A new species of rake-legged mite, Caeculus cassiopeiae (Prostigmata, Caeculidae), from Canada and a systematic analysis of its genus

Jared Bernard ${ }^{1,2}$, Lisa M. Lumley', Matthias Buck', Tyler P. Cobb ${ }{ }^{\prime}$
I Invertebrate Zoology, Royal Alberta Museum, 9810 103A Avenue NW, Edmonton, Alberta T5J 0G2, Canada 2 Plant \& Environmental Protection Sciences, University of Hawaii-Mānoa, 3050 Maile Way, Honolulu, HI 96822, USA
Corresponding author: Jared Bernard (bernardj@hawaii.edu)

Academic editor: V. Pesic | Received 24 November 2019 | Accepted 2 March 2020 | Published 13 April 2020
http://zoobank.org/1BB22C60-3A79-43E1-A591-C92EAC8B430F
Citation: Bernard J, Lumley LM, Buck M, Cobb TP (2020) A new species of rake-legged mite, Caeculus cassiopeiae (Prostigmata, Caeculidae), from Canada and a systematic analysis of its genus. ZooKeys 926: 1-23. https://doi. org/10.3897/zookeys. 926.48741

Abstract

The genus Caeculus Dufour (Prostigmata, Caeculidae) contains 19 previously described species, most of which are found in North America, and for which no comprehensive phylogenetic treatment exists. Here, one new species from Alberta, Canada, is described: Caeculus cassiopeiae Bernard \& Lumley, sp. nov., and another caeculid known to be present in Canada is documented. The new species is characterized within the genus with a character state matrix, from which an updated key is produced. A systematic analysis of all 20 species based on morphological and geographical distribution traits obtained from literature represents the first phylogenetic review of the genus.

Keywords

Acari, character state matrix, comparative morphology, phylogeny, Trombidiformes

Introduction

The Caeculidae contains 108 previously described species of large ($750-3000 \mu \mathrm{~m}$) prostigmatic mites in seven genera distributed worldwide, with 19 species in the genus Caeculus Dufour (Walter et al. 2009; Taylor et al. 2013; Mangová et al. 2014; Ott and

Ott 2014; Taylor 2014; Fuangarworn and Butcher 2015; Rivas et al. 2016; Per et al. 2017; Porta et al. 2019). Employing the spiniform setae on legs I for which they are called rake-legged mites, caeculids are ambush predators of small arthropods including collembolans (Otto 1993). They do so camouflaged against rocky or sandy substrates in arid environments (Coineau 1974). Other than morphological reviews by Vitzthum (1933), Grandjean (1944), and Coineau (1974), a dichotomous key by Franz (1952), and original species descriptions, Caeculidae have not been widely collected or studied. Hence, a phylogenetic assessment of Caeculus has not yet been attempted.

In July 2014, we collected two specimens in yellow pan traps in Medicine Hat, Alberta, Canada. They represent a new species, Caeculus cassiopeiae sp. nov., described below. This record increases the number of known Canadian caeculids to two species. Evert E. Lindquist (Canadian National Collection, Ottawa, Ontario, Canada) collected the other species in Alberta's Writing-on-Stone Provincial Park in 1978, and the same species in Alberta's Waterton Lakes National Park in 1980, which are the only previously known collections from Canada and are deposited in the CNCI. He identified this species only to Caeculus and did not publish it, but herein we identify it as C. cremnicolus Enns. The only published record of caeculoids in Canada is by Lindquist et al. (1979), who listed at least one unidentified caeculid species in southern inland British Columbia based on personal communication with Valin G. Marshall (Canadian Forest Service, Victoria, British Columbia, Canada), but without collection or further identification information. Although Lindquist et al. (1979) estimated the potential discovery of 2 additional undetected species based on records in the United States, the updated catalogue of Canadian Acari still lists only one previously recorded caeculid species (Beaulieu et al. 2019).

We constructed a character state matrix to compare C. cassiopeiae sp. nov. to the descriptions of all other known species of Caeculus. In the absence of molecular data, we used the matrix as a phenotypic platform for a phylogenetic analysis of the genus, which illuminates the congeners most closely related to the new species, and provides a springboard for further assessment of the genus.

Materials and methods

On 27 July 2014 in Medicine Hat, Alberta, Canada, we collected two female caeculid specimens in yellow pan traps filled with soapy water (Marshall et al. 1994), which for two days were placed on both the arid SW slope of a coulee (glacially formed from sandstone and clay) and on the adjacent plain dominated by non-native crested wheat grass (Agropyron cristatum (L.) Gaertner) and alfalfa (Medicago sativa L.). We revisited the same locality on June 26, 2017 and using a paintbrush collected additional specimens, which were found only on open, exposed soil surfaces of the arid SW slope during the hottest part of the day $\left(13: 45-15: 30, \geq 32^{\circ} \mathrm{C}\right)$. The soil surfaces had a thin hardened crust, possibly created by drying after rainfall.

According to the Köppen-Geiger climate classification system, Medicine Hat is a cold semi-arid steppe ($B S k$) (Peel et al. 2007) with a mean annual precipitation of
322.6 mm and a mean annual temperature of $6.1^{\circ} \mathrm{C}$ (NCDIA 2017). Based on geological maps of the region (Berg and McPherson 2005) and the presence of well-rounded gravel and fine-grained sediment, the surficial geology is consistent with Quaternary alluvium. Medicine Hat furthermore has brown chernozem soil by the Canadian classification (Fuller 2010; NSBD 2017), synonymous with ustic mollisol in the USDA soil taxonomy (Haynes 1998).

After photographing the specimens collected in 2014 with a K2 DistaMax longdistance microscope (Infinity Photo-Optical, Boulder, Colorado, USA), we stored one in 95% ethyl alcohol (EtOH) and cleared the other in 85% lactic acid (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and dissected it before mounting on a slide in a solution of 1.66 g polyvinyl alcohol, 10 mL lactic acid, 1 mL glycerol, and 10 mL distilled water (produced by Bioquip, Rancho Dominguez, California, USA) for analysis under dissection and compound microscopes, both of which contributed to creating the free-hand illustrations. With the 2017 specimens, we kept two alive for observation and stored the remainder in $95 \% \mathrm{EtOH}$.

In describing the idiosomal morphology of the new species, we followed the terminology outlined by Coineau (1974), which is based on the model of idiosomal divisions by Grandjean (1969) and other aspects of caeculid morphology described by Grandjean (1944). Notation for setae follows Coineau (1964, 1967a, b, 1969, 1974). As described by Coineau (1964), the eponymous characteristic of rake-legged mites is their elongated thickened spiniform leg setae, which are known as "rake" setae and are labelled as such herein.

To compare our specimens to other congeners using established criteria, we mined morphological and geographical distribution data from all known publications on Caeculus to construct a standard categorical character state matrix of the female of 23 taxa in Mesquite version 3.2 (Maddison and Maddison 2017), including all 20 species of Caeculus and three species of Neocaeculus Coineau (Table 1). We incorporated additional chaetotactic data into the matrix for C. echinipes Dufour from Jacot (1936), and for both it and C. americanus Banks from Coineau (1974). The resulting matrix includes mostly characters that are clearly described and/or illustrated in the species descriptions. Missing data are denoted with a "?" and uncertainty between states is characterized with a "/", following the notation used by Maddison and Maddison (2017). In rare circumstances we inferred characters that were consistently mentioned in the descriptions. For instance, because Mulaik (1945) noted tarsal bothridial setae for some species but not for others, we reasoned that he would mention the trait if present; thus if illustrations or text did not include a trait that had been described in other species by the same author, we treated the trait as absent. The matrix did not include information on ecology or internal anatomy because this was lacking in publications.

We conducted a parsimony analysis of these phenotypes with PAUP* version $4.0 \beta 10$ (Swofford 2000), which involved a heuristic search with a tree-bisectionreconstruction branch-swapping algorithm for 5000 replicates. If the maximum branch length was zero, we set branches to collapse. The setation of N. imperfectus Taylor, Gunawardene \& Kinnear resembles that described by Coineau (1974) as the holotrichous setal complement of Caeculidae, so we designated this species as the
Table I. Standard categorical character state matrix for Caeculus females, as well as three outgroup taxa, used for cladistic analysis. Polymorphism is denoted by " $\&$ ", uncertainty by " $/$ ", missing data by "?", and inapplicable data by "-". " \dagger " signifies a size character not included in phylogenetic assessment.

