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Abstract

Background: Memory CD8 T cells form an essential part of protective immunity against viral infections. Antigenic load,
costimulation, CD4-help, cytokines and chemokines fluctuate during the course of an antiviral immune response thus
affecting CD8 T cell activation and memory conversion.

Methodology/Principal Findings: In the present study, naı̈ve TCR transgenic LCMV-specific P14 CD8 T cells engaged at a
late stage during the acute antiviral LCMV response showed reduced expansion kinetics but greater memory conversion in
the spleen. Such late activated cells displayed a memory precursor effector phenotype already at the peak of the systemic
antiviral response, suggesting that the environment determined their fate during antigen encounter. In the spleen, the
majority of late transferred cells exhibited a central memory phenotype compared to the effector memory displayed by the
early transferred cells. Increasing the inflammatory response by exogenous administration of IFNc, PolyI:C or CpG did not
affect memory conversion in the late transferred group, suggesting that the diverging antigen load early versus later during
acute infection had determined their fate. In agreement, reduction in the LCMV antigenic load after ribavirin treatment
enhanced the contribution of early transferred cells to the long lasting memory pool.

Conclusions/Significance: Our results show that naı̈ve CD8 cells, exposed to reduced duration or concentration of antigen
during viral infection convert into memory more efficiently, an observation that could have significant implications for
vaccine design.
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Introduction

The generation of memory T cells is a crucial process for

developing novel ways to prevent viral infections and certain forms

of cancer [1–3]. Following exposure to antigen, T cells proceed

through three defined phases: activation and clonal expansion,

contraction and memory conversion [4–6]. Memory T cell

development can be influenced by the antigen dose, the strength

of the T cell receptor (TCR)-antigen interaction, costimulation,

type of antigen presenting cells (APCs), the participation of CD4

helper/regulatory T cells and the cytokines and/or chemokine

environment [7–13]. Two major memory T cell populations have

been described based on their location and effector functions.

Central memory (CM) T cells (CD44hiCD62LhiCCR7+) are

located in secondary lymphoid tissues and possess little cytotoxic

activity, while effector memory (EM) T cells (CD62LloCCR72),

which reside in non-lymphoid tissues are cytotoxic and rapidly

acquire effector function [14–18].

T cell activation and differentiation during the course of an

infection can be influenced by changes in pathogen load [19]. As the

amount of antigen decreases during the course of an acute infection,

naı̈ve T cells that are introduced at late stages seem to proliferate less

and acquire different properties, such as decreased CD62L down-

regulation [20,21]. However, what determines EM versus CM and

how the timing of viral infection affects this differentiation process

are still open questions in the field. It is not known whether naı̈ve T

cells activated at the peak viral load during antigen abundance,

versus peak viral clearance when the antigen load is low, have

different capacities for T cell memory formation.

In addition to antigen levels, cytokines are known to play crucial

roles in memory T cell survival and differentiation [22]. IL-7, one

of the most well studied cytokines in mediating survival of naı̈ve T

cells seems to contribute to survival, and to a lesser extent, to basal

homeostatic proliferation of memory T cells [23–25]. Upon

TCR activation, IL-7Ra (CD127) is initially down-regulated on

populations of activated effectors cells and increased CD127 levels
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was shown to determine effector CD8 T cells destined to become

memory T cells [26]. More recent evidence suggests that

coordinate expression of CD127 and killer cell lectin-like receptor

G1 (KLRG-1), distinguishes short-lived effector cells (SLEC) from

those destined to develop into long-lived memory T cells. SLEC

display a KLRG-1hiCD127lo phenotype, whereas memory

precursor effector cells (MPECs) exhibit a KLRG-1loCD127hi

phenotype [27]. The decision between SLEC and MPEC fates can

be regulated by the inflammatory environment, which subse-

quently induces specific transcriptional programs in primed CD8

T cells [28–30]. In addition, the ability of effector CD8 T cells to

produce IL-2 has been partially associated with stable memory

development [31,32]. Whether the inflammatory environment

and/or antigen load are more predominant regulator of memory

T cell development has not been resolved.

