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Abstract: In this study, novel ionic liquid-incorporated Zn-ion conducting polymer
electrolyte membranes containing polymer matrix poly (vinylidene fluoride-hexafluoropropylene)
(PVdF-HFP) and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf), along with zinc
trifluoromethanesulfonate Zn(Tf)2, are prepared and investigated. It is ascertained that the optimal
membrane ILPE-Zn-4 (the mass ratio of EMITf:Zn(Tf)2:PVDF-HFP is 0.4:0.4:1), with abundant
nanopores, exhibits a high amorphousness. At room temperature, the optimized electrolyte membrane
offers a good value of ionic conductivity (~1.44 × 10−4 S cm−1), with a wide electrochemical stability
window (~4.14 V). Moreover, the electrolyte membrane can sustain a high thermal decomposition
temperature (~305 ◦C), and thus its mechanical performance is sufficient for practical applications.
Accordingly, the ionic liquid-incorporated Zn-ion conducting polymer electrolyte could be a potential
candidate for Zn-based energy storage applications.
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1. Introduction

Owing to the development of energy storage technology around the globe, mobile electronics
have seen a rapid growth. To make our lives more convenient, various electronic products like
smartphones, laptops, digital cameras, electric vehicles, etc. have been integrated into our daily life.
To date, Li-ion batteries have been widely applied in electronic equipment [1]. However, the uneven
geo-distribution of elemental Li and high cost seriously restrict the development of Li-ion batteries [2,3].
Therefore, more abundant and lower-cost metal ions (monovalent cations: Na+, K+, multivalent
cations: Mg2+, Zn2+, and Al3+) are preferred for energy storage systems [4]. Among them, Zn is
present in abundance on earth. Furthermore, it has a low cost and a relatively higher volumetric
capacity of ~5855 mAh cm−3 in comparison to Na (~1129 mAh cm−3), Li (~2061 mAh cm−3), and Mg
(~3834 mAh cm−3) [5]. Inspired by these virtues, the Zn-based energy storage system has been drawing
considerable attention. Zn-ion batteries usually use Manganese Dioxides, Vanadium Compounds,
Prussian Blue Analogs as cathodes and metal Zn plates as anodes [6–8]. The aqueous electrolyte
solutions of ZnSO4, Zn(CH3COO)2, Zn(CF3SO3)2 have been widely studied in Zn-ion batteries [9–11].
However, the work voltage window of aqueous electrolytes is narrow (~1.2 V). Though organic
electrolytes offer a high ionic conductivity and wide voltage window, they suffer from other problems
like leakage, flammability, corrosiveness, and toxicity [12]. Due to their excellent properties, like a high
thermal stability, relatively higher electrochemical stability, high flexibility, and safety, ionic conductive
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polymer electrolytes have emerged as potential candidates for use in the electrochemical energy storage
field [13,14].