Taxon	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Caeculus americanus Banks, 1899	2	2	1	2	0	0	0	0	1	0	0	1	1	0	0	1	0\&1\&2	0\&1	0 \& 1 \& 2	0 \&1	1\&2	0\&1	?	?	?
Caeculus archeri Mulaik, 1945	1	1	0	1	0	0	0	0	0	1	0	0	1	1	1	1	2	0	2	0	0	1	?	$3 \& 4$	3
Caeculus calechius Mulaik, 1945	2	0/1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	?	3	3
Caeculus cassiopeiae Bernard \&	3	2	0 \&1	2	0	0	0	0	1	1	0 \&1	$0 \& 1$	1	0 \& 1	1	1	2	0 \& 1	2	1	1	1	6	4	2
Caeculus clavatus Banks, 1905	1	1	?	?	0	0	$?$?	?	?	?	?	?	?	?	1	?	?	?	?	?	?	?	?	?
Caeculus cremnicolus Enns, 1958	3	1	1	2	0	0	0	0	0	0 \&1	0	1	1\&2	1	0 \&1	0	1 \& 2	0 \& 1	2	1	0	1	2	4	2
Caeculus crossleyi Hagan, 1985	1	1	1	3	0	0	0	1	1	0	1	0	2	2	$1 \& 2$	1	3	0	5	0	0	1	0	4	3
Caeculus dorotheae Mulaik, 1945	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2	0	0	0	?	?	?
Caeculus echinipes Dufour, 1832	0	1	1	2	0	0	0	0 \& 1	0	0 \&1	0 \&1	0 \&1	1	1	0 \&1	1	$1 \& 2$	0 \& 1	3	0	1	0	4	3	2
Caeculus gertschi Mulaik, 1945	2	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	2	0	0	1	5	2	3
Caeculus hardyi Mulaik \& Allred, 1954	2	1	2	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	?	?	?
Caeculus hypopachus Mulaik, 1945	2	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	?	?	?
Caeculus janetae Higgins \& Mulaik, 1957	2	1	1	1	0	0	0	0	0	0	0	0	1	0	0	1	1	0 \& 1	2	0	0	1	5	$2 \& 3 \& 4 \& 5$	2\&3
Caeculus kerrulius Mulaik, 1945	2	0	0	1	0	1	0	0	0	0	0	0	0	0	1	0	2	0	2	1	1	0	?	?	?
Caeculus krantzi Coineau, 1974	4	1	1	2	0	0	0	1	0	1	1	0	1	1	1	1	2	0	4	1	0	1	4	3	2
Caeculuslewisi McDaniel \& Boe, 1990	3	3	0	2	0	0	0	0	0 \&1	0 \&1	0	0 \&1	0	0	0 \&1	1	1 \&2	0 \&1	3	1	0	1	5	$3 \& 4$	2
Caeculus mariae Higgins \& Mulaik, 1957	4	1	1	1	0	0	0	1	0	1	0	1	1	1	0	1	1	0	2	0	0	1	?	?	?
Caeculus pettiti Nevin, 1943	1	1	1	1	0	0	0	0	0 \&1	0\&1	0	$0 \& 1$	$1 \& 2$	1	$1 \& 2$	0	3	0 \& 1	$2 \& 3$	0\&1	0	1	5	4	2
Caeculus tipus Mulaik, 1945	2	2	0 \& 1	1 \& 2	0	0	0	0	1	0	$0 \& 1$	$0 \& 1$	1	0	1	1	1 \& 2	0 \&1	$0 \& 1 \& 2 \& 3$	0\&1	0	1	1	0 \& 1 \& 2	2
Caeculus valverdius Mulaik, 1945	2	2	0 \&1	2	0	0	0	0	2	0	0	0	1	1	0	1	2	0	1	1	0	1	?	3	3
Neocaeculus imperfectus Taylor et al., 2013	5	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	3	3	1
Neocaeculus kinnearae Taylor, 2014	5	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	3	2	1
Neocaeculus nudonates Taylor, 2014	5	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	4	3	2

Table I. Continued.

Taxon	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51†
Caeculus americanus Banks, 1899	?	?	1	0	?	0	0	0	0/1	2	0/1	3	2	?	2	0	3	?	?	?	?	1	0	0	1	2
Caeculus archeri Mulaik, 1945	?	?	0	0	0	0	0	0	0	2	1	1	3	0	?	0	?	0	0	1	1	0	0	0	1	2
Caeculus calechius Mulaik, 1945	?	?	0	0	0	0	0	0	?	1	3	1	2	?	0	0	3	0	0	0	1	0	0	0	1	2
Caeculus cassiopeiae sp. nov. Bernard \& Lumley	1	1	2	0	1\&2	0	0	0	1	2	1	3	4	0	3	0	2\&3	0	0	1	1	0	0	0	1	2
Caeculus clavatus Banks, 1905	?	?	0	0	2	1	0	1	0	1	1	1	2	0	?	0	?	?	?	?	?	0	0	0	1	1
Caeculus cremnicolus Enns, 1958	0	0	0	0	0	0	0	0	1	1	1	0	1\&2	0	3	0	0	0	0	1	1	1	0	0	1	$2 \& 3$
Caeculus crossleyi Hagan, 1985	1	0	0	0	0\&1	0	0	0	0	1	1	0	1/2	0	3	0	0	1	1	1	1	1	0	0	1	0
Caeculus dorotheae Mulaik, 1945	?	?	2	0	3	0	0	0	?	2	?	4	5	?	3	0	3	0	0	0	0	0	1	0	1	$1 \& 2$
Caeculus echinipes Dufour, 1832	0	0	0	0	0	0	0	0	1	2	2	1	3	0	1	0	?	1	1	1	1	1	0	0	1	3
Caeculus gertschi Mulaik, 1945	1	0	1	1	1	0	0	0	?	2	?	2	?	?	1	0	1	0/1	0/1	0/1	0/1	0	0	0	1	1
Caeculus hardyi Mulaik \& Allred, 1954	?	0	1	0	0	0	0	0	0	1	0	1	0	1	?	0	?	0	0	0	0	0	0	0	1	$1 \& 2$
Caeculus hypopachus Mulaik, 1945	?	0	1	1	1	0	0	0	?	1	?	2	?	?	?	0	?	0	0	0	0	1	0	0	1	1
Caeculus janetae Higgins \& Mulaik, 1957	1	0	0	0	1	0	0	0	0	3	0	4	0	0	?	0	?	0	0	0	0	0	0	0	1	$1 \& 2$
Caeculus kerrulius Mulaik, 1945	?	0	0	0	2	0	0	0	0	2	0	1	3	0	1	1	0	0	0	1	1	1	0	0	1	1
Caeculus krantzi Coineau, 1974	0	0	?	0	?	?	?	?	?	?	?	?	?	?	?	0	?	?	?	?	?	0	0	0	1	3
Caeculus lewisi McDaniel \& Boe, 1990	2	1	2	0	1\&2	0	0	0	0	2	0 \&1	$2 \& 3$	$3 \& 4$	0	0	0	1\&2	0	0	1	1	0	0	0	1	$1 \& 2$
Caeculus mariae Higgins \& Mulaik, 1957	?	0	0	0	0	0	0	0	?	1	?	1	?	2	2	0	0	0	0	0	0	0	0	0	1	0
Caeculuspettiti Nevin, 1943	2	1	2	0	0	0	0	0	0	1	1	1	3	0	3	0	0	0	0	0	0	1	0	0	1	2
Caeculus tipus Mulaik, 1945	1	0	1	0	1	0	0	0	0	1	1	2	4	3	2	0	2	0	0	1	1	0	0	0	1	2
Caeculus valverdius Mulaik, 1945	?	0	2	0	2	0	0	0	?	2	4	3	4	?	2	0	2	0	0	1	1	0	0	0	1	2
Neocaeculus imperfectus Taylor et al., 2013	2	0	0	1	4	0	-	-	1	2	3	1	3	0	2	1	3	0	0	1	1	0	0	1	0	1
Neocaeculus kinnearae Taylor, 2014	1	0	3	0	5	1	-	-	0	1\&2	1	1	4	0	2	0	2	0	0	1	1	0	0	1	0	1
Neocaeculus nudonates Taylor, 2014	1	0	0	0	1	1	-	-	1	1	1	0	2	0	1	0	0	0	0	1	1	1	0	1	0	0

Table 2. Character states of Caeculus species (females) used for morphological comparison and cladistic analysis. Row number aligns to column number in Table 1. A setal pair refers to two setae in symmetry on either side of the mid-sagittal plane. An excluded seta is denoted by "excl." Size character is excluded from analysis.

