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1  | INTRODUC TION

Depression is one of the major public health concerns, and chronic 
depression may cause neuron and synapse atrophies in the limbic 
system (Moussavi et  al.,  2007; Strine et  al.,  2009). The pathology 
of depression is related with complex interactions among genes, 
immune-stimulated inflammations, as well as environmental factors. 
It is well-established that neuron plasticity might be changed in some 
important fields in depressive brain (Castren, 2013). The changes of 

gene expression detected in blood and dermal cells suggested that 
genetic defects may have susceptibility for the induction of major 
depression disorders (Roy et al., 2017; Y. Xu et al., 2010).

MicroRNA (miRNA) is a family of small noncoding RNAs (18–
22  nt) that can regulate the expression of target messenger RNAs 
through the interference with transcription or inhibiting translation 
(Dwivedi, 2014). Studies have revealed that miRNAs play critical roles 
in various cellular biological procedures, such as metabolism, cell sur-
vival, differentiation and apoptosis (Wan et al., 2015). Dysregulation 
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Abstract
Introduction: This study mainly investigated the role of miR-199a-5p in depression.
Methods: qRT-PCR and western blotting were employed to detect the expressions of 
miR-199a-5p, CREB and BDNF. Sucrose preference test, forced swimming test, and 
tail suspension test were performed to evaluate depression-related symptoms. MTT 
assays and flow cytometry were used to examine the cell reproduction and apoptotic 
cells of hippocampal neuron.
Results: The data demonstrated that the expression levels of miR-199a-5p in the cer-
ebrospinal fluids and serums of depression patient and the hippocampus of chronic 
unpredictable mild stress (CUMS) mouse were significantly increased. However, the 
expressions of WNT2, p-CREB, and BDNF were inhibited. In addition, miR-199a-5p-
inhibitor enhanced sucrose preferences of CUMS mouse and decreased immobile 
time in sucrose preference test and forced swimming test. Knockdown of WNT2 
attenuated the effects of miR-199a-5p-inhibitor on cell reproduction and apoptotic 
cells of hippocampal neuron and the expression of WNT2, p-CREB, and BDNF.
Conclusion: MiR-199a-5p can target WNT2 to enhance the development of depression 
through regulation of the CREB/BDNF signaling. Trial registration: JNU-Hos-49284.
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of specific miRNAs may contribute to various human diseases, in-
cluding cancer, Alzheimer's disease, and Parkinson's disease (Martins 
et  al.,  2011). Studies have identified miRNAs that are involved in 
depression. For example, miR-1202 was reported to be a primate-
specific and brain-enriched miRNA involved in major depression and 
antidepressant treatment (Lopez et  al.,  2014). MiR-199a-5p plays a 
suppressive role in tumor cell reproduction (Raimondi et al., 2014; H. 
Yi et al., 2013). This study was carried out to investigate the role of 
miR-199a-5p in the pathophysiology of depression.

The WNT pathway actively participates in embryogenesis, de-
velopment of nervous system, and adult hippocampal neurogene-
sis (Huelsken & Behrens,  2002). The WNT signaling pathway was 
also demonstrated to play essential roles in the treatment of major 
depression. It was reported that WNT and its downstream fac-
tors were involved in the pathophysiology of depression (Voleti & 
Duman,  2012). In addition, elevated temporal cortex CREB con-
centrations in major depression were observed (Dowlatshahi 
et al., 1998). Another study reported that inhibited function of the 
CREB1/BDNF/NTRK2 pathway had a negative impact on the risk 
mechanism of depression (Juhasz et al., 2011). In this study, interac-
tions among miR-199a-5p, the WNT pathway, and the CREB1/BDNF 
axis in the development of depression were investigated.

2  | METHODS

2.1 | Patients information and sample preparation

This study recruited MDD patient with standards of 1) Patients had 
major depressions diagnosed by Chinese Classification and diagnos-
tic criteria of Mental Disorders, 3rd edition; 2) Patients had Hamilton 
Depression Scale scores >= 24; Patient were excluded if they had: 
1) Primary organic diseases, mental illnesses, drug use, or history of 
bipolar disorders. The control group had no mental/neurological ill-
nesses. This study was approved by the Ethics Committee of The 
second affiliated hospital of Baotou medical college. All participants 
signed the written informed consent.