In general, on account of the different compositions of the polymer electrolyte system,
ionic conductive polymer electrolytes have been divided into two classes. These are solid polymer
electrolytes (SPEs) and gel polymer electrolytes (GPEs). For SPEs, the ionic salts are complexed
with flexible polymer chains, and the transportation of ions depends on the motion of polymer
segments [15]. GPEs are formed by ionic salts and plasticizer mixed into polymer matrices. Due to
their high room-temperature ionic conductivity and contact with electrodes with a good compatibility,
GPEs have attracted considerable attention [16]. Traditional plasticizers, having a low chemical and
electrochemical stability and inflammability, include propylene carbonate (PC), ethylene carbonate
(EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc. [17,18]. Ionic liquid with excellent
electrochemical properties can be a good substitute for traditional plasticizers. For this reason,
the imidazolium-based ionic liquid (1-ethyl-3-methylimidazolium trifluoromethanesulfonate, EMITf)
was chosen as a plasticizer in the present study. This ionic liquid exhibits a lower viscosity and
higher thermal stability [17,19]. Moreover, ionic liquid can also provide a lot of free ions so as to
promote the ionic conductivity of polymer electrolytes [20]. In addition to plasticizers, GPEs contain
various functional polymer hosts. Generally, these are poly (vinyl alcohol) (PVA), poly(acrylonitrile)
(PAN), poly (methyl methacrylate) (PMMA), and poly (vinylidene fluoride-hexafluoropropylene)
(PVdF-HFP) [14,21–24]. Among them, PVdF-HFP with a low crystallinity and high dielectric constant
is chosen as the polymer host [25–27]. PVdF-HFP consists of both amorphous and crystalline structures.
The amorphous region is beneficial to ion transport, while the crystalline structure provides a better
mechanical property [28–30]. Furthermore, PVdF-HFP exhibits sound chemical and thermal stabilities
due to its strong C-F bonds [31,32]. Therefore, in recent years, the ionic liquid-doped PVdF-HFP
polymer electrolyte has been studied intensively. Guo et al. [23] developed a polymer electrolyte
based on the PVDF-HFP/LiTFSI/SiO2/EMITFSI system, and an optimum electrolyte with an ionic
conductivity of 0.74 mS cm −1 at 25 ◦C was applied in a Li/LiFePO4 battery. Such a battery showed
an excellent cycling stability. Singh et al. [17] fabricated a flexible GPE containing PVdF-HFP and
EMIMFSI, along with LiTFSI. The GPE showed the highest ionic conductivity, at ~3.8 × 10−4 S cm−1 at
25 ◦C. Kumar et al. [33] reported an electrolyte membrane based on the PVdF-HFP/NaCF3SO3/EMITf
system, and the electrolyte membrane offered an ionic conductivity of ~ 5.7 × 10−3 S cm−1 at room
temperature. Tang et al. [34] revealed that a GPE film of PVdF-HFP:Mg(Tf)2 (9:1) doped with 40 wt.%
EMITf exhibited a high room-temperature ionic conductivity of ~4.63 × 10−3 S cm−1 with a wide
electrochemical stability window of ~4.8 V. Thus, it was inferred that the ionic liquid-doped PVdF-HFP
polymer electrolyte exhibits excellent electrochemical properties.

In the present work, we have prepared ionic liquid-incorporated Zn-ion conducting polymer
electrolytes, and studied their structural, electrical, electrochemical, thermal, and mechanical properties.
A detailed study on solid polymer electrolytes based on the PVdF-HFP/Zn(Tf)2 system was conducted
in our previous work [35]. The SPE exhibited a good electrochemical performance when the mass
ratio of Zn(Tf)2 to PVdF-HFP was 0.4. Hence, we chose the optimal composition to be the host system
in the present work. The electrochemical properties of the polymer electrolyte were enhanced by
doping ionic liquid. The ionic liquid-incorporated polymer electrolytes were investigated by means of
structural, electrical, electrochemical, thermal, and mechanical analyses.

2. Materials and Methods

The following materials were used in the preparation of ionic liquid-doped polymer
electrolytes and supercapacitors. Poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP,
MW ~40,000), Zinc trifluoromethanesulfonate (Zn(Tf)2, purity ~99.6%), and tetrahydrofuran (THF,
purity ~99.5%) were acquired from Sigma Aldrich. Ionic liquid 1-ethyl-3-methylimidazolium
trifluoromethanesulfonate (EMITf, purity ~99.8%) was obtained from Aladdin. The chemicals were
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used as received. Both the ionic liquid EMITf and salt Zn(Tf)2 were vacuum-dried at 100 ◦C for 2 h
prior to use to remove the moisture.