Character	States
1. Distribution	$0=$ Old World, $1=$ SE North America, $2=$ SW North America, $3=$ N Central North America, $4=$ NW North America, $5=$ Western Australia
2. Aspidosomal Pa setae	$0=$ absent, $1=1$ pair, $2=2$ pairs, $3=3$ pairs
3. Aspidosomal Pm setae	$0=$ absent, $1=1$ pair, $2=2$ pairs
4. Aspidosomal Pp setae	$0=1$ pair, $1=2$ pairs, $2=3$ pairs, $3=5$ pairs
5. Anterior margin of aspidosoma acuminate	$0=$ no, $1=$ yes
6. Anterior margin of aspidosoma notched	$0=$ no, $1=$ yes
7. Centrodorsal opisthosoma a setae (excl. as)	$0=1$ pair, 1 = 2 pairs
8. Unpaired medial as seta present	$0=$ no, $1=$ yes
9. Centrodorsal opisthosoma b setae (excl. bs)	$0=1$ pair, $1=2$ pairs, $2=3$ pairs
10. Unpaired medial bs seta present	$0=$ no, $1=$ yes
11. Centrodorsal opisthosoma c setae (excl. cs)	$0=1$ pair, 1 = 2 pairs
12. Unpaired medial cs seta present	$0=$ no, $1=$ yes
13. Laterodorsal opisthosoma a setae	$0=1$ seta, $1=2$ setae, $2=3$ setae
14. Laterodorsal opisthosoma b setae	$0=1$ seta, $1=2$ setae , $2=3$ setae
15. Laterodorsal opisthosoma c setae	$0=1$ seta, $1=2$ setae, $2=3$ setae
16. Mediodorsal opisthosomal sclerites fused	$0=$ no, $1=$ yes
17. Mediodorsal opisthosomal d setae (excl. ds)	$0=1$ pair, $1=2$ pairs, $2=3$ pairs, $3=4$ pairs
18. Unpaired medial ds seta present	$0=$ no, $1=$ yes
19. Posterior opisthosomal e setae (excl. es)	$0=1$ pair, $1=2$ pairs, $2=3$ pairs, $3=4$ pairs, $4=5$ pairs, $5=8$ pairs
20. Unpaired medial es seta present	$0=$ no, $1=$ yes
21. Pluriposterior sclerite h setae (excl. hs)	$0=$ absent, 1 = 1 pair, 2 = 2 pairs
22. Unpaired medial hs seta present	$0=$ no, $1=$ yes
23. Aggenital + ventral sclerite setae	$0=2$ pairs, $1=4$ pairs, $2=6$ pairs, $3=8$ pairs, $4=9$ pairs, $5=10$ pairs, $6=12$ pairs
24. Progenital valve setae	$0=3$ pairs, $1=4$ pairs, $2=5$ pairs, $3=6$ pairs, $4=7$ pairs, $5=8$ pairs
25. Adanal setae	$0=$ absent, $1=1$ pair, $2=2$ pairs, $3=3$ pairs
26. Pseudanal Ps setae	$0=2$ pairs, $1=3$ pairs, $2=4$ pairs
27. Unpaired medial seta posterior to anus	$0=$ no, $1=$ yes
28. Trochanter I anterolateral setae	$0=1$ seta, $1=2$ setae, $2=3$ setae, $3=4$ setae
29. Trochanter I anterolateral setal shape	$0=$ clavate, $1=$ spiniform
30. Posterior/dorsal trochanter I setae	$0=1$ seta, $1=2$ setae, $2=3$ setae, $3=4$ setae, $4=5$ setae, $5=8$ setae
31. Basifemur I anteroventral rake setal shape	$0=$ spiniform, $1=$ subclavate
32. Telofemur I anteroventral rake setae	$0=1$ seta, $1=2$ setae
33. Telofemur I anteroventral rake setal shape	$0=$ spiniform, $1=$ subclavate
34. Femur I posteroventral rake setae	$0=$ absent, $1=1$ seta
35. Genu I anteroventral rake/spiniform setae	$0=1$ seta, $1=2$ setae, $2=3$ setae, $3=5$ setae
36. Genu I posteroventral rake setae	$0=$ absent, $1=1$ seta, $2=2$ setae, $3=3$ setae, $4=4$ setae
37. Tibia I anteroventral rake/spiniform setae	$0=2$ setae, $1=3$ setae, $2=4$ setae, $3=5$ setae, $4=6$ setae
38. Tibia I posteroventral rake/spiniform setae	$0=$ absent, $1=1$ seta, $2=2$ setae, $3=3$ setae, $4=4$ setae, $5=5$ setae
39. Tarsus I anterior rake-like setae	$0=$ absent, $1=3$ setae, $2=4$ setae, $3=5$ setae
40. Trochanter III anterolateral setae	$0=$ absent, $1=1$ seta, $2=2$ setae, $3=3$ setae
41. Trochanter III anterolateral setal shape	$0=$ clavate, $1=$ spiniform
42. Posterior/dorsal trochanter III setae	$0=1$ seta, $1=2$ setae, $2=3$ setae, $3=4$ setae
43. Bothridial bt seta on tarsus I	$0=$ no, $1=$ yes
44. Bothridial bt seta on tarsus II	$0=$ no, $1=$ yes
45. Bothridial bt seta on tarsus III	$0=$ no, 1 = yes
46. Bothridial bt seta on tarsus IV	$0=$ no, 1 = yes
47. Dark sclerites on dorsal idiosoma in adults	$0=$ no, $1=$ yes
48. Body encrusted with cemented particles	$0=$ no, $1=$ yes
49. Tarsal claws unequal in size	$0=$ no, $1=$ yes
50. Aspidosoma projecting anteriorly over gnathosoma in lateral view	$0=$ no, $1=$ yes
51. Body length (mm)	$0=\leq 0.90,1=0.91-1.29,2=1.30-1.59,3=1.60-2.00$

outgroup (but not the other Neocaeculus species) for our phylogenetic analysis. Note that the ingroup of this study includes only species currently in the genus Caeculus and excludes those that have been reassigned to other genera (reviewed in Taylor et al. 2013). We visualized the majority consensus tree with FigTree 1.4.3 (Rambaut 2012).

Repositories (see Zhang 2018 for abbreviations)

CNCI Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada;
PMAE Royal Alberta Museum (formerly Provincial Museum of Alberta) Invertebrate Zoology Collection, Edmonton, Alberta, Canada.

Abbreviations of morphological characters

AD	adanal sclerite;	IW	idiosomal width;
AG	aggenital sclerite;	PA	palp;
CH	chelicera;	PG	progenital valve;
IL	idiosomal length;	PS	pseudanal sclerite.

Caeculus cassiopeiae Bernard \& Lumley, sp. nov.

http://zoobank.org/BC876F53-B89C-4AEA-ABC7-EA8CA18B7F91
Figures 1-4

Material examined. Holotype. Canada • 1 ; Alberta, Medicine Hat, near Gas City Campground; $50^{\circ} 2.23^{\prime} \mathrm{N}, 110^{\circ} 43.56^{\prime} \mathrm{W}$; elev. ca 700 m ; $26-27$ Jul. 2014; M. Buck leg.; yellow pan traps; arid SW slope and adjacent disturbed plain of Agropyron cristatum and Medicago sativa; det. J. Bernard and L. Lumley, 30 Aug. 2016; cleared in 85\% lactic acid, dissected, and slide-mounted; PMAE M00019466.

Paratype. Canada • 1 q; ibid.; stored in 95% EtOH; PMAE M00030967.
Other material. Canada • 8 O ; ibid.; 26 Jun. 2017; L. Lumley leg.; collected with paintbrush; hard dry soil surface; det. L. Lumley; stored in $95 \% \mathrm{EtOH}$; PMAE M00030972 to M00030979.

Diagnosis. The five b setae on the centrodorsal opisthosoma are arranged in an M, three pairs of $P p$ setae are aligned on the posterior third of the aspidosoma, and trochanter III has three setae along anterolateral surface.