In the present study, we demonstrate that the timing at which

naı̈ve MHC class-I restricted, LCMV-specific, TCR transgenic

(Tg) P14 T cell enter the primary immune response to LCMV can

affect their expansion and capacity to differentiate into memory T

cells. Naı̈ve CD8 T cells activated in conditions of reduced antigen

load during LCMV infection either through late introduction in

infection or after ribavirin anti-viral treatment, converted into

memory more efficiently than naı̈ve CD8 T cells activated early

during infection. As The majority of late transferred cells present

at the peak of the response exhibited a KLRG1lo phenotype,

characteristic of memory precursor CD8 T cells [33]. In addition,

late tranferred cells did not ‘‘contract’’ and remained as memory

cells. They displayed a gradual shift from a CD44hiCD62Llo (EM)

phenotype to a CD44hiCD62Lhi (CM) phenotype and increased

levels of IL-2 production, in agreement with previously published

results [31,32]. By contrast, naı̈ve CD8 T cells transferred cells

early in the course of LCMV infection, prior to peak viral load,

were predominately EM, CD44hiCD62Llo. Increasing the inflam-

matory milieu after treatment with CpG, poly I:C or IFNc had no

significant effect on the late transferred cells, indicating that

antigen load during infection was likely the main factor that

determined their survival and memory conversion. In agreement,

ribavirin treatment significantly reduced LCMV viral load and

consequently the expansion and contraction phases of early

transferred naive P14 TCR Tg cells. The conversion rate of early

transferred naı̈ve CD8 T cells into memory was significantly

augmented, in ribavirin-treated versus untreated mice and was

similar to that of late transferred cells. Our results suggest an

inverse correlation between the degree of antigen-specific

expansion and memory conversion for CD8 T cells, which may

aid in the development of more effective vaccines and perhaps the

treatment of autoimmune, CD8-mediated autoimmune diseases.

Results

Late recruitment of naı̈ve CD8 cells during acute LCMV
infection results in reduced expansion and contraction
but increased memory conversion in the spleen

Introduction of small numbers of TCR-Tg, LCMV-specific

CD8 cells accurately reproduces the natural anti-LCMV response

without profoundly altering viral clearance and T cell expansion

kinetics. In contrast, large number of naı̈ve antigen-specific T cells

can alter the physiological immune response and clearance of

LCMV and the amount of the endogenous physiological cytokines

and chemokines levels [34,35]. Therefore, in order to better mimic

the natural, acute CD8 anti-LCMV T cell response, we chose to

adoptively transfer only relatively small numbers (26103) of

traceable TCR-Tg LCMV-specific CD8 GFP+ T cells (GP33–41-

specific –P14) into C57BL/6 LCMV Arm infected mice. To study

how the timing at which a naı̈ve T-cell enters an antiviral response

affects its proliferation and memory conversion, P14/GFP+ CD8

T cells were either transferred on day 0 (early) or day 3 (late)

postinfection. We reasoned that cells that were transferred later

post infection would have less opportunity to encounter viral

antigen in vivo, because LCMV antigenic load usually peaks 2–3

days after infection and virus is cleared by day 7 from most organs

it shows tropism [36,37]. To circumvent differences in immune

and viral kinetics between the day 0 and day 3 groups, mice that

received P14/GFP+ cells on day 0 also received P14/GFP2 cells

on day 3, while mice that received P14/GFP+ cells on day 3 had

also received P14/GFP2 cells on day 0 (Table 1). As shown in

Fig. 1, numbers of GFP2 GP33–41-specific effector cells on day 8

and day 45 p.i. in both groups were identical and not significantly

different from mice that had received no P14 cells. Thus,

introduction of low numbers of P14 T cells did not significantly

alter the general kinetics of the antiviral immune response and

therefore is a valid approach to differentially track early and late

transferred cells within the GP33–41-specific T cell response against

acute LCMV infection.

