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Multimodality neuroimages have been widely applied to diagnose mild cognitive
impairment (MCI). However, the missing data problem is unavoidable. Most previously
developed methods first train a generative adversarial network (GAN) to synthesize
missing data and then train a classification network with the completed data. These
methods independently train two networks with no information communication. Thus,
the resulting GAN cannot focus on the crucial regions that are helpful for classification.
To overcome this issue, we propose a hybrid deep learning method. First, a classification
network is pretrained with paired MRI and PET images. Afterward, we use the pretrained
classification network to guide a GAN by focusing on the features that are helpful for
classification. Finally, we synthesize the missing PET images and use them with real MR
images to fine-tune the classification model to make it better adapt to the synthesized
images. We evaluate our proposed method on the ADNI dataset, and the results show
that our method improves the accuracies obtained on the validation and testing sets
by 3.84 and 5.82%, respectively. Moreover, our method increases the accuracies for
the validation and testing sets by 7.7 and 9.09%, respectively, when we synthesize
the missing PET images via our method. An ablation experiment shows that the last
two stages are essential for our method. We also compare our method with other
state-of-the-art methods, and our method achieves better classification performance.

Keywords: MCI, GAN, classification, incomplete data, multimodality

INTRODUCTION

Alzheimer’s disease (AD) is one of the most common irreversible neurodegenerative diseases with
progressive and irreversible characteristics, and sufferers of AD account for 50–80% (Guillon
et al., 2017; Zhang et al., 2018; Alzheimer’s Association, 2019) of all types of dementia patients.
Mild cognitive impairment (MCI), which is a transitional stage between normal aging and AD,
can be subdivided into early MCI (EMCI) and late MCI (LMCI) according to the extent of
episodic memory impairment (Aisen et al., 2010). Previous studies have confirmed that LMCI
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exhibits a higher risk of converting to AD than EMCI (Jessen
et al., 2014). Thus, the accurate classification of EMCI and LMCI
is crucial for the precise treatment of MCI patients.

Recently, neuroimaging data have been widely used in the
early diagnosis of AD (Ye et al., 2016). Early studies concentrated
on single-modality data such as magnetic resonance imaging
(MRI) or positron emission tomography (PET) images (Higdon
et al., 2004; McEvoy et al., 2009). However, these studies
ignored the inherently complementary information of different
modalities, which could reduce the accuracy of early detection.
Thus, increasingly many studies have used multimodal data for
the early diagnosis of AD and have shown that the proper use of
different modalities of data can improve the accuracy of disease
diagnosis (Zhang et al., 2011; Gray et al., 2013; Liu et al., 2018a;
Zhou et al., 2019). Zhou et al. (2019) presented a novel three-
stage deep feature learning and fusion framework to make full
use of data with different modalities, and the results indicated
that the multimodal method yielded a statistically significant
improvement over the single-modality method.

However, the missing data problem is a crucial challenge
when using multimodal data (Marlin, 2008; Liu et al., 2017). For
example, many subjects have been scanned by MRI, while only
a few have PET scans because of their high cost or radioactive
exposure. Previous methods only used subjects with paired MRI
and PET images (Zhang and Shen, 2012). However, such a crude
strategy affects the performance of the resulting model due to the
decrease in number of training subjects. To make full use of all
available data, a more appropriate approach is to impute instead
of discarding the missing PET data. Previous studies imputed
missing features instead of images (Marlin, 2008; Abdelaziz et al.,
2021). However, these imputed features are defined by experts
according to their different types of prior knowledge and may
not be discriminative for early AD diagnosis. Recently, generative
adversarial networks (GANs) have been used to impute missing
data by image synthesis (Wolterink et al., 2017; Pan et al., 2018;
Yang et al., 2018; Zhao et al., 2021). These networks used the
underlying relevance between MRI and PET images to synthesize
missing PET scans.

In this study, we focused on the classification of EMCI and
LMCI using multimodal images with PET image imputation.
However, traditional methods simply generate images and use
them for early AD diagnosis. Such studies independently train
the two networks without any information communication (Pan
et al., 2018; Zhao et al., 2021). Gao et al. (2021) proposed a
deep learning framework to integrate a task-induced pyramid
and attention GAN (TPA-GAN) that designed a task-induced
discriminator to simultaneously learn image generation and
disease classification. However, this approach must design
an additional discriminator network for classification, which
may increase the computational burden. Pan et al. (2019,
2021) proposed a disease-image-specific deep learning (DSDL)
framework for joint neuroimage synthesis and disease diagnosis.
However, this method encourages feature maps of a synthetic
image to be consistent with those of its corresponding real
image instead of fusion features of MRI and PET images. Here,
the main goal is to classify EMCI and LMCI. Thus, the GAN
must focus on the crucial brain regions that are helpful for

disease classification instead of the overall image. Additionally,
the classification network should be suitable for these synthesized
images while considering the differences between the synthesized
images and the real images.

