate Cox regression analysis. Ultimately, we identified

FIGURE 1
Flowchart for analyzing RBPs in UCEC.

TABLE 1 Demographic characteristics of the study subjects.

Feature Number

Age(%)

<50 45(8.3)

≥50 495(91.2)

unknow 3(0.5)

Survival state(%)

Die 462(85.1)

Alive 81(14.9)

Survival time(%)

<5 years 435(80.1)

≥5 years 108(19.9)

Tumor grade(%)

grade1 98(18.1)

grade2 120(22.1)

grade3 314(57.8)

high grade 11(2.0)
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seven RBPs associated with prognosis. Subsequently, we analyzed the

expression of these seven hub RBPs in normal and tumor tissue

samples in the UCEC cancer cohort in the TCGA database, and the

results showed that the expression of these seven hub RBPs differed

significantly, which is also validating that these seven RBPs are critical.

Calculation of TMB

To calculate the TMB of each UCEC tumor sample and

observe the mutations of 30 prognosis-related RBPs in the

sample, we selected somatic mutation data from the GDC

(https://portal.gdc.cancer.gov/) website and then used the R

package “maftools” to realize these 30 prognosis-associated

RNA gene mutations in the sample visualization.

Construction and validation of an RNA
binding proteins-Gene prognostic
signature

We constructed a risk score signature by using multivariate Cox

regression based on the previously obtained RBPs using the survival

R package in TCGA. The risk score was calculated by the following

formula: Risk score = Expression of gene1 × Coefficient of gene1 +

Expression of gene2 × Coefficient of gene2 + . . . Expression of

geneN ×Coefficient of geneN (Chen et al., 2007;Wu et al., 2019). To

evaluate the performance of the prediction model, we divided all

UCEC patients into high-risk and low-risk groups based on the

median risk score, and the Kaplan-Meier curve analysis and log-

rank test were used to assess the survival difference between two

subgroups by “Survival”R package.We also used the “survivalROC”

package in R to plot the receiver operating characteristic (ROC)

curves and calculate the area under the curve (AUC) values, which

was used to evaluate the predictive capacity of this model (Heagerty

et al., 2000). We calculated AUC values and its 95% CI at 1-,3-,5-

years in the TCGA cohort. To determine the feasibility and reliability

of the seven-gene prognostic signature, we validated it by using

testing set A (n = 272) and testing set B (n = 271) (Zhou et al., 2020).

Genetic alteration, and DNA methylation
analysis of the seven Prognosis-Related
RBP Genes

OncoPrinter was performed to show the frequency of these

seven prognosis-related RBPs’ genetic alterations. The gene

alteration and DNA methylation data of hub RBP genes in

UCEC patients were collected from the cBioPortal platform

(http://www.cbioportal.org/). The correlation between copy

number variation (CNV), methylation, and mRNA expression

is then visualized by using the ggplot2 R package (https://github.

com/tidyverse/ggplot2).

Verification of the expression levels of the
hub RBPs

The Human Protein Atlas (HPA) online database (http://

www.proteinatlas.org/) was used to investigate the differential

expression of the seven hub RBPs at the protein level between

tumor and normal tissues.

Immune infiltration analysis

Tumor infiltrating immune cells can profoundly influence the

progress of tumor and the effect of anticancer therapy by promoting

tumor and antitumor effects (Balachandran et al., 2015), Therefore,

quantification of tumor-infiltrating immune cells is expected to

reveal the multifaceted role of the immune system in human

cancer, as well as its involvement in tumor escape mechanisms

and response to treatment. Tumor Immune Estimation Resource

(TIMER) is a comprehensive resource for systematic analysis of

variousmalignant tumors. Based on the TIMERdatabase, we further

evaluated the relationship between immune cell types (CD4+T cells,

CD8+T cells, B cells, dendritic cells, macrophages, neutrophils and

tumor purity) and seven hub RBPs in UCEC.