According to our previous work [30], the solid polymer electrolyte exhibits the best electrochemical
properties when the mass ratio of Zn(Tf)2 to PVdF-HFP is 0.4, and this composition was chosen as
the host system for the preparation of ionic liquid-incorporated Zn-ion polymer electrolyte (ILPE)
membranes. Moreover, ILPE membranes with different contents of ionic liquid (the mass ratio of EMITf
to PVdF-HFP being 0, 0.1, 0.2, 0.3, 0.4, and 0.5, marked as SPE-Zn, ILPE-Zn-1, ILPE-Zn-2, ILPE-Zn-3,
ILPE-Zn-4, and ILPE-Zn-5, respectively) were prepared via a solution cast method. First, the host
polymer, PVdF-HFP, was dissolved in THF with the help of magnetic stirring at 50 ◦C. Subsequently,
Zn(Tf)2 was added to the solution in a mass ratio of Zn(Tf)2 to PVdF-HFP of 0.4, followed by continuous
stirring at 50 ◦C for 2 h. Afterwards, different contents of the ionic liquid EMITf were added, and the
mixture was continuously stirred for 18 h to obtain a homogenous viscous solution. Thereafter,
the resulting homogeneous solution was poured into different Petri dishes, followed by the evaporation
of THF at 35 ◦C for 10 h. Finally, the obtained free-standing ILPE membranes were stored in a vacuum
oven at 40 ◦C for 4 h, so that the THF could be completely removed. The macroscopic morphology of
the obtained electrolyte membrane is shown in Figure 1. It may be noted that the SPE-Zn membrane is
uniformly transparent and impurity-free. The membrane becomes translucent with the addition of
EMITf (see Figure 1b,c). All the membranes display a good flexibility. The thickness of the membranes
was measured to be ~145 µm via a spiral micrometer gauge. The as-prepared electrolyte membranes
were stored in a glove box filled with Ar atmosphere.
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Figure 1. Macroscopic morphologies of the (a) SPE-Zn membrane, (b) ILPE-Zn-4 membrane,
and (c) ILPE-Zn-5 membrane.

The crystal structure and crystallinity of the polymer electrolyte membranes were examined
using X-ray diffraction (XRD, D/max 2500 PC, Rigaku, Japan) in the 2θ range of 5–65◦ with a 2◦/min
scan rate. Scanning electron microscopy (SEM, Hitachi S-4700, Tokyo, Japan) was used to observe
the morphological characteristics of the electrolyte membranes. The thermal stability of the ILPE
membranes was studied by a thermal analyzer (STA 449F3 Jupiter, Selb, Germany) under an Ar
atmosphere at a rate of 10◦/min between 30 and 600 ◦C. Using a universal testing machine (CMT7504,
Ningbo, China), the mechanical performance of the electrolyte membranes was evaluated. The sample
size was: thickness (0.14 mm) × width (10 mm) × gauge length (100 mm). The ionic conductivity
analysis for the electrolyte membranes was carried out using a frequency analyzer (PSM 1735, Newton,
UK) in the range of 1 Hz to 1 MHz. The electrochemical stability window (ESW) and ionic transference
number were evaluated by cyclic voltammetry (CV) and DC polarization method, separately, by
means of a CHI760D electrochemical workstation. The scan range was −3 to 3 V with a scan rate of
10 mV s−1 for the CV measurements, and the applied voltage was 0.5 V for the determination of the
ionic transference number with DC polarization. As for the above electrochemical measurements,
the ILPE membranes were assembled in a symmetric sandwich structure cell with stainless steel
electrodes (SS/ILPE membrane/SS), in which the electrolyte-electrode contact area was 1.96 cm2. Finally,
to assess the practicality of an optimal electrolyte membrane as an ionic conductor, it was connected
into the circuit.
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3. Results and Discussion

XRD was used to analyze the structure and crystallinity of PVdF-HFP based gel electrolytes.
The analyzed results are shown in Figure 2. The pure PVDF-HFP consists of crystalline regions
with amorphous domains and presents a typical semi-crystalline characteristic. However, with the
addition of Zn(Tf)2 to pristine PVdF-HFP, there is a dramatic change in the structure of PVdF-HFP.
The intensity of the peaks decreases, and their width increases, thereby expanding the amorphous
region of the host polymer [35]. It may be noted that, with the addition of ionic liquid, there is
a suppression in the peak intensity. This indicates that the ionic coordination between ionic liquid
and polymeric macromolecules with Zn(Tf)2 may interrupt the structure of the polymer and weaken
the intermolecular interaction of the polymer chains, thereby reducing the degree of crystallinity and
thus enhancing the amorphous behavior [34,36]. However, when the addition of ionic liquid is too
large, the crystallinity of the electrolyte membranes increases, rather than further decreasing. This may
be attributed to the re-association of excess Tf− anions with Zn2+ cations, weakening the interaction
between ions and polymer segments [37]. It may be noted that, for ILPE-Zn-4, the peak at 2θ ~26.6◦ is
completely suppressed and that, accordingly, the amorphousness of the host polymer has reached its
maximum. Moreover, the mobile charge carriers can be transported speedily in amorphous regions in
the polymer electrolyte system because they have more free spaces, hereby facilitating the migration
of ions [38]. Therefore, it is believed that the ILPE-Zn-4 with larger amorphous regions should be
favorable for ion movement.
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Figure 2. XRD patterns of ILPE membranes with different EMITf contents.