C57BL/6 mice were analyzed on days 8, 15 and 45 p.i. for the

presence of GFP+ cells. The percentage or total numbers of

transferred P14/GFP+ CD8 T cells in the spleen, blood, and

mesenteric lymph nodes (mLN) for early and late transferred cells

are shown in Fig. 2A–C. As expected, the response kinetics of the

P14 T cells transferred early were similar to the endogenous

antigen-specific populations: defined clonal expansion, contraction

and memory conversion phases were observed. In contrast, P14/

GFP+ cells transferred 3 days late displayed only a small degree of

proliferation particularly and consistently in the spleen, showing

that T cells that encounter their cognate antigen early during the

immune response make up the majority of the responding

population. The frequency of memory P14/GFP+ cells within the

CD8 population was identical between early and late transferred

groups in all lymphoid organs analyzed (data not shown). However,

when we determined the fate of the total P14 transferred cells

present at the peak of the response by analyzing the percentage of

cells remaining in the contraction and memory phases (normalized

for D8, fold-change), a much greater output in memory cells in the

late transferred compared to the early transferred cells was seen in

the spleen (Fig. 2D–F). Overall, P14 T cells introduced early during

the initial phase of the antiviral immune response exhibited much

greater expansion and contraction rates compared to late ones in

the spleen. On the other hand, cells exposed to reduced viral antigen

in vivo (late), do not expand to the same extent, yet convert to

memory T cells with greater efficiency.

The majority of late transferred CD8 T cells present at the
peak of the anti-LCMV response convert to memory
displaying a CM phenotype

It is evident from the results discussed above that the majority of

naı̈ve T cells recruited late during the immune response displayed

a higher degree of memory conversion in the spleen. Our results

Table 1. Late and early transferred group of P14 LCMV-
specific naı̈ve CD8 T cells.

Group D = 0 cells transferred D = 3 cells transferred

Early 2610‘3 P14/GFP+ 2610‘3 P14/GFP2

Late 2610‘3 P14/GFP2 2610‘3 P14/GFP+

doi:10.1371/journal.pone.0014502.t001

CD8 Memory in Low Viral Load
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suggest that the cells recruited later during the acute anti-LCMV

response can become memory cells at higher efficiency than naı̈ve

CD8 cells that join the antiviral immune response early and

expand maximally. Next, we wanted to investigate whether the

relative contribution to the CM or EM CD8 T cell pool differs

between the early and late transferred cells. In order to compare

memory subset development between the early and late trans-

ferred cells, additional characterization based on CD44 and

CD62L expression was done. We chose CD62L since it is a key

marker that distinguishes EM from CM memory T cell subsets

along with the expression of CD44. Of note, all P14 cells

transferred late or early displayed CD44 upregulation at the peak

of the response in the spleen (data not shown). Later on, at the

contraction phase, more than 70% of the cells displayed an EM

phenotype CD44hiCD62Llo in both groups (Fig. 3A–B). Interest-

ingly though, while in the early transferred group almost one third

of the cells displayed CM phenotype at the memory phase, a much

greater proportion of cells (.70%) in the late transferred group

displayed CM features (Fig. 3D–E). These phenotypic character-

istics were somewhat different in the mLN and blood, since in both

early and late transferred cells, preferential high levels of both

CD44 and CD62L expression were seen at the contraction and

memory phase, indicating that these cells fall within the CM

population (data not shown).

In addition, in order to differentiate between the functional

capacities of CM and EM cells, IL-2 production from the

CD8+GFP+ population was measured 45 days after infection,

following ex-vivo stimulation with the class I, P14-specific peptide

GP33–41 (Fig. 3C&F). Indeed, IL-2 production was greatly

enhanced in terms of total number by late transferred cells,

consistent with their predominant CM phenotype. This preferen-

tial IL-2 production together with re-expression of CD62L by the

late transferred group suggests that the strength of antigen

stimulation received during the priming phase of the response

was reduced compared to the early transferred cells [20,21]. In

addition, memory cells generated from these late transferred CD8

T cells adopt homing properties, characteristic of the CM subset.

Early and late transferred CD8 cells display similar
functional characteristics at the effector and memory
phases

As effector T cells differentiate into memory cells, they acquire a

CM or EM phenotype and retain the potential to rapidly produce

IFNc and TNF when exposed to antigen. We compared the ability

of P14 early and late transferred cells to secrete cytokines in

response to antigen during the primary antiviral effector and

memory phase. As shown in Fig. 4, intracellular cytokine staining

after gating on P14/GFP+ cells following stimulation with the class

I-restricted epitope GP33–41 showed no difference in IFNc and

TNF production at the peak of the response day 8 p.i. (D8)

between early and late transferred groups. Similar analysis

conducted at the memory stage day 45 p.i. (D45), in which early

transferred cells displayed a predominantly EM phenotype while

late transferred cells had become CM in the spleen, showed that

both groups exhibited similar cytokine production characteristics

indicative of functional memory. In conclusion, although cells

engaged late in the immune response are exposed to less

inflammatory signals and antigen and therefore proliferate and

contract less, they acquire normal CM characteristics and are fully

able to produce antiviral effector cytokines.