Female description ($N=2$, all measurements in micrometres, $\mu \mathrm{m}$).
Idiosoma dorsum (Figs 1-3). 1380-1592 $=$ idiosomal length (IL); $1.920 \times$ longer than greatest width (at level of posterior margin of mediodorsal opisthosomal sclerites) $(718-829=I W)$. Sclerites tawny with pale ridges, ochre to raw sienna between sclerites, translucent white setae (Fig. 1A). All clavate idiosomal setae barbed (Fig. 2C).

Figure I. Caeculus cassiopeiae sp. nov., female A micrograph showing coloration B habitus illustrating cerotegument texture. Scale bar: 0.5 mm .

Rostral region with dark brown anteriorly projecting naso bearing one pair elongated clavate setae $P o(74-94, \sim 0.054 \times I L)$, one median eye immediately inferior to base of naso (Fig. 3A), one pair long, thickened attenuate bothridial seta bo (162-188, ~ 0.118 $\times I L$) with barbed distal end (Fig. 3C), each inserted in anterolaterally projecting bothridium posterolaterad to median eye. Aspidosoma length 485-560 (0.352 $\times I L$), width 425-491 (0.592 $\times I W$) anterior to eyes, posterior margin of sclerite 309-357 (0.430 \times $I W$); pronounced furrow along length of medial axis containing three or four shallow longitudinal reticulated ridges, anterior furrow width $135-157(\sim 0.189 \times I W)$, posterior furrow width $102-118(\sim 0.142 \times I W)$, posterior furrow depth $35-41(\sim 0.050 \times$ $I W$); two pairs procurved clavate Pa setae on anterior margin; none or one pair clavate $P m$ setae near corners of anterior margin; three pairs clavate $P p$ setae medial to eyes on posterior lateral margins, aligned parallel to mid-sagittal plane; area around eyes dark, posterior eyes $1.077 \times$ diameter of anterior eyes (Fig. 2A), holotype with diminutive fourth $P p$ seta anterior to other three on right side. Centrodorsal opisthosomal sclerite trapezoidal, length 425-490 $(0.308 \times I L)$, posterior margin 477-552 $(0.665 \times I W)$; one pair clavate $a 1$ setae near anterior margin of sclerite midway between mid-sagittal

Figure 2. Caeculus cassiopeiae sp. nov., female idiosoma \mathbf{A} dorsum \mathbf{B} venter; $P G$, progenital valve; $A G$, aggenital sclerite; $A D$, adanal sclerite; $P S$, pseudanal sclerite \mathbf{C} detail of $b s$ seta, exemplifying typical clavate idiosomal seta. Scale bar: $0.5 \mathrm{~mm}(\mathbf{A}, \mathbf{B})$.
plane and lateral margins; 2.5 pairs clavate b setae: $b 1$ pair anterior to mid-transverse plane and third of distance between mid-sagittal plane and lateral margins, b2 pair posterior to mid-transverse plane and midway between mid-sagittal plane and lateral margins, one unpaired median $b s$ seta present between anterior and posterior pairs, the five setae together forming M-shape; one or two pairs clavate c setae along posterior margin (sometimes $c 1$, always $c 2$) (Fig. 2A). Laterodorsal opisthosomal sclerites each bearing five or six clavate setae in tandem, two ($a 2$ and $a 3$) near anterior margin, one or two b setae at middle of sclerite (always $b 3$, sometimes $b 4$), and two c setae near posterior margin ($c 3$ and $c 4$); lyrifissure $i a$ between $a 3$ and $b 3$; lyrifissure $i m$ between $b 4$ and $c 3$ (Fig. 2A). Mediodorsal opisthosomal sclerites fused, bearing clavate $d 1, d 2$, and $d 3$ setal pairs, with or without unpaired median clavate $d s$ seta slightly anterior to these; posterior opisthosomal sclerite length $0.161 \times I L$, bearing clavate $e 1, e 2$, and $e 3$ setal pairs and unpaired clavate es seta slightly anterior to these; lyrifissure $i p$ near lateral margin between mediodorsal and posterior opisthosomal sclerites (Fig. 2A). Pluriposterior accessory sclerite bearing three clavate setae, including one unpaired median clavate hs seta (Fig. 2B).

Idiosoma venter (Fig. 2B). Epimeres black to dark brown, cerotegument tawny, progenital valves dark sienna, aggenital sclerites raw sienna, adanal sclerites brown ochre, pseudanal sclerites raw sienna, translucent white setae. Epimeral setal formula (I-IV) 7-3-4-5. Epimeres I and II fused, anterior margin of epimere I bearing seven clavate setae, most proximal seta slightly less expanded than others and setae get progressively longer distally, distalmost $\sim 76-120(\sim 0.071 \times I L)$, epimere II with three clavate setae along anterior margin; epimeres III and IV fused (separate from I + II), epimere III with three clavate setae along anterior margin and one clavate seta midway along proximal margin, epimere IV with one clavate seta at anteroproximal margin, one clavate seta on midline a third epimeral length from proximal margin, and three clavate setae along posterior margin (Fig. 2B). Progenital valves ($P G$) each with seven smooth acuminate simple setae; aggenital sclerites $(A G)$ each with three clavate setae; surrounding ventral cuticle bearing nine pairs of clavate setae, including pair ag1 between epimeres IV (Fig. 2B). Adanal sclerites ($A D$) each bearing two clavate setae; pseudanal sclerites $(P S)$ each with three clavate setae; one unpaired medial clavate seta posterior to anus; lyrifissure ih laterad to anterior pseudanal sclerite (Fig. 2B).

Gnathosoma (Figs 2B, 3A, B). Palps black, chelicerae dark brown, subcapitulum black to dark sienna, translucent white setae. All clavate setae barbed, all simple setae smooth. Palps $(P A)$ five-segmented, setal formula, trochanter-tarsus, solenidia ω and eupathidia ζ in brackets: $0-2-1-5-10(1 \omega+1 \zeta)$; trochanter without setae; femur bearing two dorsal clavate setae midway along length, with proximal seta a third length of distal seta; genu bearing longest subclavate seta on tubercle at distal laterodorsal margin; tibia bearing five setae: one proximal anteroventral barbed spiniform seta, one laterodorsal spiniform seta with barbed distal end, one proximal dorsal elongated clavate seta, one distal dorsal barbed spiniform seta, and one posterolateral clavate seta (Fig. 3A); welldeveloped tarsus (Fig. 3B) bearing three dorsal smooth acuminate spiniform setae, one elongated spiniform seta with barbed distal end midway on ventral surface, one elongated barbed subclavate seta midway along posterolateral surface slightly distal to a minute solenidion ω recessed in large receptacle, one anterolateral smooth acuminate spiniform seta a third tarsal distance from distal end, one short smooth acuminate seta at distal posteroventral margin, two simple setae at distal end, and one eupathidium ζ posterior to one minute smooth spiniform seta at distal ventral margin. Chelicerae (CH) each with fixed digit regressed to lobe and movable digit uncinate (Fig. 3A). Subcapitulum bearing two pairs of simple adoral or setae (Fig. 3A) and two pairs of elongated thickened acuminate simple hypostomal setae m and n along base of hypostome, m medial to and slightly longer (53-63, $\sim 0.039 \times I L$) than n (Fig. 2B).