Figure 3 displays the SEM images of the ILPE membranes. The surface of the solid polymer
electrolyte SPE-Zn can be seen as being wrinkled, with barely visible micropores (see Figure 3a).
However, the cross-section morphology of SPE-Zn implies that there are a number of nanopores inside
with network structures. For ILPE-Zn-4 (see Figure 3b,d), the addition of ionic liquid EMITf improves
the surface morphology in terms of nanopores. It may be noted that the nanopores are interconnected
with each other, which may be attributed to the interaction between polymeric macromolecules and
ionic liquid, in addition to the evaporation of the THF solvent [39].
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Figure 3. SEM images of (a) SPE-Zn, (b) ILPE-Zn-4, (c) SPE-Zn cross-section, and (d) ILPE-Zn-4
cross-section.

There is a significant change in the internal structure of the polymer electrolyte with the addition
of ionic liquid. The pores become more abundant, with fine sizes. In general, this is beneficial for
ion transportation, as the small interconnected nanopores’ structure and high specific surface areas
provide a continuous pathway for ion transportation [34,40,41]. As a consequence, it is speculated that
the introduction of ionic liquid to the polymer electrolyte may enhance its ionic conductivity.

The room-temperature ionic conductivity of polymer electrolytes is one of the vital parameters
to consider. AC impedance technique was used to analyze the ion conduction behavior of polymer
electrolytes. Figure 4a shows the Nyquist plots of gel electrolyte membranes measured at ambient
temperature, and the inset shows their equivalent circuit. It is clear that the plots consist of
a quasi-semicircle with a spike line. The quasi-semicircle in the high frequency range is present
as a result of the parallel combination of the resistor and constant phase element. The constant
phase element may be regarded as a non-ideal capacitor. The spike line located in the low frequency
range indicates the formation of a double-layer capacitor at the interface between the electrode and
electrolyte [42]. It is noted that the dip angle between the spike line and the real axis is smaller than
90◦ and arises from the roughness of the electrolyte-electrode interface [43]. The bulk resistance (Rb)
of the electrolyte membrane can be determined from the intercept of the semicircle on the real axis.
Clearly, the bulk resistance of the polymer electrolyte decreases with the addition of EMITf and exhibits
a minimum magnitude when the mass ratio of EMITf to PVdF-HFP is 0.4. Moreover, the high frequency
quasi-semicircle almost disappears for a mass ratio of 0.4, indicating that the ILPE-Zn-4 electrolyte
prevails in the resistive nature and that its capacitive character is absent [44]. In such a case, the bulk
resistance (Rb) is usually obtained from the interception of the inclination spike on the real axis [45,46].
The ionic conductivity of ILPE membranes is given by Formula (1) [47], and the results are listed in
Table 1.

σ =
d

RbS
(1)

where Rb is the bulk resistance (Ω), d represents the membrane thickness (cm), and S is the
electrolyte-electrode contact area (cm2).
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ratio of EMTIf to PVdF-HFP. (c) DC polarization curve of ILPE-Zn-4 membrane under 0.5 V at room
temperature. (d) The ILPE-Zn-4 membrane used as an ionic conductor to successfully connect the
LED circuit.

Table 1. Ionic conductivities of polymer electrolyte membranes at room temperature.