Development of a predictive nomogram

We used the independent factors age, tumor grade, tumor

stage, tumor infiltration, and risk score identified above as the

covariates, along with the “rms” package in R to develop a

predictive line graph to predict survival at 1, 3, and 5 years for

patients with UCEC. Nomograms are important in the

modern medical decision making process because they can

help predict the probability of clinical events by integrating

different prognostic and deterministic variables to help

predict the probability of clinical events (Eberhardt et al.,

2015). The discriminative power and predictive accuracy were

then assessed using the c-index and calibration curve, metrics

for assessing the performance of the nomogram, respectively,

in conjunction with decision curve analysis (DCA) to estimate

the clinical usefulness and net benefit of the predictive

nomogram (Xiang et al., 2020).

Statistical analysis

Statistical analyses were implemented using R software

(version 4.1.3). The calibration curves were used to assess the

relationship between the predicted probabilities and actual

outcomes, and the calibration was evaluated by bootstrapping

500 times. All p -values of statistical data were based on two-sided

statistical tests, and data with p < 0.05 was considered to be

statistically significant.
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Results

Exploration of differently expressed RNA
binding proteins in uterine corpus
endometrial carcinoma

We systematically analyzed key roles and prognostic values of

RBPs in UCEC using several computational methods. UCEC data

were downloaded from TCGA and contained 543 tumor and

35 normal tissue samples. The R software packages, which include

DESeq2 and edgeR, were applied to handle the data and discover the

differently expressed RBPs. A total of 1,542 RBPswere included in the

analysis (Gerstberger et al., 2014). Finally, 190 differently expressed

RBPs were identified by DESeq2; these contained 123 upregulated

RBPs and 67 down-regulated RBPs (Figure 2A). 189 differently

expressed RBPs were identified by EdgeR, which contained

122 upregulated RBPs and 67 down-regulated RBPs (Figure 2B).

Integrating the results from DESeq2 and edgeR, 176 differently

expressed RBP were screened out; 113 were upregulated, and

63 were down-regulated (Figures 2C–E).

Functional enrichment analysis of
differential expression of RNA binding
proteins

We performed GO and KEGG functional analyses to elucidate

the potential biological functions and related mechanisms of

differently expressed RBPs. GO analysis consists of a biological

process (BP), cellular component (CC), and molecular function

(MF). The differently expressed RBPs were mostly enriched in BP:

including cellular nitrogen compound metabolic process, RNA

metabolic process, and nucleic acid metabolic process (Figure 3A).

For CC, DEGs weremostly enriched in the nucleoplasm, intracellular

organelle lumen, organelle lumen, membrane-enclosed lumen, and

nuclear lumen (Figure 3B). Molecular function analysis showed that

DEGs were significantly involved in heterocyclic compound binding,

organic cyclic compound binding, nucleic acid binding, and RNA

binding (Figure 3C). KEGG pathway enrichment analysis revealed

that all differently expressed RBPs were significantly associated with

the spliceosome, ribosome, and mRNA surveillance pathways

(Supplementary Figure S1).

PPI network construction and key module
analysis

Next, we explored the effects of 128 differently expressed

RBPs in UCEC using a PPI network. RBP interaction relationship

data were downloaded from the STRING tool and imported into

Cytoscape for visualization. The PPI network consists of

105 nodes and 459 edges (Figure 3D). We analyzed the co-

representation network using the MCODE plugin to identify key

modules, including the two most important modules (Figures

3E,F). GO-BP enrichment analysis showed that RBPs in module

one were mainly enriched in the protein metabolic,

macromolecule biosynthetic, and cellular protein metabolic

processes. RBPs in module two were mainly enriched in RNA

splicing, regulation of the mRNA metabolic process, and mRNA

processing (Supplementary Figure S2).

