
animals

Article

Effect of Maternal Water Restriction on Sexual
Behavior, Reproductive Performance, and
Reproductive Hormones of Male Rat Offspring

Ja’far Al-Khaza’leh 1,*, Rami Kridli 2,3, Belal Obeidat 3 , Shahera Zaitoun 1 and
Anas Abdelqader 4

1 Faculty of Agricultural Technology, Al-Balqa Applied University, P.O. Box 19117, Al- Salt, Jordan;
zaitoun@bau.edu.jo

2 New-Life Mills, A Division of Parrish & Heimbecker, Limited, Cambridge, ON N1T 2H9, Canada;
rkridli@newlifemills.com

3 Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan;
bobeidat@just.edu.jo

4 School of Agriculture, The University of Jordan, Amman 11942, Jordan; a.abdelqader@ju.edu.jo
* Correspondence: jkhaza@bau.edu.jo

Received: 31 December 2019; Accepted: 23 February 2020; Published: 26 February 2020
����������
�������

Simple Summary: Drinking water restriction that a pregnant female may encounter is one of the
major stressors that could affect pregnancy outcome and understanding its effects is important
in animal welfare concerns and pregnancy outcomes for women or animals. To the best of our
knowledge, maternal drinking water restriction has not yet been investigated in previous studies
as a potential factor affecting reproductive performance of male rat offspring over first and second
generations. Therefore, we aimed to assess the consequences of maternal drinking water restriction
stress on sexual behavior, reproductive performance, and reproductive hormones of male rat offspring.
The 50% maternal water restriction during the second half of pregnancy reduced body weights of rat
dams and offspring at birth and negatively impacted some reproductive characteristics. However,
reproductive performance and hormones of males were not adversely affected.

Abstract: The present study aimed to investigate the effect of maternal water restriction on sexual
behavior, reproductive performance, and reproductive hormones of male rat offspring. Forty pregnant
female rats were divided into two equal groups: Control (C) and water-restricted (WR). Control dams
had ad libitum water access throughout pregnancy, while dams in the WR group were subjected to
50% water-restriction from day 10 of pregnancy onwards. The maternal water restriction provoked a
significant reduction (p < 0.05) in body weight of dams before delivery and at birth and litter body
weights of offspring at birth. Maternal water restriction did not affect relative weights of reproductive
and body organs of male rat offspring. All hormonal concentrations, sperm count, and vitality in male
rat offspring were not significantly affected by maternal water restriction. Maternal water restriction
exposure induced significant (p < 0.05) reduction in intromission latency, intromission frequency, and
post-ejaculation interval in male rat offspring while a significant (p < 0.05) increase in the ejaculation
latency was detected in maternal WR group. In conclusion, this study suggests that maternal water
restriction had a negative impact on some reproductive characteristics but did not severely affect
reproductive performance and reproductive hormones of male rat offspring.
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1. Introduction

Various experimental studies conducted on mice, rats, and pigs showed that many environmental
and ethological prenatal stressors can have injurious effects on the pregnancy and early and long-term
adverse effects on the offspring. Different prenatal treatments and stress types, such as medications [1],
drinking water restriction and deprivation [2–4], feed restriction [5], immobilization [6,7], light
intensity [8], stocking density [9], restraint or social stressors [10–16], heat or noise [17], to which a
pregnant female is exposed, can affect pregnancy outcome and influence many aspects of physiological
systems in the offspring including sexual behavior, puberty onset, gonad function, reproductive
hormones, and development of the reproductive organs.

The detrimental consequences of maternal stress exposure depend on type of stress, its frequency
and severity, pregnancy stage, and sex offspring [18]. Water is required for all vital functions in the
body [19,20]. It is the major component of the animal’s live body weight; 50% to 80% of its body
weight [21,22]. Water is needed to flush out wastes, aid in digestion, and ensure the body absorbs the
essential nutrients from the food [23]. It also helps to restore and revitalize body. During pregnancy,
these essential functions are even more important; water is an essential and critical nutrient required
in sufficient amounts to cope with the demands of ever-changing bodies and maintain a healthy
environment for the fetus [24]. Exposure to stress during pregnancy is associated with a variety of
alterations in male offspring. Maternal under nutrition during pregnancy can cause long-lasting effects
on the health of the offspring [25,26].