Late transferred cells display a memory precursor
phenotype at the peak of the response

Recently it has been suggested that memory cell precursors can

already be identified at the peak of the response by high levels of

Figure 1. No significant effect in the endogenous GP33–41 LCMV-specific response after the transfer of 26103 P14 CD8 T cells.
Spleens from mice receiving P14GFP+ on day 0 or 3 after infection were collected and analyzed by pentamer staining on day 8 and day 45 after
infection (A). The total number of antigen-specific cells per spleen was calculated by multiplying the percent of GFP2CD8/GP33 pentamer double
positive cells by the total number of cells isolated from the spleen of each mouse. A representative dot plot of percentage of GP33 specific CD8 T cells
on day 8 and day 45 is shown in (B). Representative data are from one of two experiments. Differences are not statistically significant.
doi:10.1371/journal.pone.0014502.g001

CD8 Memory in Low Viral Load
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CD127 in conjunction with low levels of KLRG1 expression.

Since we observed that the majority of naı̈ve P14 cells that enter

the immune response at a later time point remain as memory, we

performed a phenotypic analysis in order to examine whether the

late transferred cells display a memory precursor phenotype early,

by the eighth day after infection with LCMV. To this end, naı̈ve

P14/GFP+ cells from late and early transferred groups were

analyzed by flow cytometry for the expression levels of CD127 and

KLRG1. Interestingly, the majority of P14 transferred cells had

downregulated the expression levels of CD127 (Fig. 5), which was

even more pronounced in the early transferred group. Important-

ly, comparison of KLRG1 levels detected within the P14/GFP+

cells at the peak of the response (Fig. 5A) between early and late

transferred cells showed a strong correlation of greater memory

formation in the later group with the lower expression of KLRG1

levels in these samples (Fig. 5B–C). Based on the recent

classification for memory precursor effector cells (MPECs), the

IL-7Rahi/KLRG1lo cell frequency was much greater in the late

(13.8%) than early (2.8%) transferred P14/GFP+ cells at the peak

of the anti-LCMV response (Fig. 5B). Collectively, these data

indicate that naı̈ve CD8 T cells recruited later in the antiviral

immune response largely convert into memory and their fate is

determined as early as the initial stages of their activation.

Duration of antigen exposure is the decisive factor for
memory T cell fate

Our results prompted us to investigate the signals that are

necessary to enhance memory conversion of the late transferred

cells. Initially we hypothesized that their greater memory

conversion was either due to differences in i) antigen load (less

Figure 2. Late recruited naı̈ve CD8 cells convert at a higher efficiency to memory cells in the spleen. Spleen, blood and mesenteric
lymph node (mLN) cells from mice receiving P14/GFP+ early (day 0) or late (day 3) post infection (and GFP2 cells on days 3 and 0, respectively) were
analyzed on days 8, 15 and 45 p.i. with flow cytometry. The total CD8+GFP+ number or the GFP+ percentage gated on CD8 T cells is depicted for each
tissue (A–C). The CD8+GFP+ percentage for the spleen and mLN was multiplied with its respective total lymphocyte number. The fold-change from
day 8 in the total GFP+ is shown in (D–E). The fold-change was calculated as follows: the ratio of the measured CD8+GFP+ percentage or the total
number on day 8, minus day 15 or day 45, divided by the value on day 8, times 100. (i.e. CD8+GFP+ % for day 8 = 1 and day 15 = 0.5, while day 45 = 0.2,
fold-change on day 15 = [(120.5)/1]x100 = 50% and on day 45 = [(120.2)/1]x100 = 20%). The total GFP+ in CD8 T cells output on day 15 and day 45
from day 8’s input is represented (F). *, p,0.05, **, p,0.005, ***, p,0.001, NS, not statistically significant. Similar data were obtained from at least five
independent experiments with three to four mice per group.
doi:10.1371/journal.pone.0014502.g002
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cumulative antigen exposure over time ii) inflammatory stimuli/