FIGURE 2
Differently expressed RBPs in UCEC. (A) Differently expressed RBPs as screened out by DESeq2 and meet the criteria of |log2FC|> 1, FDR<0.05.
(B) Differently expressed RBP as screened out by edgeR and meet the criteria of |log2FC|> 1, FDR<0.05. (C–D) Venn plots of differently expressed
RBP were screened by DESeq2 and edgeR. (E) Heatmaps of the differently expressed RBPs.
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Univariate cox regression to identify
prognosis-related RNA binding proteins

To establish our novel predictive signature for UCEC

patients, we applied univariate cox regression analysis in

differently expressed RBPs; RBPs with p-values <0.05 in

univariate Cox analysis were considered significantly

associated with OS, and hazard risk (HR) was calculated to

identify risk-increasing (HR > 1) and protective genes (HR <
1). 30 RBPs were defined as prognosis-related RBPs based on

these criteria (Table 2). These 30 prognosis-related RBPs were

mutated in approximately 24.34% of the total 530 samples, with

higher total mutations in EZH2, SIDT1, and ZC3H12C (8%, 5%,

and 5%); nomutations were observed in LSM7,NOP10,MRPL23,

and OAS1. Missense mutations were the most common somatic

mutational types (Figure 4).

Construction and validation of RNA
binding proteins prognostic model

The 30 candidate RBPs were then subjected to a multivariate

Cox regression analysis. The relationships between all candidate

RBPs and survival time were analyzed, and seven hub RBPs

associated with prognosis were subjected to further screening.

These were POP5, NOP10, CD3EAP, SBDS, ZC3H12C, ATXN1,

RBPMS (CD3EAP, SBDS and ZC3H12C HR > 1; NOP10, POP5,

ATXN1 and RBPMSHR < 1) respectively (Figure 5A). Compared

to normal samples, ATXN1, RBPMS, SBDS, and ZC3H12C were

downregulated, and CD3EAP, NOP10, and POP5 were

upregulated in UCEC tumor samples (Figure 5B). Moreover,

we collected 142 normal tissue samples from GTEx (Genotype-

Tissue Expression) database, then validated the regulation

patterns of seven hub RBPs based on 552 tumor tissue

samples and 175 normal tissue samples (35 normal tissue

samples from TCGA and 142 normal tissue samples from

GTEx). CD3EAP, NOP10, and POP5 were significantly up-

regulated in tumor tissue samples, while ATXN1, RBPMS,

SBDS, and ZC3H12C were significantly downregulated in

tumor tissue samples calculating by DESeq2 and edgeR

(Supplementary Figure S3), which were consistent with our

previous results (Figure 5B).

The seven hub RBPs chosen from the multiple Cox

regression method were used to establish the predictive

model. The risk score of each patient was calculated based

on the coefficients: h(t) = h0(t)exp (0.7039*CD3EAP-

0.3941*NOP10 + 0.3044*SBDS-

0.3529*POP5+0.6049*ZC3H12C-0.6804*ATXN1-

0.1991*RBPMS).

Then based on the median risk score as the cut-off point,

UCEC patients were divided into low- (n = 272) and high-risk

groups (n = 271). The K-M results showed that high-risk patients

had significantly worse survival than low-risk patients

(Figure 6A). Meanwhile, the AUC of the whole training set

was 0.706 for 1-year, 0.712 for 3-years, and 0.698 for 5-years.

This suggested good accuracy for the seven-gene signature

FIGURE 3
Functional enrichment analyses for differently expressed genes and Protein-protein interaction (PPI) network construction and modules
analysis. (A) Circos plot showing enriched GO-BP (Gene Ontology-Biological Process) terms of differently expressed RBPs. (B) Circos plot showing
enriched GO-CC (Gene Ontology-Cellular Component) terms of differently expressed RBPs. (C) Circos plot showing enriched GO-MF (Gene
Ontology-Molecular Function) terms of differently expressed RBPs. (D) PPI interaction network map obtained from STRING website. (E)
Cytoscape visualizes the genes of the interacting PPI network. Red nodes represent up regulated genes, while blue nodes refer to down regulated
genes. (F) The most significant MCODE components form the PPI network.
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(Figure 6B). We also calculated the 95% CI of AUCs values: the

95% CI of 1-year is 0.594–0.817, the 3-years 95% CI is

0.620–0.785, and the 5-years 95% CI is 0.608–0.777. The RFS

status of patients and heatmap of expression profiles of these

seven genes in the high- and low-risk groups are displayed

(Figures 6C,D).