Studies reported differences between male and female fetuses’ response to the maternal
environment. A review by Sandman et al. [27] showed that growing male fetuses are more vulnerable
to effects during pregnancy than female fetuses. Moreover, evidence from Ashworth et al. [14]
indicates that the fetal reproductive axis of male pigs carried by sows that were stressed is more
susceptible to environmental changes than that of female siblings. Furthermore, the developing male
reproductive axis is more responsive to maternal stress in that prenatal stress may compromise aspects
of male reproductive development compared with control males [10]. The mechanism that shows
transmission of the physiological effects of maternal stressors to developing fetuses was clarified by
Brunton [18] and Goncharova [28]. It includes modification in the responsiveness of the maternal and
offspring hypothalamic–pituitary–adrenal (HPA) axes [18,29–31]. However, whether or not a maternal
water restriction is comparable to the types of social stresses in respect to its effects on the HPA axes
remains unknown.

The hypothesis of the current study was that the exposure to drinking water restriction imposed
during pregnancy could have adverse consequences on offspring development, namely fertility,
sexual behavior, reproductive performance, and reproductive hormones. Understanding the effects of
maternal drinking water restriction is important in animal welfare concerns and pregnancy outcomes
for women or animals. Maternal drinking water restriction has not yet been investigated in previous
studies as a potential factor affecting reproductive performance of male rat offspring over first and
second generations. The present study, therefore, aims to assess the consequences of maternal drinking
water restriction stress on sexual behavior, reproductive performance, and reproductive hormones of
male rat offspring.

2. Materials and Methods

2.1. Animals

In this study, 40 virgin female albino Sprague-Dawley rats weighing on average 190.3 ± 15.7 g
and aged 9 weeks old were used. The female rats were obtained and raised in the Animal House Unit
at Jordan University of Science and Technology (JUST) between January and March 2018. All animal
care protocols and experimental procedures were approved by the Animal Care and Use Committee at
JUST (Approval #: 16/3/3/146) and were in accordance with the National Institute of Health on the use
and care of laboratory animals (USA) Guidelines. Animals were housed separately in polypropylene
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cages and maintained under standard laboratory conditions (ambient temperature of 22 ± 2 ◦C, 12/12
h light-dark cycle). The animals had access to standard chow and water ad libitum and were allowed
to adapt for one week before beginning the experiments.

Initial and final body weights were measured by using a weighing scale. Each female with regular
estrous cycle was introduced overnight and mated with a proven sexually experienced fertile male
weighing on average 309.6 ± 23.6 g at ratio of one male to two females to induce pregnancy. In the
following morning, the beginning of pregnancy was confirmed by sperm presence as vaginal smear
(white sperm plug) and its positive presence was designated as day zero (D0) of gestation.

2.2. Experimental Design

Animal grouping: Pregnant female rats were randomly assigned into one of two groups of 20 rats
each as follows: The control group (C, n = 20, with 100% ad libitum free water access) and experimental
water-restricted group (WR, n = 20, with 50% water restriction). Normal daily water intake for a 24-h
period (100% ad libitum free access) was quantified during the pre-pregnancy period by measuring
the daily water intake of each dam and calculating a group mean.

Water restriction application: Dams from C group had ad libitum free access to distilled water from
conception until they gave birth, while stressed dams in WR group were exposed to water restriction
by providing only half of daily water requirement (50% restriction) from day 10 of pregnancy onwards.
After delivery, the two groups were given free access to water and food. Makhmudov et al. [32]
adopted a 50% water and feed restriction protocol in Wister rats from the outset of pregnancy. A similar
protocol was conducted by Mansano et al. [3] on Sprague–Dawley rats from day 10 of pregnancy
onwards. Maternal body weight of all dams from two groups was recorded weekly until delivery.
Figure 1 illustrates the experimental design.
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2.3. Pregnancy Outcomes and Sexual Behavior Assessment

Table 1 summarizes the outcome after delivery of dams. Following delivery, pups of the first
generation (F1) were sexed on postnatal day 1 and kept with their mothers until weaning on postnatal
day 21.