Legs (Fig. 4). Black with translucent white setae. All clavate setae barbed, all rake/spiniform setae smooth. Formulae of leg setae (including rake setae), trochant-er-tarsus, tarsal bothridial setae $b t$, solenidia φ / ω, eupathidia ζ, microseta χ ", and famulus ε in brackets: leg I $5 / 6-8+3(1 \zeta)-21(2 \zeta)-22\left(1 \varphi+1 \zeta+1 \chi^{\prime}\right)-12(1 \omega+5 \zeta+1 \varepsilon)$; leg II $5-10+4-16-17(1 \varphi)-14(1 \omega+1 \varepsilon)$; leg III $7-5+2(2 \zeta)-9(1 \zeta)-15(1 \varphi+1 \zeta)-9(1 b t+1 \zeta)$; leg IV $7-2(1 \zeta)+3(2 \zeta)-9(1 \zeta)-13(2 \zeta)-13(1 b t+1 \omega)$. Leg I length $1301-1502(\sim 0.943 \times I L$; Fig. 4A); trochanter I bearing three procurved clavate setae on tubercles along ante-

Figure 3. Caeculus cassiopeiae sp. nov., female \mathbf{A} anterodorsal view of rostrum and gnathosoma \mathbf{B} detail of palp tarsus \mathbf{C} detail of distal bothridial seta. Abbreviations: $C H$, chelicera; $P A$, palp; bo, bothridial seta; d, dorsal; $d f$, reduced fixed cheliceral digit; $d m$, movable cheliceral digit; ζ, eupathidium; hyp, hypostome; $l^{\prime \prime}$, posterolateral; $l d$, laterodorsal; me, median eye; $P o$, naso seta; ω, solenidion; v^{\prime}, anteroventral; v, ventral; v ", posteroventral. Scale bar: $0.1 \mathrm{~mm}(\mathbf{A})$.
rolateral margin, two or three dorsal clavate setae; basifemur I with one rake seta on anteroventral margin and one rake seta on posteroventral surface; telofemur I with one rake seta on anteroventral margin and one eupathidium ζ a third the length from distal end on posteroventral margin; genu I with two anteroventral rake setae, one elongated anteroventral subclavate seta near proximal margin aligned with rake setae, three anterolateral clavate setae, one short anterolateral eupathidium ζ near distal margin, five clavate dorsal setae, five posterolateral setae with middle seta elongated subclavate and remainder clavate, one short eupathidium ζ near distal posterolateral margin, five posteroventral setae with most proximal clavate, followed by one rake seta and three elongated subclavate setae; tibia I with four anteroventral rake setae, one elongated spiniform seta near proximal anteroventral margin in line with rake setae, four anterolateral clavate setae, five clavate dorsal setae, four posterolateral clavate setae, three posteroventral rake setae, and one spiniform seta on posteroventral surface proximad to rake setae, and the following three near distal anterolateral margin, most distal to least: one microseta $\varkappa^{\prime \prime}$, one recessed solenidion φ in large receptacle, and one eupathidium ζ; tarsus I bearing four spiniform setae along each anterolateral, posterolateral, and posteroventral margins, one recessed solenidion ω in large receptacle situated a third the tarsal length from distal end on dorsal surface (Fig. 4E), one famulus ε midway along anteroventral surface, and eupathidia ζ at the following locations: proximal dorsal surface, midway along posterolateral margin, a tenth the tarsal length

Figure 4. Caeculus cassiopeiae sp. nov., female A-D dorsal view of legs I-IV E detail of solenidion ω on tarsus I. Scale bar: $0.5 \mathrm{~mm}(\mathbf{A} \mathbf{- D})$. Abbreviations: ε, famulus; ζ, eupathidium; $\varkappa^{\prime \prime}$, microseta; φ, tibial solenidion; ω, tarsal solenidion; $b t$, tarsal bothridial seta; d, dorsal; l^{\prime}, anterolateral; $l^{\prime \prime}$, posterolateral; v^{\prime}, anteroventral; v, ventral; $v^{\prime \prime}$, posteroventral.
from distal end on posteroventral margin, at distal anteroventral margin, and at distal anterolateral margin. Remaining clavate setation for leg I as in Fig. 4A. Chaetotaxy of other legs as in Fig. 4B-D. Basifemur II with one elongated barbed subclavate seta midway along posteroventral surface; genu II with one rake seta a third the distance along posteroventral surface; tibia II with three posteroventral rake setae, one dorsal solenidion φ near distal margin; tarsus II bearing one recessed solenidion ω in large receptacle a third length from distal end on dorsal surface, slightly distal to one anteroventral famulus ε (Fig. 4B). Trochanter III with three anterolateral clavate setae and
two or three dorsal clavate setae; tibia III with one solenidion φ near distal margin on dorsal surface (Fig. 4C). Tarsi III and IV each with one elongated smooth slender bothridial seta $b t$ a quarter of the length from distal margin on dorsal surface (125-145 $[\sim 0.091 \times I L]$ on tarsus III; 143-166 [$\sim 0.104 \times I L]$ on tarsus IV); tarsus IV with one solenidion ω a third the length from distal end on dorsal surface (Fig. 4C, D). Tarsal claws on all legs equal in size.

Male and immatures unknown.
Etymology. The b setal arrangement on the centrodorsal opisthosoma resembles the five-star constellation named for Cassiopeia, the vain wife of King Cepheus in Greek mythology. The constellation is also known as the "Celestial M" given its orientation to the horizon when it ascends in the night sky on its arc around Polaris, and is known as the "Celestial W" as it sets. Cassiopeia's rise is most observable in the evenings during northern autumns. The genitive epithet abides by Articles 11.9.1.3 and 31.1.2 of the International Code of Zoological Nomenclature, and hence means "Cassiopeia's rake-legged mite."

Ethology. We observed individuals both walking and motionless with legs I positioned in a raptorial manner above the soil surface. A captive individual consumed a prostigmatan we collected from the same exposed soil.

Caeculus cremnicolus Enns, 1958

Figure 5
Material examined. CANADA - $2 q Q, 1$ deutonymph, 1 tritonymph; Alberta, Waterton Lakes National Park; 29 Jul. 1980; E.E. Lindquist leg.; under rocks in canyon bottom; det. J. Bernard, 4 Mar. 2015; slide-mounted; CNCI • 1 q, 2 deutonymphs, 1 tritonymph; Alberta, Writing-on-Stone Provincial Park; 12 Aug. 1978; E.E. Lindquist leg.; under rocks in hoodoo area [hoodoo $=$ rock column formed by soft sediment eroding under harder sediment]; det. J. Bernard, 4 Mar. 2015; slidemounted; CNCI.

Previously known localities. USA - Arkansas, Buffalo National River, Boen Gulf and Steel Creek; Petit Jean State Park (Skvarla et al. 2013) - Missouri, Baskett Wildlife Research and Education Area, Devil's Backbone; Easley; Wilton (holotype) (Enns 1958).

Diagnosis. Distinguished by its unfused mediodorsal opisthosomal sclerites, by its dark sclerites in adult mites, and by three barbed clavate b setae on the centrodorsal opisthosoma arranged in a triangle.

Phylogenetic analysis

The character state matrix contains 51 characters (Table 2), of which 27 are binary and the remainder occur in multiple states. The first 50 characters contributed to the phylogenetic analysis, and the last is a body length character that we retained only to

Figure 5. Caeculus cremnicolus, female. Micrograph of dorsal idiosoma, collected and slide mounted in 1978 by E.E. Lindquist. Scale bar: 0.5 mm .

Figure 6. Phylogenetic 50\% majority-rule consensus tree of Caeculus species based on character state matrix. Bootstrap values for 5000 replicates are above branches. Scale bar: 6.0 substitutions per phenotypic character.
improve the utility of the matrix as an identification tool but not used in the phylogeny. Among the characters used for phylogenetics, 88% were parsimony-informative. PAUP* assessed 5.659×10^{9} arrangements in 5000 replicates for the cladistic analysis, generating a 50% majority-rule consensus tree from 722 retained trees (Fig. 6). The parsimony score of the best tree was 199.

The phylogeny reveals three morphological clades, termed A, B, and C (Fig. 6). Caeculus calechius Mulaik is basal within the genus; this taxon and a few other species fall out independently from the clades. Clade A characterizes C. dorotheae Mulaik as sister to C. janetae Higgins \& Mulaik (100\%), and C. gertschi Mulaik sister to C. hypopachus Mulaik (100\%). Despite lower branch support for the B clade, there is high support for C. kerrulius Mulaik being sister to C. echinipes (100\%). Sister to clade B is the strongly supported C clade, which represents C. lewisi McDaniel \& Boe as sister to C. cassiopeiae sp. nov. (100\%), and this pair is sister to C. valverdius Mulaik (100\%).

Discussion

Taxonomy

Although Caeculus cassiopeiae sp. nov. is morphologically most similar to C. lewisi McDaniel \& Boe and C. valverdius Mulaik, several noteworthy differences exist (Table 1). The dichotomous key below lists six traits that distinguish the new species from C. lewisi. Additionally, following Franz (1952) and McDaniel and Boe (1990), the new species keys to C. valverdius, yet several traits separate them as well: (i) C. valverdius bears six b setae on the centrodorsal opisthosomal sclerite, but five b setae are arranged in an M-shape in the new species; (ii) each laterodorsal opisthosomal sclerite has a single c seta in C. valverdius whereas the new species has two c setae; (iii) the posterior opisthosomal sclerite has five e setae in C. valverdius whereas the new species has seven; (iv) C. valverdius has six setae on each progenital valve whereas the new species has seven; (v) the adanal sclerites each have three setae in C. valverdius and two in the new species; (vi) genu I bears a single posteroventral rake seta in the new species whereas C. valverdius has four; and (vii) C. valverdius has two anterolateral setae on the proximal half of trochanter III, but the new species has three that are more evenly distributed along the length.