Genetic alterations, methylation analysis,
and immunohistochemical profiles of the
hub RNA binding proteins

Based on the cBioportal database, the genetic alterations

and methylation profiles of seven RBPs were explored.

NOP10, POP5, CD3EAP, ATXN1, ZC3H12C, RBPMS,

SBDS exhibited 0.7%, 1.8%, 2.6%, 3%, 2.9%, 3% and 1.8%

of genetic changes, respectively (Figure 7A); most of these

concerned copy number variation. The correlations between

copy number variation and mRNA expression of SBDS, POPS,

NOP10, and CD3EAP were 0.31, 0.37, 0.54, and 0.42,

respectively (Figure 7B). In addition, the correlations

between DNA methylation and mRNA expression of

RBPMS and ATXN1 were -0.49 and -0.31, respectively

(Figure 7C). These findings suggested that SBDS, POPS,

NOP10, and CD3EAP might be copy-number drive genes.

Similarly, RBPMS and ATXN1 might be methylation-drive

genes, and ZC3H12C might be co-driven by copy-number and

methylation or other regulatory factors. We further explored

the protein expression levels of these hub RBPs in UCEC

using immunohistochemical results from the HPA database.

Compared with non-tumor tissues, NOP10, POP5,

and CD3EAP expression levels were higher in UCEC

tissues; the other four showed no significant difference

(Figure 8).

Immune infiltration analysis of hub RNA
binding proteins

Since immune cells participate in the formation of the tumor

microenvironment, they significantly contribute to tumor

development and prognosis. We studied the potential connection

between seven hub RBPs and immune infiltration (purity, B cells,

CD8+T cells, CD4+T cells, macrophages, neutrophils, and dendritic

cells) in theUCEC. SBDSwas positively correlated with CD8+ T cells

(partial. Cor = 0.354, p = 6.14e-10), neutrophils (partial. Cor = 0.418,

p = 7.89e-14) and dendritic cells (partial. Cor = 0.211, p = 2.81e-04).

NOP10, ATXN1, and ZC3H12C also showed similar immune

infiltration RBPMS was the only gene associated with infiltration

purity (cor = -0.208, p = 3.22e-4), CD3EAP was the only gene

associated with B Cell (partial. Cor = -0.186, p = 1.48e-03) (Figure 9).

Correlations between the seven-RNA
binding proteins prognostic model and
clinical parameters

To further explore the model’s prognostic value, we

investigated the relationships between the risk score and

various clinical parameters (Figure 10). The risk score was

significantly associated with age and grade; the higher the risk

score, the greater percent of tumor invasion. However, this

association was only present in stage I and III disease samples.

Building a predictive, risk score-based
nomogram

We performed univariate and multivariate Cox regression

analyses based on RNA expression profiles and clinical

TABLE 2 Unicox results of differential RBPs.