Table 1. Summary related to dams at the end of gestation period in each experimental group.

Variables
Groups

C WR
(n = 20) (n = 20)

Non-pregnant dams (number) 2 0
Stillbirth dams (number) 0 2
Died dams at birth (number) 0 1
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The birth weights, litter size, and survival index of pups were assessed. Then, male pups only
were kept separately and weighed weekly until the age of 90 days. Consequently, a subset of two
male offspring from each litter of dam were randomly selected and divided into two subgroups. The
first subgroup (non-mated) consisting of male offspring, which were anesthetized and humanely
killed (rats were anesthetized using intraperitoneal injection of Ketamine-Xylazine combination (using
1 mL syringe, 75–90 mg/kg ketamine and 5–10 mg/kg xylazine in the same syringe) followed by
cardiac puncture for blood collection to assess hormone concentrations. The second subgroup (mated)
consisted of male offspring, which was mated to produce the second generation (F2) and was monitored
to assess its sexual behavior.

For the second subgroup, each adult male offspring (F1) from each group (C, and WR groups)
weighing on average 232 ± 28 g was mated with a regular estrous cycle female from an additional
cohort of non-treated animals with one to one mating ratio. Male (F1) was housed individually in the
observation chamber (a clear acrylic box) and was allowed to adapt for 10–15 min. Then, a sexually
receptive female was introduced into the chamber and the sexual behavior of the male was recorded
for 30 min in a dark room using a tracking video camera. Due to financial limitations and for better
control and more accurate observations, only 12 male rats from each group were randomly assigned for
sexual behavior. The following sexual behavior parameters of male offspring rats (F1) were measured
according to Mohamed et al. [33]: (1) Mount latency: Time from introduction of the female until the
first mount; (2) mount frequency: Number of mounts preceding ejaculation; (3) intromission latency:
Time from introduction of the female until the first intromission (vaginal penetration); (4) intromission
frequency: Number of intromissions preceding ejaculation; (5) ejaculation latency: Time from the first
intromission until ejaculation; (6) ejaculation frequency: The number of ejaculations within 30 min;
(7) post-ejaculatory interval: Time from ejaculation until the next intromission. After observing the
sexual behavior, a vaginal smear was carried out to examine for the existence of spermatozoa ensuring
that mating had taken place and appointed it as day zero (D0) of pregnancy. In addition to sexual
behavior assessment, the productive performance of male rat offspring (F1) of the second subgroup
was also evaluated by assessing some of reproductive parameters of their offspring (F2) such as litter
size and weight.

2.4. Reproductive and Body Organ Weights

A week after sexual behavior assessment, male rat offspring (F1) of the second subgroup were
also anesthetized and humanely killed. Laparotomy was then immediately performed, and the
internal reproductive organs (testes, seminal vesicles, prostate, epididymides, and vasa deferentia)
were removed and then weighed after clearing the visible fats and connective tissues. Additionally,
different organs, namely the heart, liver, lungs, spleen, and kidneys, were carefully dissected and
weighed in grams (absolute organ weight). Relative organ weight was calculated as = Absolute organ
weight (g)/Body weight of rat on sacrifice day (g) × 100.

2.5. Blood Sampling and Hormones Assessment

Trunk blood samples were taken by intra-cardiac puncture of sacrificed animals and collected
from each animal into anticoagulated test tube using 5% EDTA. Blood samples were centrifuged at
3000 RPM for 30 min. The separated plasma was stored frozen at −20 ◦C for subsequent analysis of
serum hormones. Serum levels of hormones (cortisol, testosterone, thyroid-stimulating hormone (TSH),
and luteinizing hormone (LH)) were measured in duplicate using enzyme-linked immunosorbent
assay (CORTISOL ELISA, REF: DKO001; FREE TESTOSTERONE ELISA, REF: DKO015; Rat TSH
ELISA KIT, CK-E30271; Rat LH ELISA KIT, CK-E30447).
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2.6. Assessment of Semen Quality