Specifically, we propose a hybrid deep learning method, i.e.,
a three-stage deep learning framework, to classify EMCI and
LMCI with incomplete multimodal datasets. In the first stage,
the classification network is pretrained via paired MRI and PET
images. In the second stage, our goal is to train a GAN for
image synthesis. We regard the pretrained classification network
without the final fully connected (FC) layer as a fusion model
that can extract and fuse the features of different data modalities.
We freeze the parameters of the fusion model and compare the
differences between the fused features of real MRI and real PET
images and those of real MRI and synthesized PET images. By
introducing the differences as a loss into the GAN, the generator
can better focus on the helpful regions for classification. In the
last stage, we aim to fine-tune the classification network to better
adapt to the synthesized images. We assume that the PET images
in the training set are missing. We freeze the parameters of the
generator trained in the second stage and use it to synthesize PET
images. Afterward, real MR images and generated PET images
are used to fine-tune the classification model, which has been
pretrained in the first stage. Thus, the classification network
can better adapt to the synthesized images, which is of great
significance for solving the problem of missing data. Finally, we
iterate stages 2 and 3 several times to obtain the best models.

In summary, the main contributions of our work are as
follows. (1) We integrate a classification network into a GAN to
generate images that are helpful for classification; (2) we use the
synthesized images to fine-tune the classification model so that
it can adapt to synthesized images; (3) we iteratively train the
classification network and GAN to improve the performance of
the two networks.

MATERIALS AND METHODS

In this section, we introduce our proposed method. An overview
of our study can be found in Figure 1. The flowchart shows that
our study consists of three stages: (1) a pretraining classification
network; (2) a feature fusion-based training GAN (FF-GAN); (3)
fine-tuning of the classification model. In the following section,
we explain the details of each stage.

Pretraining Classification Network
We use paired MRI and PET images to pretrain a classification
network that can be used for the early diagnosis of AD. As shown
in Figure 1A, for this classification network, we regard all layers
except the last FC layer as a feature fusion model. After the last FC
layer, we can obtain the classification results. Therefore, we regard
the FC layer as a classifier. Thus, the fusion model can extract and
fuse data with different modalities and obtain the features that are
directly used in the classifier. Thus, these features are most helpful
for classification. In the next stage, we freeze the parameters of the
fusion model and use it to design a new loss function to make the
GAN better able to generate helpful images for classification.
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FIGURE 1 | Flowchart of our study. (A) Stage 1: We pretrain the classification network with both MRI and PET images and their corresponding labels. (B) Stage 2:
The feature fusion-based GAN is trained using the fusion model that is composed of all layers except the FC layer of the classification network. (C) stage 3: We use
the real MR images, synthesized PET images, and their corresponding labels to fine-tune the classification model. Here, we assume that the PET images are missing
and use the generator to synthesize them.

Feature Fusion-Based Generative
Adversarial Network
Generative Adversarial Network
Goodfellow et al. (2014) first introduced the GAN (Goodfellow
et al., 2014), the goal of which is to minimize the difference
between a generated distribution and the real distribution. Our
method is to improve on the traditional GAN. Thus, we use the
original minimax game, which can be expressed as:

arg min
G

max
D

LGAN(G,D) =

Ex∼Pdata [logD(x)] + Ez∼Pnoise(z) [log(1− D(G(z))]. (1)

In this study, we use real 3D MRI patches to replace random
noise as the input. Specifically, the generator network G generates
3D PET patches by transforming the data distribution obtained
from real MRI results. Thus, the objective function can be
rewritten as:

arg min
G

max
D

LGAN(G,D) =

Ex∼PPET [logD(x)] + Ez∼PMRI [log(1− D(G(z))]. (2)

To make the synthetic PET images and the real images more
similar, we employ the L1 norm estimation error to reduce
blurring, and the loss function is introduced only into the
generator’s task (Wang et al., 2018). The L1 loss function is as
follows:

L1(G) = Ey∼PPET ,x∼PMRI [||y− G(x)||1]. (3)