Cerebrospinal fluid (CSF, 4 ml) was collected by lumbar punc-
ture in 3 male MDD patients and 4 female MDD patients aged at 
31.26 ± 8.05 years old, as well as 3 male control participants and 4 
female participants aged at 32.38 ± 8.56 years old. Fasting venous 
blood samples (4 ml) were obtained in another 20 MDD patients (9 
males and 11 females, aged at 34.84 ± 9.59 years old), and 20 healthy 
controls (10 males and 10 females, aged at 35.12 ± 10.06 years old). 
After collection, CSF and blood samples were centrifuged at 4°C for 
10 min and then stored at −80°C.

2.2 | Animal information

Adult male Kunming mice were purchased from the Vital River 
Laboratory Animal Technology Co, Ltd (Beijing, China). Mice were kept 
at 12 hr/12 hr day/night cycle and with free access to food and drink. 
Twelve mice were grouped into chronic unpredictable mild stress 

(CUMS) and control (n = 6) groups. Twenty-four mice were grouped 
into the control, CUMS, CUMS  +  NC-inhibitor, and CUMS  +  miR-
199a-5p-inhibitor (n = 6) groups. Another 18 mice were grouped into 
CUMS, CUMS +  fluoxetine, and CUMS +  fluoxetine +miR-199a-5p 
mimics (n = 6) groups. MiR-199a-5p-inhibitor, miR-199a-5p mimic, and 
the control (Shanghai, China) were intracerebroventricularly adminis-
tered to mice with 0.5 nmol/mouse (L.-T. Yi et al., 2014). The injection 
was carried out one time per week for 3 weeks. The fluoxetine group 
had 10 mg/kg fluoxetine by intraperitoneal injections one time per 
day for 2 weeks. For euthanasia, animals were deeply anesthetized 
with sodium pentobarbital (30 mg/kg body weight, Sigma Chemical 
Co.) through intraperitoneal injection. Mice were finally sacrificed by 
cervical dislocation. All animal experiments were performed follow-
ing the Institutional Animal Care Committee of The second affiliated 
hospital of Baotou medical college.

2.3 | CUMS

Mice were subjected to long-term mild stressors of: 1) Clipping 
the distal 1/3 mouse tail for a minute; 2) Foot shocking for 10 s; 3) 
Swimming at 4°C for 5 min; (4) Illuminations for overnight; 5) Fasten 
for 1 d; 6) Water deprivations for 1 d; 7) Wet cage for 1 d; 8) A 45 
degree cage tilt for 1 d. Mice had one to two stressors every day 
for 42 d. The control mice had no stressor. After that, mice were 
subjected to sugar preference test, forced swimming test, and tail 
suspension test.

2.4 | Sucrose preference test

After CUMS, mice were deprived of water after 8 p.m. The next day, 
mice had 1% sucrose with 1 hr/day for 3 d from 8 to 9 a.m. On the 
test day, sucrose preference test was carried out after 8 hr of water 
deprivation. After that, mice had free access to drink 1% sucrose or 
water for 1 hr. The test last for 2 d, followed by switching of drink 
bottles. After the test, the weight loss of bottles was considered as 
liquid consumptions.

2.5 | Forced swimming test

A glass beaker was filled with 18 cm of water at 22°C, and mice were 
forced to swim in it for 6 min. The immobility duration of mice was 
measured by double-blinded observers, as the time that mice didn't 
move or had little movement. After forced swimming test, mice were 
cleaned and put back into the cage.

2.6 | Tail suspension test

Mice were stuck by rubber at 1 cm to tail tip and suspended from top 
for six min. Immobility durations that mice were utterly motionless 
were calculated by double-blinded observers.
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2.7 | Hippocampus

Mice were sacrificed after CUMS. The hippocampus was taken, fro-
zen, and stored at −80°C. ELISA kits were used to detect the concen-
trations of corticosterone (CORT) in mouse serum.

2.8 | QRT-PCR

Total RNAs were isolated from tissues and cells using Trizol rea-
gent (Invitrogen). cDNA samples were synthesized with reverse-
transcription and used as template for qRT-PCR. U6 was used as the 
internal control. The expression levels were determined using 2−ΔΔCt 
method. The primer sequences were listed in Table 1.