For sperm parameters evaluation, semen was gently squeezed out of the seminal vesicles and
epididymis, and vas deferens were dissected. Determination of total epididymal concentration was
performed by regular counting protocol using a heamocytometer. Total epididymal sperm collection
was performed by suspension of the right epididymis into 1 mL of buffered formal saline solution as
described by Wang [34]. A drop of semen was taken prior to the collection by slight squeezing for
smear preparation. Smears were prepared using eosin-nigrosine one-step staining procedure on clean
slides and kept for later analysis. The percentage of sperm vitality was determined by counting the
proportion of stained (dead) sperms in 5 fields in each slide (about 400 sperm). Testis was transferred
into bottles containing 10% formalin for later histological analysis.

2.7. Statistical Analyses

The data were analyzed using a general linear model (GLM) procedure of SAS software 9.3 [35].
Continuous variables were regarded as dependent variables while treatments were fitted as explanatory
variable. The data were tested for normality and homogeneity of error variances prior to model
fitting to get a normal distribution for the residuals. After assessing normality and homogeneity, the
data with normal distribution and homogenous variances were analyzed to investigate significant
differences between treatment groups. In Figure 2, the dam was considered the experimental unit of
study in the statistical analyses, whereas in Figure 3 and in Tables 2–7, the offspring was considered
the experimental unit of study in the statistical analyses. All comparisons of continuous variables
between control and stressed animals with unbalanced data presented as means ± standard error (SE)
and p-value of < 0.05 was considered as statistically significant.
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Figure 3. Body weight of male offspring (F1) post weaning in control and water-restricted group. SE:
Standard error of the mean. Differences (p < 0.05) were not detected.

Table 2. Pregnancy outcomes and characteristics of F1 in control and water-restricted group.

Variables
Groups

SignificanceC WR
Mean ± SE Mean ± SE

Gestation length (day) 20.94 ± 0.4 20.85 ± 0.0 ns
(n = 18) (n = 20)

Dam wt at birth (g) 222.60 ± 3.6 205.25 ± 3.4 *
(n = 18) (n = 20) **

Individual pup wt at birth (g) 5.99 ± 0.4 5.56 ± 0.4 *
(n = 18) (n = 20) **

Litter size at birth (pup) 10.22 ± 0.5 9.75 ± 0.4 ns
(n = 18) (n = 20) **

Individual pup wt at weaning (g) 33.42 ± 1.9 36.98 ± 1.98 ns
(n = 18) (n = 17)

Litter size at weaning (pup) 9.66 ± 0.4 9.47 ± 0.4 ns
(n = 18) (n = 17)

30-day SI of pups at weaning (%) 94.84 ± 2.0 95.98 ± 2.1 ns
(n = 18) (n = 17)

Dead of pups at weaning (%) 00.56 ± 0.2 00.47 ± 0.2 ns
(n = 18) (n = 17)

Male ratio at weaning (%) 48.00 ± 3.7 55.42 ± 3.8 ns
(n = 18) (n = 17)

Female ratio at weaning (%) 52.00 ± 3.7 44.58 ± 3.8 ns
(n = 18) (n = 17)

Sex ratio of pups (male: female) 1.1 ± 0.2 1.5 ± 0.2 ns
(n = 18) (n = 17)

SE: Standard error of the mean, SI: Survival index. ** two litters that were stillborn, and one dam that died in the
WR group were included in the analysis, ns: Not significant, * significant at p < 0.05.
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Table 3. Relative weights (%) of reproductive and body organs of F1 male rat offspring in control and
water-restricted group.

Variables
Groups

C WR
Mean ± SE Mean ± SE

Testes 1.06 ± 0.1 (n = 18) 1.12 ± 0.1 (n = 15)
Epididymis and vas deferentia 0.69 ± 0.0 (n = 18) 0.71 ± 0.0 (n = 16)
Kidneys 0.75 ± 0.0 (n = 18) 0.83 ± 0.0 (n = 16)
Liver 3.61 ± 0.1 (n = 18) 3.65 ± 0.1 (n = 16)
Spleen 0.24 ± 0.0 (n = 18) 0.30 ± 0.0 (n = 16)

SE: standard error of the mean. Differences (p < 0.05) were not detected.