Gene HR z p-value

CD3EAP 2.391458923 4.346875367 0.000013809

CIRBP 0.541178543 −3.600328164 0.000317816

LSM7 0.572482401 −3.591732503 0.000328487

YBX2 1.357758771 3.378268126 0.000729439

MRPL15 1.762735328 3.283912261 0.001023768

TDRKH 1.524846953 2.838682482 0.004530021

NOP10 0.596455478 −2.712753596 0.00667267

SAMD4A 1.765905126 2.683683078 0.00728161

SBDS 1.603059021 2.632678292 0.008471455

MRPL23 0.646948615 −2.593175617 0.00950942

MECP2 2.336593091 2.532837714 0.011314332

POP5 0.577808872 −2.487191221 0.012875617

ZC3H12C 1.950542754 2.469430102 0.013532845

MRPS12 1.512001062 2.434556081 0.014910069

ATXN1 0.571110339 −2.427120695 0.015219192

MRPL47 1.435094464 2.384334715 0.017110032

CPSF3 1.812881357 2.377458125 0.017432422

GEMIN7 1.657657963 2.346262128 0.018962766

BOP1 1.442119432 2.303386634 0.021257099

RPL39L 1.238062894 2.298528417 0.021531732

ENDOG 0.725979466 −2.208393206 0.027216875

EZH2 1.433468536 2.206975815 0.027315749

EXO1 1.402591262 2.178166507 0.029393643

RBM24 0.725021991 −2.075614682 0.037929602

SIDT1 0.706953500 −2.064534812 0.038967037

ADAT3 0.710307233 −2.038870497 0.041462954

RBPMS 0.785179077 −2.008192852 0.044622802

OAS1 1.179468782 2.006127294 0.044842668

SMAD9 0.761868713 −2.004805457 0.044983849

BZW2 1.390287208 1.974205930 0.048358332
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information from TCGA data to determine whether the risk

score was an independent prognostic factor. The univariate

analysis showed that age, grade, stage, tumor invasion percent,

and risk score were significantly correlated with OS in UCEC

patients (Supplementary Figure S4A). Multivariate analysis

indicated that age, grade, stage, tumor invasion percent, and

risk score were all independent prognostic factors for OS

(Supplementary Figure S4B). Thus, the risk score (based on

seven RBPs) might serve as an independent prognostic factor

for UCEC patient survival.

The nomogram uses an algorithm that includes multiple

variables to calculate the predicted probability of a patient

FIGURE 4
Characterization of 30 prognosis-related RBPs’ tumor mutations in UCEC samples. Mutations of 30 prognosis-related RBPs in UCEC samples,
column representative genes.

FIGURE 5
The coefficients and expression profiles of seven hub RBPs. (A) The coefficients of seven hub RBPs screened by univariate and multivariate Cox
regression analysis. (B) The seven differently expressed genes were screened for expression in normal and cancer samples.
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reaching a specific clinical endpoint, quantifying the relative

contribution of each risk factor, which can be a useful tool to

present and help understand clinical prediction models (Irish

et al., 2003; Park, 2018). Therefore, to develop a quantitative

method for predicting prognosis in UCEC patients, we

constructed a nomogram that integrated risk score and the

independent predictors identified above (age, grade, tumor

invasion percent, and stage). Each variable was assigned a

score. Then, scores for the five variables were added, and a

vertical line was drawn from the total score to the nomogram

subscale to determine the estimated 1-, 3-, and 5-years

survival rates (Figure 11A). The c-index value of the

prediction nomogram was 0.816 for the UCEC cohort,

indicating that it had good discrimination capability. The

calibration curves indicated that the nomogram predictions

were consistent with actual observations for 1-, 3- and 5-years

OS in the TCGA-UCEC cohort, suggesting that the

nomogram was reliable (Figures 11B–D). Additionally,

DCA was used to evaluate the clinical efficiency of the

predictive nomogram. The results showed that the

nomogram could improve patient prognosis predictions

(Figures 11E–G).

FIGURE 6
Risk score analysis of seven-gene prognostic model in TCGA UCEC cohort. (A) Kaplan–Meier curves of OS of high- and low-risk groups (p <
0.0001). (B) ROC curve for judging the accuracy of the signature. (C) The distribution of risk scores, gene expression levels and patient survival status.
The dotted line represents the median cut point and divides patients into low-risk and high-risk groups. (D) The heatmap of the seven hub genes
expression profiles in the group.
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Correlation of hub RNA binding proteins ’
expression level and patients’ risk scores

In addition, we analyzed the relationship between the

expression value of each hub RBPs and the risk of UCEC

patients. The results showed that 5/7 hub RBP (ATXN1,

CD3EAP, RBPMS, SBDS and ZC3H12C) was significantly

associated with the risk of patients, with respective p-values of

0.046, <2.2e-16, 0.016, 2.5e-07, and 0.0021 (Supplementary

Figure S5).