2.9 | Western blotting

Hippocampus homogenate was lysed, centrifuged, and separated 
via SDS-PAGE. Total proteins were transferred to PVDF membrane 
(Amersham). The membrane was blocked in 5% skim milk at 25°C 
for 1  hr, and then treated with anti-WNT2, anti-CREB, anti-p-
CREB, anti-BDNF, and anti-β-actin (Santa Cruz Biotechnology, US) 
at 4°C for overnight. Then, the membrane was treated with horse-
radish peroxidase-labeled secondary antibody (Invitrogen, US). 
Chemiluminescence kit was used to visualize the signals (Biobyt, 
UK).

2.10 | Cell culture and transfections

C57BL/6J newborn (P0) mice were obtained from Animal Center 
of The second affiliated hospital of Baotou medical college. 
Hippocampal neuron was taken from newborn mice and incubated 
in neurobasal medium with L-glutamine and B27 (Life Technologies). 
MiR-199a-5p-mimic, miR-199a-5p-inhibitor or negative control (NC), 
and si-WNT2 or si-NC were transfected to hippocampal neuron 
using Lipofectamine 2000 (Invitrogen). Hippocampal neuron was 
analyzed after 1 d.

2.11 | MTT assays

Hippocampal neuron was seeded in 96-well plates in medium with 
20 μl 5 mg/ml MTT and maintained at 37°C with 5% CO2for 4 hr. 
Next, the supernatant was removed and 150 μl DMSO was added. 
ELISA was used to measure the signals at 490 nm.

2.12 | Flow cytometry

The hippocampal neuron was centrifuged at 600  rpm for 2  min. 
The supernatant was removed and 10  μl Annexin V-FITC and 5 μl 
Propidium iodide were added for incubation at 4°C for 30 min in dark. 
The apoptotic cells were detected using a flow cytometer (Coulter).

2.13 | Cell transfections

HEK293 cells were obtained from Gefan Biotechnology, China 
and maintained in DMEM with 10% FBS, 100 mg/L penicillin, and 
100 mg/L streptomycin. Cells were cultured at 37°C with 5% CO2.

2.14 | Dual-luciferase reporter assay

The 3’-UTR of WNT2 with the binding sequence of miR-199a-5p was 
amplified and cloned into PGL3 vector (Promega). WNT2-WT (wild-
type) or WNT2-MUT (mutant) was transfected with miR-199a-5p-
mimic/inhibitor to HEK293 cell. After 2 d, HEK293 cells were lysed. 
Luciferase activities were measured using Dual-luciferase reporter 
assay (Promega, US).

2.15 | Statistical analysis

SPSS 17.0 was used for data analysis. The data were expressed as 
means  ±  standard deviation (SD). For each analysis, the data sets 
were firstly analyzed for their normality (Shapiro–Wilk test) and 
equal variance (modified Levene test) assumptions prior to the use of 
parametric statistical methods. Then, differences between 2 groups 
were evaluated by Student's t test, and difference in multiple groups 
was evaluated by one-way analysis of variance (ANOVA) followed 
by post hoc analyses test if data conformed to normality and homo-
geneity of variance. p < .05 was considered statistically significant.

3  | RESULTS

3.1 | The expression levels of miR-199a-5p were 
significantly elevated in the serum of CSF and MDD 
patient

The expression of miR-139-5p and miR-199a-5p were detected in 
CSF and serum of MDD patient. It showed that the expression levels 
of miR-139-5p (t test, t(4) = −8.015, p = .001) and miR-199a-5p (t test, 

TA B L E  1   Sequences of primers used in qRT-PCR

Gene Forward primer (5’−3’) Reversed primer (5’−3’)

miR−199a−5p GTCGATACCAGTGCGTGTCGTCCTGTCGGC AATTGCACTGGATACGACAGCCTAT

U6 GCTTCGGCAGCACATATACTAAAAT CGCTTCACGAATTTGCGTGTCAT
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t(4) = −12.856, p =.000) were elevated in CSF, while the elevation of 
the expression levels of miR-199a-5p were more obvious, compared 
with the control patient (p <  .01) (Figure 1a). The same trend was 
observed in MDD serum (miR-139-5p, t test, t(4) = −6.057, p = .004; 
miR-199a-5p, t test, t(4) = −15.119, p = .000) (p < .01) (Figure 1b).