activation status of the APCs or iii) due to greater IL-7Ra levels

expressed by P14 cells entering the response at a later stage. In

order to identify parameters other than viral antigenic load that

differ and could affect memory conversion of antiviral CD8 T

cells, mice that had received naı̈ve P14/GFP+ cells late were

treated the day after the cell transfer with polyI:C (100 mg/mouse),

CpG (200 mg/mouse) or recombinant IFNc (50 ng/mouse). As

shown in Fig. S1, treatment with any of these three regiments did

not alter memory conversion. In parallel to these experiments, we

were able to recapitulate the enhanced memory conversion of P14

early transferred naı̈ve CD8 T cells after recombinant IL-7

treatment as previously described (30) (data not shown).

In order to address in more detail whether cumulative antigen

exposure over time was the decisive factor for T cell fate

determination, we took advantage of an additional approach.

P14/GFP+ cells were transferred to LCMV infected recipients

early, which were previously and continuously treated with

ribavirin (Rebetol) orally on a daily basis. Ribavirin is a nucleoside

analog that is an effective antiviral treatment against arenaviruses

[38]. Each recipient mouse received 8 mg ribavirin for 10

consecutive days, starting seven days prior to LCMV infection

and continuing until three days after infection. As shown in Fig. 6A,

ribavirin treatment reduced the LCMV copies in the kidney

significantly three days but not six days after infection. The

reduction in virus levels caused the endogenous GFP2/GP33-

pentamer+ and transferred GFP+/P14 cells to drop at the peak of

the response (Fig. 6B and data not shown). However, and in

agreement with our late versus early transfer approach, memory

development was favored (Fig. 6B–D). Although in this scenario

the contraction phase was not diminished compared to late

transfer experiments, cells contributed again more effectively to

the ensuing memory pool. Importantly, at the memory phase, P14

early transferred cells in the group of mice treated with ribavirin,

there was an increased proportion of CD62Lhi CM cells (Fig. 6E).

Altogether, our results suggest that by reducing the antigen load

alone, we do not compromise memory T cell development but

rather promote differentiation of the CM subset.

Figure 3. Late transferred CD8 T cells display a gradual shift from a CD62Llo (EM) phenotype to a CD62Lhi (CM) phenotype. C57BL/6
mice infected with LCMV received purified CD8 T cells isolated from naı̈ve P14/GFP+ mice on day 0 and day 3. On days 15 and 45, GFP+CD8 T cells
from the spleen, blood and mLN were examined for the expression of CD44 and CD62L. The percent expression of CD44hi and CD62Llo on CD8+GFP+

gated cells is shown in (A) and in (D) for day 15 and 45 respectively. The percentage of CD44hi/CD62Lhi expression gated on CD8+GFP+ is depicted in
(B) and (E) for day 15 and 45 respectively. The percentage and total number of CD8+GFP+ cells producing IL-2 on day 45 are displayed accordingly in
(C) and (F). *, p,0.05, **, p,0.005, NS, not statistically significant. Similar data were obtained from at least two independent experiments.
doi:10.1371/journal.pone.0014502.g003
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Discussion

In this study we demonstrated that LCMV-specific naı̈ve CD8

T cells that experience reduced cumulative antigen exposure

during the anti-LCMV response convert more efficiently into

memory CD8 T cells. The majority of cells activated late exhibit

an activated phenotype with CD44 upregulation and CD62L

downregulation at the acute and contraction phases indicative of

previous antigen encounter (data not shown and Fig. 3A–B).

However, cells exposed to low levels of antigen become imprinted

with a distinct long-term differentiation program: such cells do not

expand and consequently do not contract to the same extent, while

they primarily survive as CM cells (Fig. 7). Most CD8 T cells

recruited at a later stage downregulate IL-7Ra levels, while

maintaining low levels of KLRG1 expression at the peak of the

response (Fig. 5). Given their high conversion rate into memory,

perhaps a significant proportion of KLRG1lo/IL-7Ralo cells

should be considered as memory precursor cells, which contradicts

the current classification of MPECs as IL-7Rahi cells. In earlier

studies, constitutive IL-7Ra expression had a minimal effect on the

formation and function of effector and memory CD8 cells,

suggesting that IL-7Ra levels do not identify memory CD8 T cell

precursors (31). KLRG1lo cells though, irrespective their IL-7Ra
levels, seem to give rise to IL-7Rahi long-lived memory cells (33).