The final loss function of our baseline GAN can be expressed
as:

arg min
G

max
D

LGAN(G,D)+ λ1L1(G). (4)

Feature Fusion-Based Loss
Traditional methods usually design additional loss functions
according to the difference between the generated image and
the real image. For example, Yang et al. (2018) applied a
perceptual loss function to retain generated image details and
information. They adopted a pretrained Visual Geometry Group
(VGG)-19 network to extract features from both real images
and synthesized images. The differences between these features
were used to construct a loss function. However, the VGG-
19 network was pretrained with natural images. Therefore, it
might not extract the features of medical images effectively. In
addition, this method ensures the similarity of the features of the
generated images and real images, but in fact, we fuse MRI and
PET data for classification instead of single-modality data. We
should guarantee the consistency of fused features instead of the
features of the generated images and the real images. Thus, we
additionally employ a feature fusion-based loss function to train
the generator, and the function is formulated as follows:

Lfusion(G) = Ey∼PPET ,x∼PMRI [||F(x, y)− F(x,G(x))||1], (5)

where F is a feature fusion model that is pretrained in section
“Pretraining Classification Network.” The feature fusion model
can extract and fuse data with different modalities and obtain
the features that are most helpful for classification. The final loss
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function can be expressed as:

arg min
G

max
D

LGAN(G,D)+ λ1L1(G)+ λ2Lfusion(G), (6)

where λ1 and λ2 are hyperparameters.
The entire structure of our FF-GAN is found in Figure 1B. The

GAN loss, estimation error loss and feature fusion-based loss are
shown in Eqs (2), (3), and (5), respectively.

Fine-Tuning Classification Network
Thus far, we have a classification model, but it is trained only by
real MRI and PET images. There are errors between generated
images and real images. Therefore, when we use the generated
images with a certain error level for the early diagnosis of AD,
the results may not be satisfactory. To solve these problems, we
fine-tune the model using our FF-GAN, as shown in Figure 1C.
Specifically, we assume that the PET scans in the training set are
missing. We freeze the parameters of the generator trained in
section “Feature Fusion-Based Generative Adversarial Network”
and adopt it to synthesize PET images. Afterward, we use real
MRI and synthesized PET images to fine-tune the previously
trained classification network. Thus, the classification model can
adapt to real data and generate data simultaneously.

Network Architecture
The detailed network structures of our method are shown in
Figure 2, including a 3D U-Net generator, a discriminator and
a multimodal fusion network.

Our FF-GAN is based on a traditional U-Net (Ronneberger
et al., 2015). The generator consists of two sequential
(i.e., encoding and decoding) parts. The encoding part is
constructed by 6 upconvolutional layers with 64, 128, 256, 512,
1,024, and 1,024 channels. The decoding part consists of 6
downconvolutional layers with 1,024, 512, 256, 128, 64, and 1
channel(s). For the decoder part, we concatenate the feature maps
obtained from the encoder and previous downconvolutional
layers along the channel dimension and input the concatenated
version into the current downconvolutional layer. In addition,
the discriminator contains 6 convolution layers with 32, 64, 128,
256, 512, and 1,024 channels. For all convolution layers, 3×3×3
filters are used, and their strides are 2. The activation function is
a leaky rectified linear unit (ReLU).

The fusion network is based on the residual network (ResNet)
(He et al., 2016) model. We input MRI and PET images into
different networks with the same structure to extract the features
of different modalities. Next, we concatenate these two feature
maps along the channel dimension. Finally, the connected feature
maps are fed into the following networks to fuse the features
of different modalities. The basic block of the fusion network is
constructed by 4 convolution layers and 2 shortcut connections.
All four convolution layers apply 3 ×3 ×3 filters, a ReLU
activation function and batch normalization (Ioffe and Szegedy,
2015). The stride of the first convolution layer is set to 2, while
those of the other three layers are set to 1. After each “Resblock,”
we adopt dropout at a rate of 50% to avoid overfitting.

Network Training
In stage 1, we pretrain the classification network with the entire
MRI and PET images, each with a size of 128 ×128 ×128.
Compared with the patch-based (Li and Liu, 2018), region of
interest (ROI)-based (Aderghal et al., 2018) or slice-based (Liu
et al., 2018b) methods, the use of the whole 3D images enables
the model to better use the image information. The network is
trained with the Adam solver (Kingma and Ba, 2014) with a
learning rate of 0.0005. The batch size is set to 8. We also use
the L2 regularization loss with a regularization term of 0.001 to
avoid overfitting.