Phylogenetic analysis

A few apomorphies denote the relationships within clade A; C. dorotheae and C. janetae both have six anteroventral rake setae on tibia I, which is a unique character. Caeculus gertschi and C. hypopachus each bear four rake setae in that location, a character shared with some members of clade B. Of the species in clade A, most are not recorded
as having tarsal bothridial setae $b t$, which occur in most other Caeculus as well as in the outgroups, indicating possible plesiomorphy for the rest of the genus. One exception is C. gertschi (Mulaik 1945). Caeculus pettiti Nevin and C. mariae Higgins \& Mulaik also lack this trait, possibly resulting from homoplasy.

Aside from C. krantzi Coineau, the members of clade B exhibit dark dorsal idiosomal sclerites in adults, although this trait may be homoplastic as it recurs sporadically in the other clades and some taxa not in clades.

All members of the C clade possess five anteroventral rake setae on tibia I, except C. tipus Mulaik, which has four. However, McDaniel and Boe (1990) also describe a male and a nymph C. lewisi with four rake setae in this position. The species of clade C furthermore have four posteroventral rake setae on tibia I, although there are two such rake setae on C. americanus, basal in the clade. Rake seta number is regarded as more stable than other traits (Coineau 1974), so the above traits may be autapomorphies for the clade. Another potential apomorphy for clade C is two or three pairs of aspidosomal Pa setae, although Mulaik (1945) also describes C. dorotheae with three pairs of Pa . All other congeners and all outgroup taxa have a single pair of Pa setae, which likely describes the ancestral state for the genus. Additionally, clade C species all have four to six centrodorsal opisthosomal b setae, also present in C. crossleyi Hagan and C. pettiti, so this may represent synapomorphy. The scarcity of autapomorphies in the topology likely reflects the variable nature of many traits in Caeculidae (Grandjean 1944; Coineau 1974).

Key to adult Caeculus species (females)

1 Aspidosoma with 0 or 1 pair of $P a$ setae on anterior margin, or if more $P a$ setae
then only 1 pair of P s setae near posterior margin.. 2

- Aspidosoma with ≥ 2 pairs of $P a$ setae on anterior margin, and ≥ 2 pairs of $P p$ setae near posterior margin 16
2 Centrodorsal opisthosomal sclerite with 1 pair of setae at each the anterior margin (a), middle (b), and posterior margin (c), and with no unpaired medial setae; each laterodorsal opisthosomal sclerite with $1-2 a$ setae near the anterior margin, $1 b$ seta at middle, and $1 c$ seta near posterior margin; femoral segments of leg I with spiniform (never subclavate) rake setae
- Not with above combination of characters 8
3 Trochanter I with 1 seta on both anterolateral and posterior/dorsal surfaces

\qquad
C. calechius Mulaik

- Trochanter I with >1 seta on anterolateral surface, or if 1 anterolateral seta, then with 2 posterodorsal setae4
4 Tibia I with 6 anteroventral rake/spiniform setae 5
- Tibia I with fewer anteroventral rake/spiniform setae 6

5 Trochanter I with 1 anterolateral seta; genu I with 5 anteroventral rake/spini-
form setae; body not coated with cemented debris

- Trochanter I with 3 anterolateral setae; genu I with 3 anteroventral rake/spiniform setae; body encrusted with cemented particles
C. dorotheae Mulaik

6 Tibia I with 3 anteroventral rake/spiniform setae; trochanter I anterolateral setae
are clavate ... Mulaik \& Allred

- Tibia I with 4 anteroventral rake/spiniform setae; trochanter I anterolateral setae are spiniform7
7 Anterior margin of aspidosoma acuminate; dark idiosomal sclerites
C. hypopachus Mulaik- Anterior margin of aspidosoma not acuminate; pale idiosomal sclerites
\qquad
C. gertschi Mulaik9
- Body length $>0.90 \mathrm{~mm}$ 10
9 Elongated bothridial setae on each tarsus; tibia I with 2 anteroventral rake/spini- form setae; dark idiosomal sclerites C. crossleyi Hagan
- No elongated bothridial setae on any tarsus; tibia I with 3 anteroventral rake/ spiniform setae; pale idiosomal sclerites C. mariae Higgins \& MulaikC. clavatus Banks
- Basi- and telofemur I with spiniform rake setae 11
11 Mediodorsal opisthosomal sclerite with 8-9 setae C. pettiti Nevin
- Mediodorsal opisthosomal sclerite with fewer setae 12
12 Pale idiosomal sclerites 13
- Dark idiosomal sclerites 14
13 Posterior opisthosomal sclerite with 6 setae C. archeri Mulaik
- Posterior opisthosomal sclerite with 11 setae C. krantzi Coineau
14 Tibia I with 2 anteroventral rake/spiniform setae; trochanter III with 3 anterolat-eral setae; pluriposterior sclerite with 1 unpaired medial h setaC. cremnicolus Enns (Fig. 5)- Tibia I with 3 anteroventral rake/spiniform setae; trochanter III with 1 anterolateralseta; pluriposterior sclerite with 1 pair of h setae and no unpaired medial seta..... 15
15 Aspidosomal anterior margin notched and lacking Pa setae; anterolateral surfaceof trochanter III with 1 spiniform seta; mediodorsal opisthosomal sclerites notfused; elongated bothridial setae on tarsi III and IVC. kerrulius Mulaik
- Aspidosomal anterior margin not notched and bearing 1 pair of Pa setae; anterolat-eral surface of trochanter III with 1 clavate seta; mediodorsal opisthosomal scleritesfused; elongated bothridial setae present on all tarsiC. echinipes Dufour
16 Dark idiosomal sclerites; tibia I with 2 posteroventral rake/spiniform setaeC. americanus Banks
- Pale idiosomal sclerites; tibia I with 4 posteroventral rake/spiniform setae 17

17 Trochanter I with 2 anterolateral setae; progenital valves each with ≤ 5 setae.......
C. tipus Mulaik

- Trochanter I with 3 anterolateral setae; progenital valves with more setae........ 18

18 Genu I with 4 posteroventral rake setae; adanal sclerites each with 3 setae...........
C. valverdius Mulaik

- Genu I with 0 or 1 posteroventral rake seta; adanal sclerites each with 2 setae.... 19

19 Aspidosomal anterior margin with 2 pairs of Pa setae; basifemur I with 1 posteroventral rake seta; trochanter III with 3 anterolateral setae; centrodorsal opisthosomal sclerite with $5 b$ setae arranged in an "M"; laterodorsal opisthosomal sclerite with $2 a$ setae; posterior opisthosomal sclerite with 7 setae \qquad
C. cassiopeiae Bernard \& Lumley, sp. nov. (Figs 1-4)

- Aspidosomal anterior margin with 3 pairs of Pa setae; basifemur I without posteroventral rake setae; trochanter III without anterolateral setae; centrodorsal opisthosomal sclerite with 3-4 b setae; laterodorsal opisthosomal sclerite with $1 a$ seta; posterior opisthosomal sclerite with 9 setae C. lewisi McDaniel \& Boe

Geographical distribution

The complete distribution ranges for the taxa described above are unknown, but the new find of C. cassiopeiae sp. nov. is 2074 km from the nearest recorded occurrence of C. valverdius in Los Lunas, New Mexico (Mulaik and Allred 1954), and 805 km from the record of C. lewisi near Newell, South Dakota (McDaniel and Boe 1990). A comparison of climates reveals that Los Lunas has a mean annual precipitation of 249.7 mm and a mean annual temperature of $13.45^{\circ} \mathrm{C}$ for the $1981-2010$ period, whereas data for Newell are 447 mm and $8.2^{\circ} \mathrm{C}$ respectively (NCEI 2017). This gives Los Lunas a Köppen-Geiger climate classification of cold semi-arid steppe ($B S k$) like Medicine Hat, whereas Newell has a humid continental climate ($D f a$) (Peel et al. 2007). The soil in both Los Lunas and Newell is brown chernozem/calcic aridisol (NRCS 2017, NSBD 2017), somewhat similar to the brown chernozem/ustic mollisol soil at Medicine Hat. These data show that although the new species is morphologically distinct from C. lewisi and C. valverdius, it shares climatic preferences with C. valverdius, and has a comparable soil habitat with both C. lewisi and C. valverdius.