Validation of hub RNA binding proteins’
prognostic value

To determine the feasibility and reliability of the seven-gene

prognostic signature, we validated it using testing set A (n = 272) and

testing set B (n = 271). In the testing sets A and B, a lower overall

survival rate was noted for patients in the high risk compared to

those in the low risk groups (Supplementary Figure S6). The AUC

for the testing set A and Bwere enough to indicate that the signature

strongly predicts overall survival in UCEC patients.

FIGURE 7
The genetic alterations and methylation of the seven hub RBPs (A) The genetic alterations of the seven genes. (B) The correlation between
mRNA expression and copy number values of the seven genes. (C) The correlation between mRNA expression and DNA methylation of the seven
genes.
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Discussion

Many studies have confirmed that differential expression of

RBPs is closely associated with developing various tumor types

(Pereira et al., 2017b; Neelamraju et al., 2018). However, there

has been little information on the expression and potential role of

RBPs in UCEC based on RNA-seq data from the TCGA cohort.

Herein, 128 differently expressed RBPs were identified in tumor

tissues compared to normal tissues based on RNA-seq data from

the TCGA-UCEC cohort. We used GO and KEGG enrichment

analyses to elucidate the underlying biomolecular mechanism of

differently expressed RBPs. Then, the PPI network was

constructed by STRING and visualized by Cytoscape.

Furthermore, univariate Cox regression and multiple stepwise

Cox regression of hub RBPs were performed to further explore

their potential value in clinical outcomes. Finally, a risk model

was developed to predict the prognosis of UCEC based on seven

RBP genes. These findings facilitate the identification of new

biomarkers for the diagnosis and prognosis prediction of UCEC.

The seven hub RBPs CD3EAP, POP5, NOP10, ATXN1,

ZC3H12C, RBPMS, and SBDS were implicated in the progression

and prognosis of many cancers. Studies have shown that CD3EAP

affects the transcription process of rRNA, RNA polymerase activity,

and cell proliferation; CD3EAP can also mediate the activation

pathway of T cells to produce leukocyte interleukin-2 to inhibit the

growth of cancer cells (Lovci et al., 2016; Wang et al., 2019). Haoya

Xu et al. found that the high expression of CD3EAP in endometrial

cancer was related to a higher pathological grade, later clinical stage,

and postoperative tumor recurrence (Xu et al., 2021a). CD3EAP is

among the genes with the highest mutation rate in hepatoid

adenocarcinoma of the stomach (Baralle and Giudice, 2017).

Noncoding transcripts POP5 plays a significant role in the

processing of tRNA (Hazeyama et al., 2013) and studies have

shown that it is a new biomarker for prostate cancer (Romanuik

et al., 2009). ATXN1 can induce RNA degradation and translation

suppression by binding to the 5’ non-translation zone of miR760

(Nitschke et al., 2020). Ribonucleoprotein NOP10 is involved in

pathways related to rRNA processing in the nucleus and cytosol and

gene expression. Loss of NOP10 and subsequent reduction of

H/ACA box snoRNAs and rRNA pseuduridylation inhibited the

formation, migration, and invasion of lung cancer cell growth

colonies (Cui et al., 2021). Zinc Finger CCCH-Type Containing

12C (ZC3H12C) is a protein-coding gene that may act as an

RNase and regulate levels of target RNA species (Ota et al., 2004;