In stage 2, the pretrained fusion model of the classification
network is used for GAN training. However, using the entire
images is not effective for training the GAN. Therefore, we
extract 3D patches from both MRI and PET images with sizes of
64 ×64 ×64 and step sizes of 32. Therefore, each image with a
size of 128 ×128 ×128 can extract 27 patches, and all of these
patches are used to train the GAN in a standard alternating
manner (Goodfellow et al., 2020). Thus, we can simultaneously
increase the number of training samples and significantly reduce
the number of training parameters. Specifically, we first fix the
generator network G and train the discriminator network D for 5
steps; then, we fix D and train G for 1 step. Both networks are
trained with the Adam solver with a learning rate of 0.00001.
Since we must calculate the feature fusion-based loss of Eq. (5),
in each iteration, the 54 patches obtained from a pair of MRI and
PET images are used for training. Both estimation error term λ1
and feature fusion-based loss term λ2 of Eq. (6) are set to 100.

In stage 3, we assume that the PET images are missing in the
training set and adopt the generator to synthesize PET images.
Afterward, real MRI and synthesized PET images are used to
fine-tune the classification network. The learning rate is set to
0.0001, and the other parameters are identical to those in the
pretraining stage.

EXPERIMENTAL SETUP

Materials and Image Preprocessing
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
was set up in 2003. All participants across the ADNI-1, ADNI-
2, and ADNI-GO studies signed informed consent forms. In our
study, 360 MCI subjects, including EMCI and LMCI subjects,
were downloaded from the ADNI dataset1. In our study, the slice
thickness of most samples that we used was 1.2 mm. The field
strength mainly includes 1.5 tesla and 3 tesla. All of them had
MRI baseline data, but only 257 subjects had PET images. The
paired dataset with all MRI and PET images included 124 EMCI
and 133 LMCI patients, while the unpaired dataset with only MRI
scans contained 27 EMCI and 76 LMCI patients. There were no
significant differences between the two groups in gender, age,
or education years. The detailed demographic information and
clinical characteristics in this study are summarized in Table 1.

We preprocessed all MRI and PET images by registration and
skull stripping. We registered the MRI and PET images in three

1adni.loni.usc.edu
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FIGURE 2 | The detailed network structures of our method include a 3D U-Net generator, a discriminator and a multimodal fusion network as shown in panels
(A,B,D). The “Resblock” is the basic unit of the fusion network as shown in panel (C). The green arrow “copy” implies that the two feature maps are connected along
the channel dimension. “Down-conv” and “Up-conv” represent downconvolutional and upconvolutional operations, respectively. Both of them use 3 ×3 ×3 filters
applied with a stride of 2. The yellow arrow “Conv” denotes a convolutional layer with 3 ×3 ×3 filters, but the stride is 1. The red arrow “Flatten+FC” indicates that
we flatten the feature map into a vector and input it into the FC layer. “Addition” denotes the elementwise addition.

TABLE 1 | Demographic and clinical characteristics of the subjects.

Paired data Unpaired data

EMCI (n = 124) LMCI (n = 133) p-value EMCI (n = 27) LMCI (n = 76) p-value

Gender (M/F) 68/56 75/58 0.802 16/11 41/35 0.633

Age 70.1 ± 6.8 72.0 ± 7.4 0.358 72.1 ± 7.5 75.7 ± 7.1 0.614

Education 16.2 ± 2.6 16.1 ± 3.0 0.407 16.2 ± 2.4 15.2 ± 3.3 0.126

MMSE 28.1 ± 1.9 25.7 ± 3.8 <0.001 28.8 ± 1.1 26.8 ± 1.8 <0.001

Age, education, and MMSE are shown as the mean ± standard deviation values. MMSE, mini-mental state examination; EMCI, early mild cognitive impairment; LMCI,
late mild cognitive impairment; No significant diffierences were found between the two groups in gender, age, or education years. Groups for EMCI and LMCI showed
significant diffierences in MMSE scores (p < 0.01). Statistical p-values were analyzed using a t-test, except for gender (chi-square test).

steps. (1) The PET images were mapped to their corresponding
MR images; (2) the MR images were aligned to the Montreal
Neurological Institute (MNI) space; (3) the PET images were
mapped to the MNI space according to the deformation field
produced in the second step. All registered images were checked
by vision. Then, we segmented all images into gray matter, white
matter, and cerebrospinal fluid and removed the skulls. Next,
we removed the blank layers of all images and resized them to
128 ×128 ×128. Finally, we normalized the image intensity to
[0,1] by the min-max normalization method.