Table 4. Reproductive hormone levels of mated and non-mated F1 male rat offspring in each group.

Subgroup Variables

Groups

C WR Significance
Mean ± SE Mean ± SE

Mated

Cortisol (ng/mL) 1.56 ± 0.2 1.30 ± 0.2 ns
(n = 18) (n = 16)

LH (mIU/mL) 27.24 ± 0.4 26.49 ± 0.5 ns
(n = 18) (n = 16)

Free Testosterone (pg/mL) 8.26 ± 1.8 8.72 ± 1.9 ns
(n = 18) (n = 16)

TSH (mU/L) 11.29 ± 0.2 11.16 ± 0.3 ns
(n = 18) (n = 16)

Non-mated

Cortisol (ng/mL) 0.72 ± 0.2 1.02 ± 0.2 ns
(n = 18) (n = 17)

LH (mIU/mL) 30.58 ± 0.6 28.67 ± 0.6 *
(n = 18) (n = 17)

Free Testosterone (pg/mL) 3.90 ± 1.4 7.93 ± 1.5 ns
(n = 18) (n = 16) **

TSH (mU/L) 12.12 ± 0.2 11.64 ± 0.2 ns
(n = 18) (n = 17)

TSH: Thyroid stimulating hormone, LH: Luteinizing hormone, ns: Not significant, * significant at p < 0.05, ** One
outlier with high deviation from the mean was removed for the analysis of testosterone to get a normal distribution
for the residuals.

Table 5. Sperm parameters of F1 male offspring of control or water-restricted groups.

Variables
Groups

C WR
Mean ± SE Mean ± SE

Sperm count (×106 mL−1)
164.46 ± 19.1 167.20 ± 14.8

(n = 18) (n = 15)
Sperm vitality (%)

Sperm live 91.86 ± 0.8 90.17 ± 0.9
(n = 17) (n = 15)

Sperm dead 9.14 ± 0.8 9.83 ± 0.9
(n = 17) (n = 15)

SE: standard error of the mean.
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Table 6. Sexual behaviors of F1 male offspring of control or water-restricted groups.

Variables
Groups

SignificanceC WR
Mean ± SE Mean ± SE

Mount latency (s) 90.75 ± 2.6 83.42 ± 2.6 ns
(n = 12) (n = 12)

Mount frequency 14.00 ± 0.7 14.00 ± 0.7 ns
(n = 12) (n = 12)

Intromission latency (s) 181.17 ± 5.2 161.75 ± 5.2 *
(n = 12) (n = 12)

Intromission frequency 13.33 ± 0.6 10.42 ± 0.6 *
(n = 12) (n = 12)

Ejaculation latency (s) 130.25 ± 6.6 154.08 ± 6.6 *
(n = 12) (n = 12)

Ejaculation frequency 2.25 ± 0.1 1.98 ± 0.1 ns
(n = 12) (n = 12)

Post-ejaculation interval (s) 172.83 ± 5.3 154.67 ± 5.3 *
(n = 12) (n = 12)

SE: Standard error of the mean, s: Second, ns: Not significant, * significant at p < 0.05.

Table 7. Reproductive performance of F1 male rat mated with non-treated females in each group.

Variables
Groups

C WR
Mean ± SE Mean ± SE

Body weight of non-treated dams at birth (g) 227.56 ± 4.2 228.21 ± 4.4
(n = 16) (n = 14)

Litter weight of F2 at birth (g) 53.86 ± 2.7 56.75 ± 2.8
(n = 15) (n = 14)

Individual litter weight of F2 at birth (g) 5.50 ± 0.1 5.70 ± 0.1
(n = 15) (n = 14)

Litter size of F2 at birth (pup) 9.86 ± 0.5 10.00 ± 0.5
(n = 15) (n = 14)

SE: Standard error of the mean.