Taylor et al., 2006). Some studies found it a prognosis-related center

for lung adenocarcinoma RBP (Liu, 2020). RNA-binding protein

with multiple splicing (RBPMS) is a higher vertebrate mRNA-

binding protein containing a single RNA recognition motif

(RRM). RBPMS have been proved to be involved in mRNA

transport location and stability and play a key role in axon-

guided smooth muscle plasticity and regulation of cancer cell

proliferation and migration (Sun et al., 2006; Teplova et al.,

2016). Fusion involving the neuromodulin-1 gene (NRG1) leads

to ERBB-mediated pathway activation, thus providing a reasonable

candidate for targeted therapy. Multiple NRG1 fusion partners,

including RBPMS, have been found in lung cancer patients. SBDS

(Laskin et al., 2020) encodes a highly conserved protein essential in

ribosome biogenesis. SBDS is often overexpressed or amplified in

FIGURE 8
Validation of hub RBP expression in UCEC and normal tissue from the HPA database. (A) ATXN1, (B) CE3EAP, (C) NOP10, (D) POP5, (E) RBPMS,
(F) SBDS, (G) ZC3H12C.
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human cancers, and high endogenous SBDS are significantly

associated with adverse prognoses. In contrast, SBDS knockdown

leads to the stabilization and activation of p53 through the ribosomal

stress-RPL5/RPL11-MDM2 pathway, inhibiting cancer cell

proliferation and invasion (Hao et al., 2020).

Aberrant DNA methylation leads to malignancy, mainly

through DNA hypermethylation or hypomethylation (Heyn

and Esteller, 2012). This is reflected in individual genes and

genome-wide (Pan et al., 2018). An increased number of DNA

hypomethylation has been shown to activate oncogenes and affect

chromosome stability and several retrotransposon elements

(Ahuja et al., 2016). We found that multiple methylation sites

of regulated genes in UCEC were negatively correlated with their

own expression. These data suggest that methylation changes may

lead to abnormal gene expression, confirming that alterations in

DNA methylation can be exploited in cancer diagnosis (Esteller,

2007).

In order to further explore the role of these hub RBPs in the

progression of UCEC.We searched for differently expressed genes

between high and low risk patients, and performed GO analysis to

explore their possible role in the development of cancer

(Supplementary Figure 7). The results showed that in the aspect

FIGURE 9
Relationships between expression of seven hub RBPs and tumor immune infifiltrations (A) RBPMS, (B) CE3EAP, (C) SBDS, (D) ZC3H12C, (E)
ATXN1, (F) POP5, (G) NOP10.
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of BP, these differently expressed genes were significantly enriched

in cell development (p-adjusted value = 5.19e-8), Cell

differentiation (p-adjusted value = 1.93e-7) and cell-cell

adhesion via plasma-membrane adhesion molecules (p-adjusted

value = 4.01e-5), which are common pathways affecting cancer. In

the aspect of KEGG, we noted that these differently expressed

genes significantly affect the function of Cytochrome P450

(p-adjusted value = 0.019), which is mainly distributed in the

endoplasmic reticulum and mitochondrial inner membrane, and

plays an important role in both cytokines and thermoregulation

(Guengerich, 2019). Tumor cells depend on glycolysis and

mitochondrial oxidative phosphorylation for survival (Hanahan

and Weinberg, 2000). Abnormal mitochondrial pathways and

metabolic disorders can lead to altered gene expression that

promotes cancer progression and immune system evasion. In

addition, a large number of enrichment pathways are involved

in membrane and cell signal transduction (gated channel activity,

p-adjusted value = 3.80e-9; synapse, p-adjusted value = 1.19e-11;

receptor ligand activity, p-adjusted value = 8.49e-6), which may

influence the occurrence of tissue inflammation or insensitivity to

antigrowth signals, and thus affect the progression of cancer

(Hanahan and Weinberg, 2000).

Whether confined to specific genes or affecting the entire

chromosome, changes in DNA copy number have been

implicated in disease and developmental abnormalities and as

a source of adaptive potential. As the gain or loss of genetic

information affects gene expression, large-scale changes in gene

copy numbers have profound effects on the protein composition

of cells (Tang and Amon, 2013). Epidermal growth factor

receptor copy number alterations have been associated with

poor clinical outcomes in patients with head and neck

squamous carcinoma (Temam et al., 2007). Increased hub

RBP copies were positively correlated with UCEC expression.