Evaluation Measures
To evaluate the classification and GAN performance of our
method, we use seven measures in our experiments. The
classification accuracy (ACC), sensitivity (SEN), specificity (SPE),
and area under the receiver operating characteristic curve (AUC)

were utilized to measure the classification performance. The
mean squared error (MSE), peak signal-to-noise ratio (PSNR),
and structural similarity (SSIM) were used to evaluate the
performance of the GAN.

Experiments and Data Partition
Our experiments are performed on incomplete and complete
data, implemented in TensorFlow on NVIDIA RTX3090 GPU.
Incomplete data experiments only use paired MRI-PET data
to evaluate the effectiveness of our method. While complete
data experiments use both paired and unpaired data to evaluate
the effectiveness of the additional training data that are
generated by GAN. For incomplete data experiments (from
section “Performance of Classification With Single-Modality or
Multimodal Data” to “Visualization of the Results of the Fused
Features and the Most Critical Regions”), we divide the paired
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data into 10 subsets, nine of which form the training set, and the
last is the validation set. Moreover, the unpaired data is treated as
the testing set. For complete data experiments (section “Complete
Data Experiments”), we redivide the paired data and unpaired
data into 10 subsets. The training set includes nine of the subsets
containing both paired data and unpaired data. The remaining is
further divided into the validation set and testing set. To increase
the amount of training data, data augmentation is conducted on
the training set by horizontally and vertically flipping the images
with a certain probability.

EXPERIMENTAL RESULTS

To evaluate the effectiveness of our method, the following six
experiments were performed. (1) We compared the classification
performance of single-modality data with that of multimodal
data. (2) The performance of our FF-GAN was compared with
that of the traditional GAN. (3) We compared the classification
performance of our method with the multimodal result of
experiment (1). (4) Our proposed method was further evaluated
by an ablation study. (5) We visualized the results of the fused
features and the most critical regions for EMCI and LMCI
classification. (6) We synthesized the missing PET images of
unpaired data and used all data to repeat experiments (3) and
(4). Afterward, we compared our method with the state-of-the-
art methods.

Performance of Classification With
Single-Modality or Multimodal Data
In this section, we evaluated the classification results of three
networks. The first two are single-modality networks that are
trained by all MRI or PET images, while the last one is a
multimodal network that is trained by paired MRI and PET
images. Specifically, the paired dataset is used for the multimodal
network, and PET images from the paired dataset are used
for the PET-based single-modality network. All MRI subjects
from paired and unpaired datasets were used for the MRI-based
single-modality network. For validation, the data are divided
into 10 subsets, nine of which are the training set and the last
is the validation set. The multimodal classification network is
identical to that of subsequent experiments. It consists of a
fully connected (FC) layer and a fusion network that can be
found in Figure 2. The fusion network can be divided into
three parts: two single-modality parts and a multimodal fusion
part. We use the two single-modality parts with FC layers to
train MRI and PET images, respectively. All three networks
are trained with the whole 3D images, and the results can be
found in Table 2. Table 2 shows that the accuracy obtained by
the single-modality network with PET images is 1.66% better
than that produced by MR images. The multimodal network
has a higher accuracy than both single-modality networks with
improvements of 5.51 and 3.85%, respectively. These results
show that the use of PET images can achieve a better result
than utilizing MRI, and applying multimodal data can distinctly
improve the classification performance. Thus, it is necessary to

use multimodal data for early AD detection, and our further
experiments are all based on multimodal data.

Performance of Feature Fusion-Based
Generative Adversarial Network
Compared With That of the Traditional
Generative Adversarial Network
To evaluate the effectiveness of our fusion model, we train the
traditional GAN, p2pGAN, our FF-p2pGAN and FF-GAN with
3D patches of paired MRI and PET images. These patches are
extracted from MRI and PET images with sizes of 64 ×64 ×64
and a step size of 32. The results of GANs are shown in Table 3,
which shows that the synthetic images generated by our FF-GAN
outperforms the traditional GAN in terms of the MSE, PSNR, and
SSIM. Specifically, the MSE decreases by 0.00196, while the PSNR
and SSIM increase by 0.47373 and 0.0069, respectively. Moreover,
same conclusion is obtained for p2pGAN and FF-p2pGAN.
These results show that the image generated by our FF-GAN is
better than other GANs in terms of the global characteristics.
To validate whether the synthesized images can improve the
performance of disease, we conduct further experiments (from
sections “Performance of Our Hybrid Deep Learning Method” to
“Complete Data Experiments”).