3. Results

3.1. Body Weights and Pregnancy Outcomes

Changes in dams’ body weights before parturition are shown in Figure 2. The mean weight
losses relative to C values after 9 days of water restriction (from day 10 of pregnancy onwards) were
approximately 29% for the WR group.

Pregnancy outcomes and characteristics of F1 are presented in Table 2. The average body weights
of dams following parturition and average pup body weights of rat offspring at birth were significantly
higher in the C group compared to the WR group. However, no significant differences were found
in the length of dam gestation, litter size at birth and at weaning, and pup body weights at weaning
between C and WR animals (Table 2). The % 30-day survival index (SI) of pups at weaning was similar
between the C and WR groups. The % of dead pups at weaning was similar between the C and WR
groups. In general, male pups outnumbered female pups by a ratio of 1.1 to 1 and comprised about
48.00% and 55.42% of the total litter size in the C and WR groups, respectively.

Figure 3 shows that the body weights of all male offspring (F1) post-weaning increased significantly
with increasing age of animals. However, the body weights of males (F1) post weaning at weeks 1 and
9 were similar between C and WR groups (49.44 ± 2.4 vs. 54.80 ± 2.5) and (212.00 ± 7.5 vs. 219.29 ±
7.7), respectively.
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3.2. Reproductive and Body Organ Weights of F1 Male Rat Offspring

The relative organ weights of different reproductive and body organs are shown in Table 3.
There were no differences (p > 0.05) in absolute and relative weights of reproductive organs (testes,
epididymis, vas deferentia) and other organs (kidney, liver, spleen) of F1 mated male rat offspring
between two groups.

3.3. Reproductive Hormones of F1 Male Rat Offspring

Mean serum cortisol, LH, testosterone, and TSH levels of two groups for mated and non-mated
F1 male rat offspring levels are presented in Table 4. All hormonal concentrations were not different
(p > 0.05) between the two groups in mated and non-mated subgroups with the exception of LH of
non-mated subgroups. LH level of non-mated male rat offspring was higher (p < 0.05) in C group
compared to WR group.

3.4. Sperm Parameters of F1 Male Rat Offspring

Sperm counts were similar between C group and WR group (Table 5). Observation on sperm
vitality of F1 male rat offspring indicated no significant differences between the C and WR groups.

3.5. Sexual Behavior of F1 Male Rat Offspring

The effect of maternal water restriction on the sexual behavior of F1 male rat offspring is shown
in Table 6. Treatment with water restriction induced reductions (p < 0.05) in intromission latency,
intromission frequency, and post-ejaculation interval in comparison with corresponding values of
control rats. Mount latency tended to be lower (p = 0.0602) in the WR group compared to the C group.
However, an increase (p < 0.05) in the ejaculation latency was detected in the WR group compared
with the C group.

3.6. Reproductive Performance of F1 Male Rat Offspring

The average body weights of non-treated dams at birth, litter body weights, and litter size of F2
rat offspring at birth were similar between C and WR groups (Table 7).

4. Discussion

In the present study, one dam died, and two dams gave stillbirth at the end of gestation period in
the WR group. These losses in WR group, and the lack of such losses in the C group, could confirm the
exhausting impact of water restriction during the critical stage of pregnancy on dams. The gestation
length of dams in this study were not affected by water restriction. Regardless of stress type, a previous
study by Guan et al. [36] showed that the gestation length of dam Sprague–Dawley rats was not
affected by maternal water deprivation for three days at late gestation. Another study by Alwasel [10]
also showed that the gestation length of dam Wistar rats was not impacted by maternal food restriction.
The body weights of stressed pregnant dams were significantly affected by water restriction during the
last stages of pregnancy compared to control pregnant dams. This can be ascribed to reduction in food
intake by dams. A study by Bekkevold et al. [37] showed that food intake was significantly reduced in
50% and 75% water-restricted and water-deprived groups of mice and caused weight losses compared
to control groups. Mansano et al. [3] reported that 50% of water restriction during the late stage of
pregnancy of Sprague–Dawley rats resulted in about 25% less food intake than controls. Body weight
and food intake were also significantly reduced in Sprague–Dawley pregnant and non-pregnant rats
that were exposed to water deprivation for 48 h [4]. This reduction in body weights of stressed pregnant
dams during pregnancy was confirmed by lower body weights of litter at birth than that in control
animals. However, the body weights of litter at weaning and their survival index, and the body weight
of males (F1) post-weaning at week 1 and 9 were similar between two groups. This can be attributed to
the fact that catch up growth of WR to C occurred and the F1 rat offspring recovered from maternal
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water restriction effects after providing water and feed ad libitum. A study by Mansano et al. [3]
showed that there was no difference in litter size or pup survival in rat offspring born to mothers
exposed to 50% water restriction during pregnancy. The same study showed that the body weights
of rat offspring at birth were smaller in 50% water-restricted group compared to control, but this
difference was no longer seen prior weaning due to occurrence of catch-up growth.