Taken together, KLRG1 and to a lesser extent IL-7Ra levels seem

to best define memory precursor frequency as early as at the peak

of the response.

Since naı̈ve cells entering the immune response at a later time

point express higher CD127 levels, we investigated whether

blocking IL-7Ra during the contraction phase would affect the

outcome of memory T cell development. However, we did not

observe consistent effects after CD127 blockade on memory CD8

conversion (data not shown). Together, our results suggest that

anti-CD127 treatment at the contraction phase does not have a

clear impact on naı̈ve CD8 T cell memory formation, similar to

what was previously described [12].

Exogenous treatment with inflammatory stimuli could not

reverse preferential memory conversion of the late recruited cells,

suggesting that the antigenic load is likely the main factor that

contributes to memory formation, possibly determined by the

number of T cell to APC contacts. Cells that encounter more

antigen or more recently infected APCs receive stronger antigenic

stimulation and co-stimulation, proliferate more vigorously and

therefore experience greater activation-induced cell death or

become imprinted as senescent effectors or SLECs, thus making

conversion to memory less likely. In agreement, treatment with

ribavirin prior to early P14/GFP+ cell transfer, while reducing the

viral load and the expansion of cells at the peak of the response,

had a positive impact on memory formation. Overall, our results

support the decreasing-potential model (6), which proposes that

one of the main factors controlling memory output of a given

population recruited in the immune response is the duration of

antigen exposure during priming. CD8 T cells recruited later in

the response, despite receiving a weak stimulation, become

imprinted with a memory differentiation program, perhaps

because the received signal is not adequate enough to trigger the

death pathway. In addition, full differentiation into effector cells is

not prerequisite for memory conversion [39]. In agreement with

our findings, during persistent viral infection, prolonged and

strong antigenic encounter decreases the contribution to the

memory pool by constantly eliminating effector T cells and

MPECs [4,40].

Recent reports have also examined the effect of timing and

antigen load on T cell priming and memory development

[21,34,35]. In one study using a vaccinia viral infection model,

the initial burst size of hemagglutinin (HA)-specific CD8 effector T

cells in response to recombinant vaccinia virus encoding HA (rVV-

HA) correlated with the magnitude of the long-term memory pool

size (37). The major caveat of this study was that rather large

numbers of cells were transferred (1610‘5) without the inclusion of

control co-transfers, which may have masked the endogenous

physiological response. Another study, using a recombinant

vesicular stomatitis virus (VSV) -expressing OVA (VSV-OVA)

infection model, found that ‘‘latecomer’’ OT-I cells were not

preferentially recruited to the surviving memory pool (21),

contrasting our results where naı̈ve CD8 T cells activated later

Figure 4. Early and late recruited CD8 cells display similar
functional characteristics during the antiviral effector and
memory phases. Spleens were collected and analyzed 8 and 45 days
after infection. Splenocytes were cultured with the LCMV MHC-I peptide
GP33 before staining for intracellular IFNc and TNF. The percentage (A)
and total number (B) of TNF/IFNc double positive cells after gating on
the CD8+GFP+ population are shown. The total number of antigen-
specific cells per spleen was calculated by multiplying the percent of
TNF/IFNc double positive cells by the total number of cells isolated
from the spleen of each mouse. A representative dot plot of TNF and
IFNc expression by GFP+CD8 gated cells is shown in (C). Representative
data are from one of two experiments. Differences are not statistically
significant.
doi:10.1371/journal.pone.0014502.g004
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in infection efficiently converted to memory T cells. However, in

the VSV study, engrafted OT-I cells exceeded the natural OVA-

specific precursor frequency, with potential effects on the

physiological response and memory formation. Here, we have

recapitulated the endogenous physiological anti-LCMV response

by transfer of low numbers of virus-specific CD8 T cells with

minimal impact on the endogenous anti-viral CD8 T cell response.

With this system, we found that specific low frequency naı̈ve CD8

T cells acquire distinct differentiation fates depending on the

antigen dose and to a lesser extent the inflammatory response.