Performance of Our Hybrid Deep
Learning Method
Based on the previous two experiments, we performed further
research. Compared with the multimodal result in section
“Performance of Classification With Single-Modality or
Multimodal Data,” we assume here that the PET images of
the training set are missing, and we use the trained FF-GAN
from section “Performance of Feature Fusion-Based Generative
Adversarial Network Compared With That of the Traditional
Generative Adversarial Network” to synthesize PET images.
Next, all real MRI and generated PET images in the training set
are used to fine-tune the pretrained classification network of

TABLE 2 | Classification performance of the single-modality and multimodal data
on the validation set.

Input data ACC (%) SEN (%) SPE (%) AUC (%)

MRI only 67.57 66.67 68.42 71.93

PET only 69.23 71.43 66.67 73.21

Paired MRI and PET 73.08 71.43 75.00 79.17

The bold values mean the best results.

TABLE 3 | GAN results of a quantitative comparison.

Method MSE PSNR SSIM

GAN 0.02004 23.44502 0.76464

FF-GAN 0.01808 23.91875 0.77154

p2pGAN 0.01936 23.76414 0.76244

FF-p2pGAN 0.01763 23.93632 0.76355

The bold values mean the best results.
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TABLE 4 | Classification performance obtained using different methods.

Method Validation set (%) Testing set (%)

ACC SEN SPE AUC ACC SEN SPE AUC

GAN 73.08 71.43 75.00 79.17 73.79 75.00 70.37 82.46

FF-GAN 73.08 71.43 75.00 79.17 77.67 76.32 81.48 85.04

GAN+fine-tune 76.92 78.57 75.00 83.93 77.67 76.32 81.48 84.60

Ours (FF-GAN+fine-tune) 76.92 78.57 75.00 87.50 79.61 78.95 81.48 85.19

p2pGAN 73.08 71.43 75.00 79.17 73.79 72.37 77.78 83.09

FF-p2pGAN 73.08 71.43 75.00 79.17 77.67 76.32 81.48 82.70

p2pGAN+fine-tune 76.92 78.57 75.00 86.31 77.67 78.95 74.07 86.79

Ours (FF-p2pGAN+fine-tune) 76.92 78.57 75.00 86.90 78.64 72.37 96.30 84.89

The bold values mean the best results.

section “Performance of Classification With Single-Modality or
Multimodal Data.” The results can be found in the upper part
of Table 4. The validation set result of this table is obtained by
inputting the real MRI and PET images of the validation set,
while the testing set result is obtained from the real MRI and
synthesized PET images of the testing set. The validation set result
of GAN and FF-GAN is identical to that of section “Performance
of Classification With Single-Modality or Multimodal Data.”
Comparing the results of the validation set and testing set enables
us to demonstrate the adaptability of the classification network
with respect to the synthesized images. From this table, we
can find that our method improves the accuracy by 3.84% on
the validation set, but on the testing set, our method increases
the accuracy by 5.82%. Thus, our method can better adapt to
generated images and simultaneously improve the accuracy of
real data. Moreover, we also conduct the above experiment by
p2pGAN based on the same pretrained classification network of
section “Performance of Classification With Single-Modality or
Multimodal Data.” The results can be found in the lower part of
Table 4 and we can get the same conclusion.

Ablation Study
In this section, we perform an ablation study by only using the
feature fusion-based loss in the generator or by only fine-tuning
the classification network. The results are shown in Table 4. The
first and second rows use the multimodal classification network
of section “Performance of Classification With Single-Modality
or Multimodal Data.” However, the first row uses a traditional
GAN for missing data generation, while the second row uses our
FF-GAN. The third row also uses the traditional GAN for missing
data generation and fine-tunes the classification network. The
fourth row is our method, which uses our FF-GAN for image
generation and fine-tunes the classification network. The last four
rows of the Table 4 are achieved by p2pGAN. Comparing the
first and second rows, we find that using the feature fusion-
based loss can improve accuracy by 3.88% on the testing set.
Comparing the first and third rows, we find that fine-tuning can
improve the accuracies on both the validation set and testing set
by 3.84 and 3.88%, respectively. Similarly, from the second and
fourth rows, we find that the accuracies on both datasets increase
by 3.84 and 1.94%, respectively. For p2pGAN, we can get the

FIGURE 3 | (A) t-SNE results obtained with real data. (B–D) t-SNE results
obtained with the fused features of the pretrained classification model,
fine-tuned model of the traditional GAN, and fine-tuned model produced by
our FF-GAN.

same conclusion. Therefore, both feature fusion-based loss of the
GAN and the fine-tuning stage of the classification network are
effective for improving the accuracy of the results. From Table 4,
we can find that baseline GAN is slightly better than p2pGAN.
Thus, we conduct further experiments based on baseline GAN
instead of p2pGAN.