In this study, water restriction during pregnancy did not cause any adverse effect on reproductive
or organ weights of F1 male rat offspring compared to controls. The relative organ weights investigated
in this study were slightly higher than normal values reported by Alemán et al. [38]. This could also
indicate that the normal physiological functions of those organs were not negatively impacted by
maternal water restriction. Due to fact that the body weights of pups at birth (day 1) were affected
by maternal water restriction, differences were expected between C and WR groups regarding the
absolute and relative weights of reproductive and body organs of F1 male rat offspring. However, due
to catch up growth of WR F1 male rat offspring, no difference in the absolute or relative body weight
between groups was seen by 90 days of age. A study by Mansano et al. [3] showed no differences in
the absolute and relative weights of kidney and liver of rat offspring at 21 days of age in 50% maternal
water-restricted group compared to control. Chehreie et al. [2] found that a prenatal water deprivation
for 48 h at the end of third trimester of gestation causes significant reduction in total body weight and
the weight of testes of male pubertal Sprague–Dawley Rats. Other findings showed no alteration in
weights of the testis and epididymis of male rats exposed to prenatal restraint stress [11,39]. However,
differences in the type of stress exposed to the rats during pregnancy and its corresponding mechanism
of action should be taken into consideration. In the present study, the normal weights of the testis and
epididymis of male rat offspring in WR group could be explained by normal level of testosterone.

Animals respond to stressful challenges by modifying the hypothalamo-pituitary-adrenal axis and
elevating the circulating levels of glucocorticoids [31]. However, evidence for effects of water restriction
on glucocorticoid levels in pregnant rats has not been documented in studies. Thus, it is not possible
based on present results to definitely establish whether this challenge is associated with modification
of the HPA axis and glucocorticoid levels in the dams. In the present study, cortisol has been measured
as an indicator of stress, yet corticosterone is the equivalent in the rat. Similarly, other studies have
used cortisol as an index of stress in the rat [40–42]. A study by Gong et al. [43] showed that rodent
serum cortisol and corticosterone were closely correlated in patterns under different physiological or
stressful conditions.

In the present study, we did not measure circulating cortisol at an early age, shortly following
exposure to prenatal maternal water restriction. When males were sacrificed at 111 days of age, serum
cortisol concentrations, as a classic indicator of physiological stress, were not significantly higher in
the WR group compared to the C group for mated and non-mated subgroups. Such lack of difference
may suggest that the effect of maternal stress did not induce a chronic elevation of cortisol in the
offspring. We might have seen a difference in cortisol concentrations had we tested at an earlier age.
Moreover, the adaptation over time during pregnancy with this type of water restriction could also
reduce the impact of water restriction as a stressor. A potential confirmation for this can be seen from
the normal value of serum cortisol in the present study that was accompanied with normal level of LH,
testosterone, and TSH of the male rat offspring of maternal WR group. The normal level of serum
testosterone found in maternally stressed males seems to be the result of gonadal steroidogenesis due
to synthesis and release of gonadotrophin-releasing hormone (GnRH), FSH, and LH hormones [31,44].
Our results are comparable with a study by Heiderstadt et al. [45] where water restriction to only 15
min every 24 h did not change corticosterone levels in male outbred rats. However, another study
showed that a prenatal water deprivation for 48 h at the end of third trimester of gestation reduces the
concentration of plasma testosterone of newborn male Sprague–Dawley rats [46]. According to a study
by Pallarés et al. [13], serum LH and FSH levels were decreased at postnatal day 28 and testosterone
was decreased at postnatal day 75 in prenatally restraint stressed Wistar rats offspring. Maternal
stress chronically increased cortisol concentrations most likely reducing maternal circulating thyroid
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hormones [47]. In humans, glucocorticoid administration decreases plasma TSH levels and attenuates
the pituitary TSH response to TRH stimulation [48]. In addition, glucocorticoids enhance the negative
feedback effect of thyroid hormones on TSH release stimulation [48]. For the non-mated subgroup, the
marked group difference in LH level could be ascribed to the negative feedback effect of testosterone
secreted by the gonads of the maternally stressed males compared to maternally controlled males (7.93
vs. 3.90, Table 4) or it could be attributed to other factors that may be involved in the timing of LH
surge (e.g., increase the responsiveness of pituitary gland to GnRH).