3.2 | The expression of MIR-199a-5p in the 
hippocampus of cums mice

A great reduction of sucrose preference in CUMS was observed (t 
test, t(10) = 8.648, p = .001) (p < .01) (Figure 2a). And the immobil-
ity duration in the forced swimming test (ANOVA, F(3,20) = 26.138, 
p = .000; LSD test, t = −6.891, p = .000) (Figure 2b) and tail suspen-
sion test (ANOVA, F(3,20) = 68.640, p = .000; LSD test, t = −11.617, 
p = .000) (Figure 2c) was significantly longer than that in the control 
(p  <  .01). In addition, the concentration of CORT in CUMS serum 
was significantly enhanced (t test, t(10) = −9.086, p = .001) (p < .01) 

(Figure  2d). As shown in Figure  2e, the expression levels of miR-
199a-5p in CUMS mice were significantly elevated compared to that 
in the control mice (t test, t(10) = −16.274, p = .000) (p < .01). Western 
blotting results demonstrated that the expression of WNT2, p-
CREB, and BDNF in CUMS mice were remarkably reduced compared 
to that in the control (p < .01) (Figure 2f).

3.3 | MIR-199a-5p suppressed cell reproduction and 
enhanced apoptotic cells of hippocampal neuron

To explore the role of miR-199a-5p, hippocampal neuron was trans-
fected with miR-199a-5p mimic or miR-199a-5p-inhibitor. It was found 
that miR-199a-5p mimic promoted the expression levels of miR-199a-5p 
(t test, t(4) = −13.350, p = .000) (p < .01) (Figure 3a), and miR-199a-5p-
inhibitor inhibited the expression of miR-199a-5p (t test, t(4) = 10.521, 
p = .000) (p < .01) (Figure 3d). In addition, overexpression of miR-199a-5p 
suppressed cell reproduction of hippocampal neuron (t test, t(4) = 9.080, 
p  =  .001) (p  <  .01) and enhanced neuron’ apoptotic cells (t test, 
t(4) = −11.106, p = .000) (p < .01) (Figure 3b and 3c). And miR-199a-5p-
inhibitor had the reverse effect (Figure 3e, t test, t(4) = −6.662, p = .003; 
Figure 3f, t test, t(4) = 7.146, p = .002) (p < .01) (Figure 3e and 3f).

3.4 | WNT2 was a direct target of MIR-199a-5p

The possible binding between miR-199a-5p and WNT2 was pre-
dicted by MicroRNA.org (Figure 4a). Dual-luciferase reporter assay 
results demonstrated that the expression levels of WNT2-WT were 
significantly reduced in cells with the overexpression of miR-199a-5p 
(ANOVA, F(3,8) = 63.339, p =  .000; LSD test, t = 11.251, p =  .000) 
(p < .01), while the expression levels of WNT2-WT were substantially 
elevated in cells transfected with miR-199a-5p-inhibitor (ANOVA, 
F(3,8) = 103.402, p = .000; LSD test, t = −14.353, p = .000) (p < .01) 
(Figure  4b and c). In addition, the expression lof WNT2 (ANOVA, 
F(3,8) = 104.709, p = .000; LSD test, t = 3.888, p = .005) (Figure 4d), 
p-CREB (ANOVA, F(3,8)  =  81.553, p  =  .000; LSD test, t  =  5.270, 
p = .001) (Figure 4e) and BDNF (ANOVA, F(3,8) = 78.783, p = .000; 
LSD test, t = 3.897, p = .005) (Figure 4f) in hippocampal neuron in 
transfection with miR-199a-5p mimics were significantly suppressed 
(p < .01) but significantly elevated with the transfection of miR-199a-
5p-inhibitor (Figure 4d, ANOVA, F(3,8) = 104.709, p = .000; LSD test, 
t = −12.405, p = .000; Figure 4e, ANOVA, F(3,8) = 81.553, p = .000; 
LSD test, t = −9.875, p =  .000; Figure 4f, ANOVA, F(3,8) = 78.783, 
p = .000; LSD test, t = −10.943, p = .000) (p < .01).