Future studies should continue to search for new biomarkers

of UCEC.

Immune infiltration is an important factor affecting cancer

prognosis (Balachandran et al., 2015). Most of the seven hub

RBPs have no correlation with tumor purity except RBPMS.

Notably, all prognostic RBPs were positively associated with

neutrophil infiltration. Studies have shown that tumor-

associated macrophages and neutrophils perform pretumor

cell functions, enhancing tumor cell invasion, metastasis,

angiogenesis, and extracellular matrix remodeling while

inhibiting anti-tumor immune monitoring (Xu et al., 2021b).

RBPs are likely involved in cancer invasion and metastasis; these

mechanisms require further study.

This was the first study to link molecular markers to

endometrial cancer, closely associate differently expressed

genes with the clinicopathological features of endometrial

cancer, and construct a risk model and nomogram. This

nomogram could be deployed in clinical settings to provide

an intuitive and convenient tool for individualized diagnosis

and treatment of endometrial cancer. The inclusion of potential

biomarkers based on the molecular level would make the

FIGURE 10
Relationships between risk score and various clinical parameters. Risk scores in cohorts stratified by age (A), grade (B), stage (C), tumor invasion
percent (D). Risk score is significantly associated with age, grade and tumor invasion percent, but not completely with stage.
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nomogram predictions more general and accurate. However, the

nomogram’s accuracy might decrease over time due to

improvements in treatment, early detection, and changes in

natural history (Balachandran et al., 2015); therefore,

shortcomings remain. In addition, our results should be

considered in the context of several study limitations. Firstly,

the prognostic information of endometrial cancer patients was

not available in other databases such as GEO and ICGC, which

we could not validate using external datasets (Xu et al., 2021b),

and some important clinical characteristics of UCEC patients,

such as living environment and family history, were missing from

the TCGA database, thus more uterine endometrial samples from

multicenter and detailed clinical information are necessary for

validation. Secondly, in vitro and in vivo experiments are needed

to clarify the molecular mechanisms for better clinical

applications in further studies.

This study systematically analyzed a large cohort of patients

in the TCGA database. This allowed us to construct a robust

prognostic model based on seven RBPs, which may be of great

value in clinical applications. In addition, our prognostic model

can also accurately predict survival when patients are stratified

into different cohorts based on other disease characteristics. The

AUC at 1 year, 3 years is greater than 0.7 and the AUC at 5 years

is also very close to 0.7, which indicates the model’s evaluation

power with moderate performance (Huang and Ling, 2005).

Moreover, We constructed a nomogram by integrating the

seven RBPs model and clinical information to improve the

accuracy of prediction and clinical application value. Our

signature may therefore help physicians make accurate,

individualized survival predictions. In conclusion, we

performed a comprehensive bioinformatics analysis based on

TCGA data to investigate the prognostic value of aberrantly

FIGURE 11
Clinical prognostic nomogram for predicting prognosis in TCGAUCEC cohorts. (A) The clinical nomogram developed to predict 1-year, 3-years
and 5-years survival by incorporating five independent prognostic indicators, including risk score. Calibration curves showing nomogrampredictions
for one- year (B), 3-years (C) and 5-years (D) survival. Decision curve analysis was used to estimate clinical usefulness and net benefit of the predictive
nomogram for 1-year (E), 3-years (F) and 5-years (G).
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expressed RBPs in UCEC patients. We expect our work will

facilitate the future development of new diagnostic and

therapeutic strategies for UCEC and inform future investigations.

Conclusion

We constructed a prognostic-associated risk model of UCEC

patient survival based on the expression of seven hub RBPs

within tumor tissues. Our novel signature can be used as an

additional clinical tool to facilitate personalized therapy in UCEC

patients. While this model exhibited significant prognostic value,

this study is limited by the fact that it is solely based upon data

within the TCGA database and lacks any external validation. If

the model wants to be further improved in the future, we need

more external data sets to confirm and expand upon our findings.
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