The Albertan C. cremnicolus are 1911 km from the closest published location in Easley, Missouri (Enns 1958). The localities in Missouri have a humid subtropical climate ($C f a$ a by the Köppen-Geiger system, but the climates in the Alberta locations are incongruent; Writing-on-Stone Provincial Park is classed as cold semi-arid $(B S k)$ yet Waterton Lakes National Park is continental subarctic ($D f_{c}$) (Peel et al. 2007). Soils among these sites are also variable. Along the Missouri River, sites have soils classified as gleyed regosol/fluvent entisol, and at Devil's Backbone the soil is gray brown luvisol/udalfic alfisol (NRCS 2017). In Canada, the soil at Writing-onStone Provincial Park is a regosol/fluvent entisol similar to Missouri, but Waterton

Lakes National Park has substrate that is classed as dystric brunisol/cryept inceptisol (NSBD 2017). These disparate abiotic conditions indicate that C. cremnicolus is a habitat generalist.

As the localities for C. cremnicolus and C. cassiopeiae sp. nov. are 126 km apart and in the same climate, their ranges could potentially overlap if C. cremnicolus can inhabit the soil at Medicine Hat. These species are nevertheless in separate clades (Fig. 6), signifying multiple introductions of the family into Canada. Such a pattern of introductions may be attributable to postglacial changes in biome distributions, which enabled fragmented xeric populations to expand northward from arid refugia after the last glacial maximum 18,000 years ago (Riddle and Hafner 2006; Graham et al. 2013). This possibility is intriguing considering that at the time Medicine Hat was near the southern limit of the Laurentide Ice Sheet, and by 14,000 years ago it was the first area in Canada freed of the ice as it became semi-arid grassland (Dyke 2005). Likewise, Thaler et al. (1993) described a new locality of Microcaeculus austriacus in Austria that was $\sim 440 \mathrm{~km}$ from its known locations in the easternmost extent of the Alps, and alluded to postglacial warming as a possible explanation for the scattered distribution.

Our phylogenetic analysis suggests that the common ancestor of Caeculus inhabited southwestern North America, based on the known locations for C. calechius and Clade A (the most basal clade). The other clades also contain representatives from the North American southwest as well as those from other areas, and there is a diversity of locations represented by the taxa that are not in clades. Caeculus echinipes is the only species of Caeculus described to date from Europe. The results suggest that the ancestor of C. echinipes spread to Europe from North America. Further work to include molecular data would be helpful to clarify the weaker branch support shown in the topology.

Conclusions

Our description of Caeculus cassiopeiae sp. nov. elevates the number of known Canadian caeculids to two. Based on a maximum parsimony analysis of a character state matrix for all members of the genus, it is most closely related to C. lewisi. The phylogeny also suggests multiple introductions of caeculids into Canada, and that the origin of the genus is the American southwest. Further collection of caeculids in North America is required to determine to what extent ranges overlap, examine ecology or additional morphological traits (e.g., minute sensory structures) that were not described in previously published taxonomic accounts, and to enable genetic analysis. Population studies can further describe the degree of intraspecific variation and clarify species boundaries. Our phylogeny provides the first analysis of the genus, which can be useful for future systematic studies that integrate taxonomy and genetics to develop a better understanding of the genus Caeculus and its family.

Acknowledgements

We thank Christopher Taylor at Curtin University in Perth, Australia for his insight. We are indebted to Frédéric Beaulieu and Wayne Knee at CNCI for providing Evert Lindquist's specimens for examination. We are also grateful to Chris Jass at the Royal Alberta Museum in Edmonton, Alberta for his knowledge on surficial geology of the type location. For her astute suggestions, we are beholden to Anne Baker at the Natural History Museum in London.

References

Banks N (1899) An American species of the genus Caeculus. Proceedings of the Entomological Society of Washington 4: 221-222. https://www.biodiversitylibrary.org/ item/19516\#page/229/mode/1up
Banks N (1905) Descriptions of some new mites. Proceedings of the Entomological Society of Washington 7: 133-142. https://doi.org/10.5962/bhl.part. 8752
Beaulieu F, Knee W, Nowell V, Schwarzfeld M, Lindo Z, Behan-Pelletier VM, Lumley L, Young MR, Smith I, Proctor HC, Mironov SV, Galloway TD, Walter DE, Lindquist EE (2019) Acari of Canada. In: Langor DW, Sheffield CS (Eds) The Biota of Canada - A Biodiversity Assessment, Part 1: the Terrestrial Arthropods. ZooKeys 819: 77-168. https://doi. org/10.3897/zookeys.819.28307
Berg TE, McPherson RA (2005) Surficial Geology Medicine Hat, Alberta, NTS 72L. Alberta Geological Survey. https://ags.aer.ca/publications/MAP_142.html
Coineau Y (1964) Contribution à l'étude des Caeculidae. Première série. Développement postlarvaire de Allocaeculus catalanus Franz 1954. Deuxième partie. La chétotaxie des pattes. Acarologia 6: 47-72. https://www1.montpellier.inra.fr/CBGP/acarologia/article. php?id=3836
Coineau Y (1967a) Contribution à l'étude des Caeculidae. Troisième série. Développement postlarvaire de Neocaeculus luxtoni n. gen., n. sp. Acarologia 9: 55-75. https://www1. montpellier.inra.fr/CBGP/acarologia/article.php?id=3637
Coineau Y (1967b) Contribution à l'étude des Caeculidae IV. Procaeculus bryani Jacot, 1936 (Acariens, Prostigmates). Pacific Insects 9: 709-720. http://hbs.bishopmuseum.org/pi/ pdf/9(4)-709.pdf
Coineau Y (1969) Contribution à l'étude des Caeculidae. Cinquième série. Procaeculus aitkeni, une nouvelle espèce de Trinidad, B.W.I. Revue d'Ecologie et de Biologie du Sol 6: 53-67. https://eurekamag.com/research/022/272/022272490.php
Coineau Y (1974) Éléments pour une monographie morphologique, écologique et biologique des Caeculidae (Acariens). Mémoires du Muséum National d'Histoire Naturelle, Série A, Zoologie 81: 1-299. https://www.biodiversitylibrary.org/page/57792659
Dufour L (1832) Description et figure du Caeculus echinipes, Arachnide nouvelle. Annales des Sciences Naturelles 25: 289-296. https://doi.org/10.5962/bhl.part. 19204