3.5 | Silencing of WNT2 attenuated the effect of 
MIR-199a-5p-inhibitor on cell reproduction and 
apoptosis of hippocampal neuron

As shown in Figure 5a, the miR-199a-5p-inhibitor could enhance cell re-
production of hippocampal neuron (ANOVA, F(3,8) = 41.025, p = .000; 

F I G U R E  1   The expression of miR-199a-5p in MDD patient. (a) 
The expression of seven miRNAs for CSF from MDD patient. (b) The 
expressions of seven mRNAs in serum of MDD patient. **p < .01
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LSD test, t  =  −8.137, p  =  .000), but si-WNT2 attenuated the effect 
(ANOVA, F(3,8) = 41.025, p = .000; LSD test, t = 7.476, p = .000) (p < .01). 
In addition, si-WNT2 relieved the inhibition effect from miR-199a-5p-
inhibitor on the apoptosis of neurons (ANOVA, F(3,8) = 32.660, p = .000; 
LSD test, t = −6.658, p = .000) (p < .05) (Figure 5b). Western blotting 
results showed that miR-199a-5p-inhibitor can elevate the expression 
levels of WNT2, p-CREB, and BDNF, and this effect was were reversed 
by si-WNT2 (Figure 5c). In addition, miR-199a-5p mimic could suppress 

cell reproduction of hippocampal neuron (ANOVA, F(3,8)  =  25.246, 
p = .000; LSD test, t = 7.255, p = .000) (p < .01) (Figure 5d), enhance 
apoptosis of neuron (ANOVA, F(3,8)  =  37.176, p  =  .000; LSD test, 
t = −8.670, p = .000) (p < .01) (Figure 5e), and inhibit the expression of 
WNT2, p-CREB and BDNF (Figure 5f). However, Lenti-WNT2 attenu-
ated these effects (Figure 5d, ANOVA, F(3,8) = 25.246, p =  .000; LSD 
test, t = −4.019, p = .016; Figure 5e, ANOVA, F(3,8) = 37.176, p = .000; 
LSD test, t = 5.299, p = .001) (p < .05, p < .01).

F I G U R E  2   The expression of miR-199a-5p in CUMS hippocampus. (a) sucrose preference test. (b) forced swimming test. (c) tail 
suspension test. (d) CORT concentrations in CUMS serum. (e) Expression of miR-199a-5p in CUMS hippocampus. (f) The expression of 
WNT2, p-CREB, and BDNF in CUMS hippocampus. **p < .01

F I G U R E  3   Effects of miR-199a-5p on the cell reproduction and apoptosis of hippocampal neuron in mice. Hippocampal neuron of 
neonatal mice was transfected by miR-199a-5p mimics or-inhibitor. (a and d) The expression of miR-199a-5p. (b and e) The cell reproduction 
of hippocampal neuron. (c and f) The apoptosis of hippocampal neuron. **p < .01
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3.6 | MIR-199a-5p-inhibitor relived the depressive-
like symtomin cums mice

As shown in Figure 6a, miR-199a-5p-inhibitor changed the impact of 
CUMS on sucrose preference (SP) (ANOVA, F(3,20) = 38.436, p = .000; 
LSD test, t = −6.399, p = .000) as well as the immobility duration in 
forced swimming test (ANOVA, F(3,20) = 29.918, p = .000; LSD test, 
t = 5.925, p =  .000) (Figure 6b) and tail suspension test (ANOVA, 
F(3,20) = 45.154, p = .000; LSD test, t = 5.614, p = .001) (Figure 6c) 
(p <  .01). Moreover, miR-199a-5p-inhibitor reversed the increasing 
in the expression levels of CORT (ANOVA, F(3,20) = 42.610, p = .000; 
LSD test, t = 5.825, p = .000) (p < .05) (Figure 6d) and miR-199a-5p 
(ANOVA, F(3,20) = 216.284, p = .000; LSD test, t = 18.058, p = .000) 
(p < .01) (Figure 6e), and the decreasing in the expression levels of 
WNT2, p-CREB and BDNF (Figure 6f) resulted from CUMS.