There have been recent examples of residual antigen persisting

long after infection in mouse virus infection models [40,41]. Our

results indicate that memory formation may continue to occur in

conditions of low antigen load even after virus is effectively

cleared.

Studies using a novel barcode technology to mark individual T

cells showed that single naı̈ve CD8 T cells could yield

heterogeneous populations of effector and memory CD8 T cells

(38). These results suggest that effector and memory fates are not

imprinted by distinct APC or antigen/timing signals delivered

during initial priming. We also found that naı̈ve CD8 T cells can

adopt multiple fates under a variety of conditions and that the

timing of activation during infection is an important factor. In

summary, our results support that sufficient and effective memory

Figure 5. Majority of late transferred cells display a memory precursor phenotype at the peak of the anti-LCMV response. Naı̈ve P14
GFP+ cells from the late and early transferred groups were analyzed by flow cytometry for the expression levels of CD127 and KLRG1. The GFP+ cell
percentage within the total CD8 population is depicted in the first 3 horizontal graphs for the early and late transferred cells and the naı̈ve control (A).
A representative dot plot of CD127 and KLRG1 expression is shown for all three groups (B). Histogram overlay for the expression of KLRG1 and CD127
in P14/GFP+CD8+ early versus late transferred cells and naı̈ve controls at the peak of the response (C).
doi:10.1371/journal.pone.0014502.g005
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conversion could be achieved in vivo even at a reduced antigen

dose, providing important implications for vaccine design.

Materials and Methods

Mice
Eight- to 10-wk-old male C57BL/6 mice were purchased from

Jackson laboratories. Naı̈ve TCR Tg P14 mice were bred to GFP+

(both on the C57BL/6 background) to obtain GP33-specific,

GFP+ double Tg mice (P14/GFP+). Expression of both transgenes

was confirmed by flow cytometry after testing for GFP, Va2, and

Vb8.1/8.2 expression. All mice were maintained under specific-

pathogen-free conditions at the La Jolla Institute for Allergy and

Immunology (LIAI) and handled in accordance with the LIAI

Animal Care and Use Committee approved protocols. The

experiments for this study were conducted according the approved

mouse protocol: #AP117-MvH2-0510 [600] (approved 05/25/

10) ‘‘Viruses and autoimmunity’’.

CD8 T cell negative selection and adoptive transfer
Naı̈ve CD8 T cells were purified from splenocytes of P14/GFP+

or P14/GFP2 mice by negative selection using the following

purified monoclonal antibodies: anti-B220, anti-CD4, anti-

CD11c, anti-FccRII (clone 2.4G2), anti-mouse MHC Class II I-

A/I-E and anti-CD11b. All antibodies were from BioLegend (San

Diego, CA, USA). CD8 T cells were then purified by magnetic

separation using the Sheep anti-Rat IgG coated Dynabeads

(Invitrogen, San Diego, CA, USA). Before transfer, cells were

Figure 6. Ribavirin treatment reduces LCMV antigenic load impacting memory CD8+ T cell development. Mice were treated with
ribavirin (Rebetol) orally on a daily basis. Each mouse received 8 mg ribavirin for 10 consecutive days, starting seven days prior to LCMV Arm infection
and continuing until three days after infection. Mice received P14/GFP+ CD8 T cells the same day of infection. Viral load was quantified with qPCR in
the kidneys of the infected mice 3 and 6 (A) days after infection. Significant decrease in viral load was detected only on day 3, *, p,0.05, NS, not
statistically significant. The total CD8+GFP+ number (B) and Fold-change (C) was calculated as in Fig. 2 for the spleen for days 8, 15 and 45 after
infection. The percentage of total CD8+GFP+ cells remaining on days 15 and 45 from day’s 8 input is represented graphically in (D). Representative
flow cytometry plots showing the CD44/CD62L profile of the cells on day 45 after infection gated on CD8+/GFP+ is shown in (E). Almost double CM
(CD44hi/CD62Lhi) cell frequency can be detected in the group of mice treated with ribavirin.
doi:10.1371/journal.pone.0014502.g006
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washed extensively with HBSS-HEPES buffer. 26103 of naı̈ve

P14/GFP+ or P14/GFP2 CD8 T cells were adoptively transferred

into the tail vein (intravenously, i.v.) on days 0 and 3 post infection

(p.i.). Mice that received P14/GFP+ cells early, received P14/

GFP2 late, whereas the ones that received P14/GFP+ cells late,

received P14/GFP2 early.