Visualization of the Results of the Fused
Features and the Most Critical Regions
In this part, we further analyze the fused features by
visualization. The t-distributed stochastic neighbor embedding
(t-SNE) (Maaten and Hinton, 2008) method is used to compare
the classification difficulties of the compared methods, and the
results can be found in Figure 3. For Figure 3A, we concatenate
the MRI and PET images together, and we can easily find that it is
difficult to separate the two clusters from the real data. Therefore,
directly using real data for classification is more difficult than the
other three methods. The t-SNE results obtained by using the
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TABLE 5 | Classification performance in complete data experiments by fivefold cross validation.

Method Validation set (%) Testing set (%)

ACC SEN SPE AUC ACC SEN SPE AUC

GAN 76.65 76.69 76.61 85.32 73.79 75.00 70.37 75.97

FF-GAN 81.71 78.19 85.48 89.02 82.52 85.53 74.07 88.99

GAN+fine-tune 83.27 78.95 87.90 90.75 80.58 82.89 74.07 88.00

Ours (FF-GAN+fine-tune) 85.21 79.70 91.13 93.64 84.47 85.53 81.48 92.81

The bold values mean the best results.

FIGURE 4 | Visualization results of the MRI and PET images, the
corresponding Grad-CAMs obtained by our method, and the associated
overlays.

fused features of the pretrained classification model, fine-tuned
model of the traditional GAN, and fine-tuned model yielded
by our FF-GAN are shown in Figures 3B–D, respectively. The
results show that the EMCI and LMCI clusters of our method
are more clearly separated than those of the other two methods.
Thus, the fused features obtained by our method are more helpful
for classification.

Moreover, we further visualize the gradient-weighted class
activation mapping (Grad-CAM) (Selvaraju et al., 2017) of our
hybrid deep learning method, as shown in Figure 4. This
reflects which regions are most critical for EMCI and LMCI
classification. We can clearly find that our method easily covers
the hippocampus and temporal lobe of each MRI image and the
cingulate gyrus and precuneus of each PET image. These regions
have been related to the progression of AD.

Complete Data Experiments
In this section, we first synthesize the missing PET images of
unpaired data using the traditional GAN and our FF-GAN.
Afterward, we redivide the paired data and unpaired data into
10 subsets. Nine of the subsets containing both paired data
and unpaired data are training sets. The remaining paired data
and unpaired data constitute the validation set and testing set,
respectively. Finally, the experiments of sections “Performance of
Our Hybrid Deep Learning Method” and “Ablation Study” are
repeated by fivefold cross validation, and the results are shown in
Table 5.

From the first and last rows, we find that our method increases
the accuracies on the validation set and testing set by 8.56
and 10.68%, respectively. This result indicates that the images

generated by traditional methods are not good for classification.
Moreover, our method can significantly improve the quality of
the generated images and improve them for the classification task.
From the first and second rows, we find that using only the feature
fusion-based loss can improve the accuracies by 5.06 and 8.73%,
respectively. This result shows that images generated by the
FF-GAN are good for classification. Moreover, the use of the FF-
GAN to synthesize the missing PET images of unpaired images
can improve the pretraining results. Comparing the first and
third rows, we find that fine-tuning can improve the accuracies
by 6.62 and 6.79%, respectively. Similarly, from the second
and last rows, we find that the accuracies obtained on the
validation set and testing set are increased by 3.5 and 1.95%,
respectively. These results show that the fine-tuning stage can
obviously improve the accuracy on the testing test without
losing or even improving the accuracy on the validation set.
Additionally, comparing Table 4 with Table 5, we find that
our method increases the accuracies by 8.29 and 4.86% for the
validation set and testing set, respectively. Similarly, most of the
results of Table 5 are much higher than those in Table 4. These
results show that synthesizing missing data can improve the
classification performance, especially when using our proposed
FF-GAN. Finally, we compare our method with the state-of-the-
art methods, as shown in Table 6. The comparison illustrates that
our method can boost the classification performance between
EMCI and LMCI on a relatively large dataset, which makes the
results more reliable.