3.7 | Overexpression of MIR-199a-5p 
attenuated the effect of fluoxetine on cums mice

It showed that fluoxetine could elevate the SP of CUMS mice 
(ANOVA, F(2,15) = 15.122, p =  .000; LSD test, t = −5.333, p =  .002) 
(Figure  7a), decrease the immobility duration in forced swimming 

test (ANOVA, F(2,15) = 9.321, p = .000; LSD test, t = 4.289, p = .013) 
(Figure 7b) and tail suspension test (ANOVA, F(2,15) = 23.699, p = .001; 
LSD test, t = 6.541, p = .001) (Figure 7c) (p < .05, p < .01). However, 
overexpression of miR-199a-5p attenuated this effect (Figure  7a, 
ANOVA, F(2,15)  =  15.122, p  =  .000; LSD test, t  =  3.725, p  =  .020; 
Figure 7b, ANOVA, F(2,15)  =  9.321, p  =  .000; LSD test, t  =  −3.275, 
p  =  .017; Figure  7c, ANOVA, F(2,15)  =  23.699, p  =  .001; LSD test, 
t = −5.131, p = .002) (p < .05). In addition, the decreasing in the ex-
pression levels of CORT (ANOVA, F(2,15) = 21.792, p = .002; LSD test, 
t = 6.500, p = .001) (p < .01) (Figure 7d) and miR-199a-5p (ANOVA, 
F(2,15)  =  42.179, p  =  .000; LSD test, t  =  8.795, p  =  .000) (p  <  .01) 
(Figure 7e), and the increasing in the expression levels of WNT2, p-
CREB and BDNF (Figure 7f) resulted from fluoxetine, were all reversed 
by miR-199a-5p mimic (Figure 7d, ANOVA, F(2,15) = 21.792, p = .002; 
LSD test, t = −4.648, p =  .010; Figure 7e, ANOVA, F(2,15) = 42.179, 
p = .000; LSD test, t = −6.689, p = .001) (p < .05, p < .01).

4  | DISCUSSION

Altered expression of miRNAs in blood has been reported in de-
pressed patients during antidepressant treatments (Bocchio-
Chiavetto et  al.,  2013). Besides, altered expression of miRNA 

F I G U R E  4   WNT2 was targeted by miR-199a-5p. (a) Shared sequences in miR-199a-5p and WNT2. (b) Luciferase results of WNT2-WT 
for cell in transfection with miR-199a-5p-mimic. (c) Luciferase results of WNT2-WT for cell in transfection with miR-199a-5p-inhibitor. 
Hippocampal neuron in transfection with miR-199a-5p mimics/inhibitor: (d) The expression of WNT2. (e) The expression of p-CREB. (f) The 
expression of BDNF. **p < .01
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network in locus coeruleus of depressed suicide subjects were also 
reported (Roy et al., 2017). In this study, the expression of candidate 
miRNAs in CSF and serum in MDD patient were investigated. It was 
found that the expression levels of miR-139-5p and miR-199a-5p 
were elevated in CSF and MDD serum, and the increase in the ex-
pression levels of miR-199a-5p were more obvious compared with 
the control patient. To the best of our knowledge, we are the first to 
discover that miR-199a-5p was up-regulated in depressive samples.

It was reported that the expression levels of miR-132 were sig-
nificantly increased in patients with depression (Fang et al., 2018). 
CUMS mice were shown to have increased depression-like behav-
iors and reduced hippocampal expression levels of miR-124 (Higuchi 
et al., 2016). In our study, the expression levels of miR-199a-5p in 
CUMS mice were elevated compared to that in the control mouse. 
The expression levels of WNT2, p-CREB, and BDNF in CUMS mice 
were reduced. In addition, we also observed a considerable reduc-
tion of sucrose preference in CUMS. The concentrations of CORT in 
CUMS serum were enhanced. Similar to previous studies, we found 
that the expression levels of miR-199a-5p were substantially ele-
vated in the hippocampus of CUMS mice.

MiRNAs were identified to involve in numeric biological func-
tions, including developmental transitions (La Torre et  al.,  2013), 
neuronal patterning (Kosik, 2006), cell apoptosis (Cheng et al., 2005), 

and fat metabolism (P. Xu et al., 2003). miR-199a-5p was reported to 
be involved in the promotion of cell reproduction in autosomal dom-
inant polycystic kidney diseases (L. Sun, Zhu, et al., 2015). However, 
in our study, we noticed that overexpression of miR-199a-5p sup-
pressed cell reproduction and enhanced apoptosis of hippocampal 
neuron.