Samples Ionic Conductivities (S cm−1)

SPE-Zn 2.44 × 10−5

ILPE-Zn-1 4.03 × 10−5

ILPE-Zn-2 6.56 × 10−5

ILPE-Zn-3 7.15 × 10−5

ILPE-Zn-4 1.44 × 10−4

ILPE-Zn-5 1.18 × 10−4

Figure 4b depicts the variation of the ambient temperature ionic conductivity with the mass
ratio of EMITf to PVdF-HFP. It may be noted that the ionic conductivity of the SPE-Zn membrane
without ionic liquids is low, being just ~2.44 × 10−5 S cm−1. However, the ionic conductivity of the
ILPE membrane is improved by adding ionic liquid EMITf into the system, and it shows a high value
of approximately 1.44 × 10−4 S cm−1 when the mass ratio is 0.4. With the further addition of EMITf,
the ionic conductivity decreases. Accordingly, in terms of ionic conductivity, the ILPE-Zn-4 is the best
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composition. In general, the ionic conductivity (σ) depends on three factors: the concentration (ni),
mobility (qi), and charge (ui) of mobile ions. The relationship between them can be described by [48]:

σ =
∑

niqiui (2)

Combined with the above structural analysis, it is believed that the enhancement of the ionic
conductivity may be ascribed to both the improvement of the amorphous phase and the increase of
mobile ions, caused by the addition of EMITf [17]. However, the addition of excessive ionic liquid
would make the ions aggregate, thereby reducing the density of the mobile charge carriers and
hindering their movement [39]. Consequently, the ionic conductivity decreases.

In order to confirm that the prepared polymer electrolyte is highly ionically conductive, which is
vital for its application, the ionic transference number was determined by DC polarization at room
temperature. Figure 4c shows the DC polarization current versus time for the ILPE-Zn-4 polymer
electrolyte membrane. Generally, the initial current (it) is attributed to the transportation of both
ions and electrons. It can be observed that the current decreases dramatically with an increasing
polarization time until reaching a steady-state value. This is primarily due to the blockage of ions by
the electrodes. Therefore, the final steady-state current (ie) is merely contributed by electrons. The ionic
transference number is calculated by [49]:

tion = (it − ie)/it (3)

The ionic transference number of the ILPE-Zn-4 membrane is obtained as being ~0.999 ± 0.0003.
The ultrahigh ionic transference number demonstrates that the conductivity of the polymer electrolyte
membrane is mainly caused by ionic species, while the electronic contribution is too small to be
considered. Therefore, the present polymer electrolyte membrane is almost 100% ionically conductive.
Moreover, the ultrahigh ionic transference number ~0.999 is superior to the ionic transference
number reported in literatures, such as the PVdF-HFP/LiBF4/EMIMBF4 electrolyte (~0.984) [43],
PVdF-HFP/LiTFSI/EMIMFSI electrolyte (~0.99) [50], and PVA/LiTFSI/EMITFSI electrolyte (~0.995) [37].
To demonstrate the practicability of the polymer electrolyte, a closed-loop circuit composed of a LED
bulb with the ILPE-Zn-4 electrolyte membrane was designed. The LED bulb was successfully lit and
emitted a brilliant blue light (see Figure 4d). This phenomenon further indicates that the obtained
ILPE-Zn-4 polymer electrolyte is an ionic conductor.

The electrochemical stability of the ILPE membrane is essential for its practical applications.
Figure 5 displays the CV curves of the ILPE-Zn-4 electrolyte membranes at a scan rate of 10 mV
s−1. One can see that the current is stable within the potential range of −2.08 to 2.06 V (ESW:
~4.14 V), which signifies that the electrolyte membrane can work stably within this potential range.
The current rising beyond this range may relate to the degeneration of the electrolyte membrane,
manifested by the occurrence of an electrochemical reaction. Nevertheless, this ESW (~4.14 V) is
acceptable for electrochemical device applications. In addition, there are a pair of small current humps
at around ±1.3 V, which probably arise from the formation of ion pairs or other by-products during
this process [51,52].
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Thermal stability is a significant parameter for a polymer electrolyte membrane. A low thermal
decomposing temperature in the polymer electrolyte may give rise to electrolyte membrane degradation
in a short circuit, which may produce substantial heat accumulation. Hence, the electrolyte membranes
should possess an excellent thermal stability. Figure 6 illustrates the TGA curves for ILPE membranes.
It may be clearly observed that all polymer electrolytes show a slight drop between 80 to 180 ◦C.
The weight losses of the membranes are: SPE-Zn ~4.07%, ILPE-Zn-1 ~3.93%, ILPE-Zn-2 ~3.80%,
ILPE-Zn-3 ~4.03%, and ILPE-Zn-4 ~3.55%, which may be attributed to the evaporation of water
absorbed in the ILPE membranes. However, a considerable decomposition of the EMITf-free SPE-Zn
membrane may be observed when the temperature exceeds 350 ◦C. With the addition of ionic liquid,
the polymer electrolyte membrane’s decomposition temperature is lowered. This is primarily because
of the enhancement of the polymer chain flexibility caused by the interaction of ionic liquid and Zn
salt with the host polymer [53].
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Despite this, the ILPE membranes incorporated with ionic liquid still display a sufficiently high
thermal stability, and the decomposition temperature is approximately 305 ◦C. Therefore, in terms
of the thermal stability, the polymer electrolyte membranes can be considered suitable for energy
device applications.