DISCUSSION

In the present study, we used the hybrid deep learning method
to classify patients with EMCI and LMCI, and the results show
that our method improves classification performance. Here, we

TABLE 6 | Result comparison of other EMCI vs. LMCI classification methods.

Algorithm Subjects ACC (%) SEN (%) SPE (%) AUC (%)

Jie et al. (2018) 56EMCI+43LMCI 78.80 74.40 82.10 78.30

Nozadi and
Kadoury (2018)

164EMCI+189LMCI 72.50 79.20 69.90 79.00

Wee et al. (2019) 899EMCI+638LMCI 60.90 52.50 67.80 N/A

Lei et al. (2020) 44EMCI+38LMCI 81.71 78.95 84.09 92.11
Yang et al. (2021) 29EMCI+18LMCI 80.85 N/A N/A 84.87

Ours 151EMCI+209LMCI 83.78 80.95 87.50 88.99

The bold values mean the best results.

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2022 | Volume 16 | Article 843566

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-16-843566 March 9, 2022 Time: 15:9 # 9

Jin et al. Incomplete Multimodal for E/LMCI Diagnosis

interpret the reasons. Traditional methods divide generation and
classification into two parts with no information communication.
However, in our proposed method, the pretrained classification
network is used to obtain crucial features for GAN training, and
the synthesized images are used to fine-tune the classification
network. Additionally, we further strengthen the information
communication between two networks by iterating the two
stages. Thus, the resulting GAN can focus on the crucial regions
that are helpful for classification. Moreover, we transfer the
model trained by real images to synthesized images by fine-
tuning stage, which may make the classifier better adapt to the
generated image.

There are also several studies to make the generated images
suitable for classification. Gao et al. (2021) propose a task-
induced discriminator to include the abnormal changes of
generated medical images. However, there is no information
communication between the classification network and task-
induced discriminator. Pan et al. (2019, 2021) propose a
disease-image-specific deep learning framework for joint
neuroimage synthesis and disease diagnosis, which realize the
information communication between the two networks. But
this method extracts disease-image specific information of MRI
and PET images, separately. Thus, the fusion information of
different modalities is not fully considered. In our method,
the proposed FF-GAN focus more on fusion information
and the multimodality network is utilized to promote its
training, which can strengthen the information communication
between two networks.

The ablation study shows that both feature fusion-based loss of
the GAN and fine-tuning stage of the classification network are
effective for improving the accuracy of the results. The former
can extract regions that are helpful for classification, which
helps the GAN better generate images. The latter can make the
classifier better adapt to the synthetic image, which is particularly
important when using incomplete datasets. Moreover, the
visualization of the results shows that the fusion features
extracted by our method can better realize the classification of
EMCI and LMCI, and our method can easily cover key areas that
are helpful for classification.

Complete data experiments indicate that using more data by
synthesizing missing PET images can improve the classification
performance. Using images generated by our FF-GAN is
especially good for classification with the help of the feature
fusion-based loss. In addition, we compare our method with
the state-of-the-art methods for classifying EMCI and LMCI.
The results show that our method achieves better classification
performance than all listed algorithms on a large dataset, which
makes the results more reliable.

However, we acknowledge that our study has two limitations.
(1) The image preprocessing stage used for this study is
handcrafted. This process depends on the experience of
experimenters and software. Therefore, it can hardly be
optimized for other datasets. (2) We use only the paired
ADNI dataset for training. However, adding more data can
improve the classification performance of the resulting model.
Therefore, in our future work, we will combine other datasets
with the ADNI dataset.

CONCLUSION

In this paper, we propose a hybrid deep learning method for early
AD detection with incomplete multimodal data. Our method
has three stages. Specifically, in the first stage, we use a paired
dataset to pretrain the classification network. In the second stage,
we introduce a feature fusion-based loss into the traditional
GAN using the pretrained classification network. Thus, the
generator can better focus on the regions that are helpful for
classification. In the last stage, we use real MR images and the
generated PET images to fine-tune the classification model to
better adapt to the synthesized images. The results show that our
method is superior to the state-of-the-art methods for early AD
detection and can better handle incomplete multimodal datasets.
Moreover, the feature fusion-based loss and fine-tuning stage are
complementary for early AD detection. Additionally, applying an
entire dataset that is synthesized by our method can significantly
improve the resulting classification performance.
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