Virus
Mice were infected with 104 PFU of LCMV strain Armstrong

(53b) by intraperitoneal (i.p.) injection.

Treatments
Mice were treated once on day 4 after infection with LCMV

with 100 mg/mouse polyI:C (Amersham Pharmacia) i.p. or 50 ng/

mouse recombinant mouse IFNc (BD Pharmingen, San Diego,

CA, USA) i.p. or with 200 mg/mouse CpG i.v. Anti-CD127

(125 mg/mouse) treatments (clone SB/14 BD Pharmingen or

clone A7R34 Biolegend) were conducted i.p. in the contraction

phase on days 8-10-12-14 after LCMV infection. Mice were

treated with ribavirin (Rebetol, USP- NDC 0085-1318-01) orally

on a daily basis. Each mouse received 8 mg ribavirin for 10

consecutive days, starting seven days prior to LCMV infection and

continuing until three days after infection.

Flow cytometry
Single cell suspensions were prepared from spleen, peripheral

blood and mesenteric lymph nodes (MLN) from all groups. After a

2.4G2 block step, cells were stained with the conjugated antibodies

for cell surface markers. PE-conjugated H2-Db/GP33 pentamers

were purchased from ProImmune and stained as previously

described [42]. Directly conjugated antibodies, CD8-PerCP,

CD62L-APC, CD127-PE or PeCy7 (BD Pharmingen), CD44-

APCCy7, CCR7-PeCy7, KLRG1-PE (e-Bioscience, San Diego,

CA, USA) and CD25-PB (Biolegend) were used. For surface

staining, cell suspensions were incubated at 4uC for 30 min. After

surface staining, cells were fixed in 4% paraformaldehyde (Sigma-

Aldrich). DbGP33 and class I pentamers were obtained as PE

conjugates from Proimmune and used as described previously. For

intracellular cytokine analysis, single cell suspensions were

stimulated in vitro for 3 hours with 1 mg/ml MHC class I-

restricted viral peptides GP33–41 (GP33) (Abgent, San Diego, CA,

USA). Cells were stained for surface expression of CD4 and CD8,

fixed, permeabilized, and stained for intracellular IL-2, IFNc and

TNF. After staining, cells were processed on LSRII (BD

Biosciences) and results were analyzed using FlowJo (Tree Star).

Quantitative PCR
Kidney samples were surgically removed and frozen at 280uC,

then weighed and homogenized. RNA was isolated using the

RNAqueous mini spin column based system (Ambion). RNA was

eluted from RNAaqueous spin columns in a volume of 20 ml. 8.5 ul

of RNA was used in a 10 ml cDNA reaction with SuperScript III

Reverse Transcriptase (SSIII) (Invitrogen, Carlsbad, CA) and a GP-

R primer (S pos. 970–991), GCAACTGCTGTGTTCCCGAAAC

GP-R at 55uC for 1 hr in a programmed PCR thermocycler. 10 ml

of cDNA was used as template for a 25 ml qPCR reaction using

SYBR Green kit (Roche), plated in 96 well plate format and run on

a LightCycler 480 (Roche). Amplification was done for 40 cycles,

with each cycle consisting of two steps: 95uC, 15 sec; 60uC, 30 sec.

All qPCR samples ran in triplicate, with water as a negative control

and LCMV as a positive control. Standard curves were generated

using linearized pSG5-GP plasmid.

Statistical analysis
Data are expressed as a mean 6 SD. The statistical significance

of the difference between means was determined using the two-

tailed Student’s t-test. *, p,0.05, **, p,0.005, ***, p,0.001.

Supporting Information

Figure S1 Recruitment of late transferred cells into the memory

T cell pool is not influenced by inflammatory agents. Mice were

infected with acute LCMV and received P14/GFP+ CD8 T cells

the same day or 3 days after infection. Groups of mice were

treated 1 day after cell transfer with recombinant mouse IFNc,

polyI:C, CpG, or no treatment, as described in the Materials and

Methods section. The percentage of GFP+ cells remaining on day

28 from day 8’s input is represented graphically.

Found at: doi:10.1371/journal.pone.0014502.s001 (1.01 MB TIF)
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