In the present study, maternal water restriction stress did not significantly reduce the sperm count
and the percentage of sperm vitality in male rat offspring as shown in WR group. Similarly, testicular
and epididymal weights and serum testosterone level in WR group were not significantly different
from C group, which therefore could be the possible explanation for the normal sperm count and the
percentage of sperm vitality in male rat offspring. Chehreie et al. [2] reported that prenatal water
deprivation for 48 h at the end of the third trimester of gestation stress caused disruption in normal
spermatogenesis of offspring and reduction in total sperm motility and progressive sperm motility
in male pubertal Sprague–Dawley offspring rats. Such a difference between results of the present
study and aforementioned study [2] could be attributed to differences in the type of stress applied, its
frequency and severity, and timing of exposure during pregnancy period.

In order to evaluate the ability of male rat offspring of stressed pregnant mothers to successfully
mate female rats and subsequently obtain viable offspring, sexual activity and performance of the F1
male offspring were assessed. Surprisingly, in the present study, maternal water restriction enhanced
the sexual activity (libido) in male offspring rats as shown by mounting and intromission latency
values in the WR group compared to the control group. The sexual activity of male rats could be
explained by elevated testosterone level on the first day of interaction with estrous female before it
falls back to the near level of control rats [49]. After the sexual motivation, intromission supposedly
occurs, which is preceded by penile erection leading to ejaculation [50]. An improvement in sexual
potency was also evidenced in maternal water restricted rats through decreased intromission frequency.
Intromission frequency and ejaculation latency in this study were inversely proportional, as the number
of intromissions increases the time from the first intromission until ejaculation decreases. Intromission
latency time was shorter in the WR group, which indicates rats were more sexually active and had
more desire but took longer ejaculation latency time compared to the C group. One explanation of that
could refer to lower intromission frequency in the WR group than in the C group. Post-ejaculation
interval was shorter in the WR group than in the C group and this can be explained by less effort and
energy expended due to lower intromission frequency.

When comparing pregnancy outcomes of mating of F1 male rat from mothers exposed to 50%
water restriction with non-treated females had ad libitum free access to water during pregnancy, it was
observed that the average body weights of F2 non-treated mothers, litter body weights, and size of F2
rat offspring at birth were similar between C and WR groups. It seems that effect of maternal water
restriction also did not pass to the second generation (F2). In the present study, normal sperm count
and the percentage of sperm vitality of F1 male rat offspring might explain the normal litter size in the
second generation (F2) of WR group.

5. Conclusions

The present study revealed that 50% maternal water restriction during the second half of pregnancy
caused a significant reduction in body weights of mothers before delivery and at birth and litter body
weights of F1 offspring at birth. However, dam gestation length, litter size at birth and at weaning, the
percentage 30-day SI, and litter weight of pups at weaning and post-weaning of male rat offspring
was not significantly affected. In addition, maternal water restriction did not adversely affect relative
weights of reproductive and body organs, hormonal concentrations, sperm count and vitality, and
sexual libido and performance of F1 male rat offspring.
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