In addition to a good thermal stability, the mechanical performance is also an imperative
characteristic of electrolyte membranes. The typical stress-strain curves of SPE-Zn and PE-Zn-4
electrolyte membranes are shown in Figure 7. The values of the Young’s modulus, tensile strength,
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and breaking strain are listed in the inset table. The Young’s modulus and tensile strength of SPE-Zn are
220 MPa and 7.7 MPa, respectively, while the breaking strain is 380%. By contrast, those of ILPE-Zn-4
fall down to 117 MPa, 5.7 MPa, and 200%, respectively.
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The mechanical performance declines with the addition of EMITf. This may be due to a more
amorphous phase and porous structure, created by the addition of EMITf in the ILPE-Zn-4 electrolyte
membranes. In general, the polymer chains are highly flexible in the amorphous domains, thus reducing
the interaction force between polymer molecules. Nevertheless, the electrolyte membranes still exhibit
sufficient mechanical properties. This phenomenon has also been confirmed by other studies.
As reported by Tang et al. [34], the electrolyte membrane (90PVdF-HFP:10Mg(Tf)2 + 40EMITf)
fabricated by solution casting possesses the following mechanical properties: Young’s modulus
= ~66 MPa, tensile strength = ~3.4 MPa, and breaking strain = ~633%. A study by Jie et al. [54]
indicates that the tensile strength and breaking strain are about 2.2 MPa and 250%, respectively, for the
PVDF-HFP/LiTFSI/NMP gel electrolyte film. Obviously, our values are highly comparable to theirs.
In addition, Can et al. [55] developed a solid polymer electrolyte based on TPU/PEO = 1:3, showing
that the electrolyte had a superior comprehensive performance with a tensile strength of 1.38 MPa
and that it was successfully applied to the LiFePO4/SPE/Li battery in the temperature range of 60 to
80 ◦C. Therefore, the mechanical performance of the ILPE-Zn-4 membrane should be good enough to
be eligible for applications in energy storage devices.

4. Conclusions

Flexible ionic liquid-incorporated Zn-ion conducting polymer electrolyte membranes were
prepared and characterized. Investigations indicate that the addition of ionic liquid EMITf reduces
the crystallinity, enriches the nanopores’ structure, and enhances the electrical and electrochemical
properties of the electrolyte membranes. With a high thermal stability (thermal decomposition
temperature ~305 ◦C) and good mechanical performance (tensile strength ~5.7 MPa), the optimized
polymer electrolyte ILPE-Zn-4 (EMITf: Zn(Tf)2: PVdF-HFP = 0.4: 0.4: 1 in mass) exhibits a high ionic
conductivity (~1.44 × 10−4 S cm−1) at an ambient temperature, with a wide electrochemical stability
window (~4.14 V). Moreover, the ionic conductive polymer electrolyte exhibits an ultrahigh ion transfer
number ~0.999. Therefore, the polymer electrolyte can be used as an ionic conductor to connect the
circuit. The properties of the ionic conductor polymer electrolytes demonstrate that the optimized
ionic liquid-incorporated Zn-ion conducting polymer electrolyte shows a promising perspective for
energy storage applications.
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