It was reported that miR-199a-5p could target the WNT2 signal-
ing pathway and regulate cell reproduction of smooth muscle cells 
(Gheinani et al., 2015). Similarly, we also found possible binding be-
tween miR-199a-5p and WNT2. The expression levels of WNT2-WT 
were significantly reduced in cells with the overexpression of miR-
199a-5p, while the activities of WNT2-WT were considerably ele-
vated in cells transfected with miR-199a-5p-inhibitor. In addition, 
the expression of WNT2, p-CREB, and BDNF in hippocampal neuron 
transfected by miR-199a-5p mimics were suppressed. Knockdown 
of WNT2 attenuated the effects of miR-199a-5p-inhibitor on cell 
reproduction and apoptosis of hippocampal neuron. These data fur-
ther confirmed that WNT2 was a direct target of miR-199a-5p.

MiR-124 was reported to be the most abundant in the brain, 
and its dysregulation has been related to neurodegeneration, neu-
roimmune disorder, and CNS stress (Sun et  al.,  2015). In this study, 
we found that miR-199a-5p could act as a novel marker for major 
depression-related brain neuronal regulations. Our data showed that 

F I G U R E  5   Silencing of WNT2 attenuated the effect of miR-199a-5p-inhibitor on cell reproduction and apoptosis of hippocampal neuron. 
Hippocampal neuron transfected with NC-inhibitor, miR-199a-5p-inhibitor, miR-199a-5p-inhibitor + si-NC, or miR-199a-5p-inhibitor + si-
WNT2: (a) The cell reproduction. (b) Cell apoptosis. (c) Expressions of WNT2, p-CREB, and BDNF. Hippocampal neuron transfected with NC, 
miR-199a-5p mimics, miR-199a-5p mimics + Lenti-NC, or miR-199a-5p mimics + Lenti-WNT2: (d) The cell reproduction. (e) Cell apoptosis. (f) 
The expression of WNT2, p-CREB, and BDNF. * p < .05, ** p < .01
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F I G U R E  6   miR-199a-5p-inhibitor relived depressive-like CUMS mice. In the control, CUMS, CUMS + NC-inhibitor, and CUMS + miR-
199a-5p-inhibitor: (a) sucrose preference test. (b) forced swimming test. (c) tail suspension test. (d) The contents of corticosterone. (e) The 
expression of miR-199a-5p. (f) The expression of WNT2, p-CREB, and BDNF. *p < .05, ** p < .01

F I G U R E  7   Overexpression of miR-199a-5p reversed the effect of fluoxetine on CUMS mice. In CUMS, CUMS + fluoxetine, and 
CUMS + fluoxetine +miR-199a-5p mimic: (a) sucrose preference test. (b) forced swimming test. (c) tail suspension test. (d) CORT 
concentrations. (e) The expression of miR-199a-5p. (f) The expression of WNT2, p-CREB, and BDNF. * p < .05, ** p < .01
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miR-199a-5p-inhibitor changed the effect of CUMS on SP, as well as 
the immobility duration in the forced swimming test and tail suspen-
sion test. Moreover, miR-199a-5p-inhibitor reversed the increasing of 
the expression levels of CORT and miR-199a-5p, and the decreasing 
of the expression levels of WNT2, p-CREB, and BDNF resulted from 
CUMS.

Fluoxetine could increase the activity of the ERK-CREB signal 
system and alleviates the depressive-like behaviors in rats exposed 
to chronic forced swim stress (Qi et al., 2008). In this study, we also 
found that fluoxetine can elevate the SP of CUMS mice and decrease 
the immobility duration in the forced swimming test and tail suspen-
sion test. However, overexpression of miR-199a-5p relieved the effect. 
In addition, the decreasing in the expression levels of CORT and miR-
199a-5p, and the increasing in the expression levels of WNT2, p-CREB, 
and BDNF resulted from fluoxetine, were all reversed by a miR-199a-5p 
mimic. It indicated that miR-199a-5p had the opposite function of fluox-
etine on CUMS mice.

5  | CONCLUSIONS

MiR-199a-5p can target WNT2 to enhance the developments of de-
pression by regulating the CREB/BDNF signaling.
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