Dyke AS (2005) Late Quaternary vegetation history of northern North America based on pollen, macrofossil, and faunal remains. Géographie Physique et Quaternaire 59: 211-262. https://doi.org/10.7202/014755ar
Enns WR (1958) A new species of rake-legged mite from Missouri (Acarina, Caeculidae). Journal of Kansas Entomological Society 31: 107-113. https://www.jstor.org/stable/25082279
Franz H (1952) Revision der Caeculidae Berlese 1883 (Acari). Bonner Zoologische Beiträge 3: 91-124. https://www.biodiversitylibrary.org/page/44716813\#page/105/mode/1up
Fuangarworn M, Butcher BA (2015) Neocaeculus orientalis sp. nov. (Acari, Trombidiformes, Caeculidae) from Thailand. Zootaxa 4048: 251-268. https://doi.org/10.11646/ zootaxa.4048.2.6
Fuller L (2010) Chernozemic soils of the prairie region of Western Canada. Prairie Soils and Crops 3: 37-45. https://prairiesoilsandcrops.ca/articles/volume-3-6-screen.pdf
Graham MR, Jaeger JR, Prendini L, Riddle BR (2013) Phylogeography of the Arizona hairy scorpion (Hadrurus arizonensis) supports a model of biotic assembly in the Mojave Desert and adds a new Pleistocene refugium. Journal of Biogeography 40: 1298-1312. https:// doi.org/10.1111/jbi. 12079
Grandjean F (1944) Observations sur les Acariens du genre Caeculus. Archives des Sciences Physiques et Naturelles, 5ème période 26: 33-46. http://doi.org/10.5169/seals-742677
Grandjean F (1969) Stases. Actinopiline. Rappel de ma classification des Acariens en 3 groupes majeurs. Terminologie en soma. Acarologia 11: 796-827. https://www1.montpellier.inra. fr/CBGP/acarologia/article.php?id=3467
Hagan DV (1985) Caeculus crossleyi n. sp. (Acari: Caeculidae) from granite outcrops in Georgia, U.S.A. International Journal of Acarology 58: 241-245. https://doi. org/10.2307/1936920
Haynes RH (1998) Chapter 16: correlation of Canadian soil taxonomy with other systems. In: Haynes RH, Cavers PB, Herzberg G, Ingold KU, Kaufmann W, Lecours M, Lewis WH, Milligan LP, Scudder GGE, Taylor EW, Dancik BP (Eds) The Canadian System of Soil Classification (3 $3^{\text {rd }}$ edn.). Ottawa, National Research Council of Canada, 153-156. ISBN: 978-0660174044
Higgins HG, Mulaik SB (1957a) A new Caeculus from Oregon (Acarina: Caeculidae). Great Basin Naturalist 17: 27-29. https://doi.org/10.5962/bhl.part. 6226
Higgins HG, Mulaik SB (1957b) Another Caeculus from southwestern United States (Acarina Caeculidae). Texas Journal of Science 9: 267-269.
Jacot AP (1936) Some rake-legged mites of the family Cheyletidae. Journal of the New York Entomological Society 44: 17-30. https://www.biodiversitylibrary.org/item/205823\#page/31/ mode/lup
Lindquist EE, Ainscough BD, Clulow FV, Funk RC, Marshall VG, Nesbitt HHJ, OConnor BM, Smith IM, Wilkinson PR (1979) Acari. In: Danks HV (Ed.) Canada and its insect fauna. Memoirs of the Entomological Society of Canada 111 (Supplement 108): 252-290. https://doi.org/10.4039/entm111108252-1
Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.2. http://mesquiteproject.org

Mangová B, Krumpál M, L’uptáčik P (2014) Allocaeculus sandbergensis sp. n. (Acari: Caeculidae), a new prostigmatid mite from Slovakia. Biologia 69 (Section Zoology): 214-218. https://doi.org/10.2478/s11756-013-0303-2
Marshall SA, Anderson RS, Roughley RE, Behan-Pelletier V, Danks HV (1994) Terrestrial arthropod biodiversity: planning a study and recommended sampling techniques. Bulletin of the Entomological Society of Canada 26 (Supplement): 1-33. https://esc-sec.ca/ wp/wp-content/uploads/2017/03/Bulletin-volume26-number1-Mar1994-supplement-Terrestrial-arthropod-biodiversity.pdf
McDaniel B, Boe A (1990) A new species and distribution record for the genus Caeculus Dufour (Acari: Caeculidae) from South Dakota. Proceedings of the Entomological Society of Washington 92: 716-724. https://www.biodiversitylibrary.org/page/26238311\#page/734/mode/lup
Mulaik S (1945) New mites in the family Caeculidae. Bulletin of the University of Utah 35: 1-23. https://collections.lib.utah.edu/ark:/87278/s6m6242g
Mulaik S, Allred DM (1954) New species and distribution records of the genus Caeculus in North America (Acarina, Caeculidae). Proceedings of the Entomological Society of Washington 56: 27-40. https://www.biodiversitylibrary.org/item/54777\#page/401/mode/lup
NCDIA Canadian Climate Normals (1981-2010) National Climate Data and Information Archive, Environment and Climate Change Canada. http://climate.weather.gc.ca/climate_ normals/results_1981_2010_e.html?stnID=1641\&autofwd=1 [accessed 6 March 2020]
NCEI (1981-2010) US Climate Normals. National Centers for Environmental Information, National Oceanic and Atmospheric Administration. https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals/1981-2010-normalsdata [accessed 6 March 2020]
Nevin FR (1943) Caeculus pettiti, a new species of mite from Virginia. Annals of the Entomological Society of America 36: 389-393. https://doi.org/10.1093/aesa/36.3.389
NRCS (2020) Soil Survey. Natural Resources Conservation Service, US Department of Agriculture. http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/ [accessed 6 March 2020]
NSBD (2020) Soils of Canada. National Soil Database, Agriculture and Agri-Food Canada. http://www.agr.gc.ca/atlas/soil [accessed 6 March 2020]
Ott AP, Ott R (2014) A new species of Andocaeculus (Acari, Caeculidae) from the Pampa biome, southern Brazil. Iheringia, Série Zoologia 104: 355-363. https://doi.org/10.1590/1678476620141043355363
Otto JC (1993) A new species of Microcaeculus from Australia (Acarina: Caeculidae), with notes on its biology and behaviour. International Journal of Acarology 19: 3-13. https:// doi.org/10.1080/01647959308683533
Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633-1644. https://doi. org/10.5194/hess-11-1633-2007
Per S, Doğan S, Zeytun E, Ayyildiz N (2017) Description of a new rake legged mite of the genus Allocaeculus (Acariformes: Caeculidae) from Turkey with description of variation in dorsal setation. Acarologia 57: 369-382. https://doi.org/10.1051/acarologia/20164162

Porta AO, Proud DN, Franchi E, Porto W, Epele MB, Michalik P (2019) The first record of caeculid mites from the Cretaceous amber of Myanmar with notes on the phylogeny of the family. Zootaxa 4647: 23-43. https://doi.org/10.11646/zootaxa.4647.1.5
Rambaut A (2012) FigTree 1.4.3. http://tree.bio.ed.ac.uk/software/figtree
Riddle BR, Hafner DJ (2006) A step-wise approach to integrating phylogeographic and phylogenetic biogeographic perspectives on the history of a core North American warm deserts biota. Journal of Arid Environments 66: 435-461. https://doi.org/10.1016/j. jaridenv.2006.01.014
Rivas G, Serrano-Sánchez L, Vega FJ (2016) First record of Procaeculus (Acari: Caeculidae) in Miocene amber from Chiapas, Mexico. Boletín de la Sociedad Geológica Mexicana 68: 87-92. https://doi.org/10.18268/BSGM2016v68n1a10
Skvarla MJ, Fisher JR, Dowling APG (2013) On some mites (Acari: Prostigmata) from the Interior Highlands: descriptions of the male, immature stages, and female reproductive system of Pseudocheylus americanus (Ewing, 1909) and some new state records for Arkansas. Zootaxa 3641: 401-419. https://doi.org/10.11646/zootaxa.3641.4.7
Swofford DL (2000) PAUP* Version 4.0阝10, Phylogenetic Analysis using Parsimony (*and other methods). Sinauer Associates, Sunderland.
Taylor CK (2014) Two further Neocaeculus species (Acari: Prostigmata: Caeculidae) from Barrow Island, Western Australia. Acarologia 54: 347-358. https://doi.org/10.1051/acarologia/20142136
Taylor CK, Gunawardene NR, Kinnear A (2013) A new species of Neocaeculus (Acari: Prostigmata: Caeculidae) from Barrow Island, Western Australia, with a checklist of world Caeculidae. Acarologia 53: 439-452. https://doi.org/10.1051/acarologia/20132105
Thaler K, Knoflach B, Meyer E (1993) Fragmenta Faunistica Tirolensia-X (Arachnida, Acari: Caeculidae; Myriapoda: Diplopoda; Insecta, Nematocera: Limoniidae, Sciaridae). Berichte des Naturwissenschaftlich-medizinischen Verein Innsbruck 80: 311-325. https://www.zo-bodat.at/pdf/BERI_80_0311-0325.pdf
Vitzthum HG (1933) Die larvenformen der gattung Caeculus Dufour. Zoologischer Anzeiger 105: 85-92.
Walter DE, Lindquist EE, Smith IM, Cook DR, Krantz GW (2009) Order Trombidiformes. In: Krantz GW, Walter DE (Eds) A Manual of Acarology ($3^{\text {rd }}$ edn.). Lubbock, Texas Tech University Press, 233-420. ISBN: 978-0896726208
Zhang Z-Q (2018) Repositories for mite and tick specimens: acronyms and their nomenclature. Systematic and Applied Acarology 23: 2432-2446. https://doi.org/10.11158/saa.23.12.12

