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The influence of retardation and dielectric
environments on interatomic Coulombic decay
Joshua Leo Hemmerich1, Robert Bennett 1 & Stefan Yoshi Buhmann1,2

Interatomic Coulombic decay (ICD) is a very efficient process by which high-energy radiation

is redistributed between molecular systems, often producing a slow electron, which can be

damaging to biological tissue. During ICD, an initially-ionised and highly-excited donor

species undergoes a transition where an outer-valence electron moves to a lower-lying

vacancy, transmitting a photon with sufficient energy to ionise an acceptor species placed

close by. Traditionally the ICD process has been described via ab initio quantum chemistry

based on electrostatics in free space, which cannot include the effects of retardation stem-

ming from the finite speed of light, nor the influence of a dispersive, absorbing, discontinuous

environment. Here we develop a theoretical description of ICD based on macroscopic

quantum electrodynamics in dielectrics, which fully incorporates all these effects, enabling

the established power and broad applicability of macroscopic quantum electrodynamics to be

unleashed across the fast-developing field of ICD.
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Exactly one century ago, Einstein showed1 that the existence
of a thermal equilibrium between matter and radiation
implies a process by which atoms can indiscriminately

release energy—now known as spontaneous emission. Its origin is
the coupling of the atom to the quantum electrodynamical
vacuum field that permeates all of space, so while being originally
thought of as a fundamental atomic property, spontaneous
emission can in fact be tuned by placing the emitter in an
environment that modifies the vacuum state—between mirrors,
for example. This was first pointed out by Purcell2, who predicted
that the rate of spontaneous decay could be dramatically
enhanced by confining an emitter to a small volume. At a similar
time, Casimir and Polder3 found that the finite speed of light can
impact the London-van der Waals force, originally thought of as
an instantaneous and fundamental interaction between particles.
In both cases, the explanation of a previously known effect in
terms of a more fundamental theory, quantum electrodynamics
(QED), led to the prediction of new physics, later verified in
experiments. This is the blueprint we wish to follow in the present
study of interatomic Coulombic decay (ICD)

ICD was first predicted in 1997 by L.S. Cederbaum and cow-
orkers4 and experimentally observed shortly afterwards5–8. The
details of the ICD process are shown in Fig. 1, where in our
terminology the interaction-mediating photon is in fact a gen-
eralised polariton-like field-matter excitation, containing both
radiative (long-range) and non-radiative (short-range) contribu-
tions. It is worth noting that the electron left in the continuum is
usually of a relatively low energy9, as most of the energy the
photon transfers to the acceptor is spent freeing the electron. It
has been shown that such low-energy electrons can have detri-
mental effects on biological matter10, meaning that ICD is
of more than fundamental interest.

Comparison of ICD observations with theory is usually made
by elaborate ab initio quantum chemistry approaches11—a trend
that continues in the recently proposed superexchange12, surface-
based13 and doubly-ionised14 ICD variants. These methods are
well-suited to dealing with the complex consequences of orbital
overlap between donor and acceptor. However, they cannot easily
deal with the effects of retardation stemming from the finite speed

of light. Furthermore, while a simple dielectric background
or extended host molecule can be taken into account with
molecular dynamics techniques15,16 or via numerical quantum
chemistry17–19, the full effects of dispersion, absorption, relati-
vistic retardation and sharp boundaries remain computationally
beyond reach. This means that such approaches are not able to
account for the effects of a complex environment, such as that of
a helium nanodroplet20–23 or those found in biological
settings10,24,25.

In the following we present a theoretical description of ICD
that systematically includes all of the latter effects, for which we
use a framework known as macroscopic QED26–29. In this
formalism the quantised electromagnetic field in dispersive and
absorbing media is described by a dyadic Green’s tensor
G r; r′;ωð Þ governing propagation of field-matter excitations
(medium-assisted photons) of frequency ω between a source at
position r′ and an observation point r. Various QED quantities
such as spontaneous decay rates and Casimir forces can then be
expressed entirely in terms of this Green’s tensor, which is known
in closed form for simple geometries30 and can be approximated
for more complex ones31. This allows the computation of such
QED quantities in any desired environment, with vacuum
emerging as a special case. In this work we use this formalism to
show that the range of ICD may be much larger than expected
from purely electrostatic considerations, and that an environment
such as liquid water can significantly alter the efficiency of ICD.
For donor and acceptor situated near a macroscopic body, we
predict that the ICD rate can be enhanced or suppressed due to
resonant interactions with surface plasmons.

Results
Macroscopic QED approach to ICD. Using the formalism of
macroscopic QED, we have calculated a general expression for the
ICD rate in arbitrary dispersive and absorbing environments,
valid at any donor–acceptor distance where orbital overlap can
be neglected32. We begin with the interaction Hamiltonian of the
dipole moments d̂Dof the donor and d̂A of the acceptor,

Ĥint ¼ �d̂D � Ê rDð Þ � d̂A � Ê rAð Þ ð1Þ

where the quantised electric field operator Ê rð Þ excites polariton-
like field-matter excitations through an appropriate set of bosonic
operators. We then evaluate the ICD rate Γ using the interaction
Hamiltonian (1) in time-dependent perturbation theory with
causal adiabatic coupling. It is important to note that viewing the
ICD process as the exchange of virtual photons means that twice
as many orders of perturbation theory are needed compared to an
instantaneous Coulomb-like picture, as illustrated in Fig. 1.This is
because the Coulomb approach considers the donor and acceptor
as essentially a single object, which then undergoes ICD as a one-
step process (the two interactions in Fig. 1 occur simultaneously).
By contrast, the virtual photon approach considers the donor and
acceptor completely separately, so that the finite time delay
associated with propagation from one to the other is fully taken
into account. This doubling of the number of interactions means
that in contrast to Coulomb approaches where second order
perturbation theory suffices (see, for example ref.11), we need to
use fourth-order time-dependent perturbation theory. Using the
Hamiltonian (1) and expanding the transition matrix element
that links our initial and final states in a Dyson series keeping
terms up to fourth order in the interaction (see Methods section),
we extract the ICD decay rate as;

Γ ¼ 2π2
X

channels

γDσAð�hωAÞTr G rA; rD;ωDð Þ �G� rD; rA;ωDð Þ½ �;

ð2Þ

Donor Donor

Time

Acceptor Acceptor

Coulomb approach QED approach
ba

Fig. 1 Interatomic Coulombic decay process. Illustration of the interatomic
Coulombic decay process in terms of a the traditional language of Coulomb
interactions and b our quantum electrodynamics approach. An ionised,
excited atom or molecule (donor) with an inner-valence vacancy
(sometimes known as hollow) makes a transition where that vacancy is
filled and a photon is emitted. If that photon has an energy higher than the
photoionisation threshold of a neighbouring atom or molecule (acceptor),
its absorption may be accompanied by an electron being freed into the
continuum. The resulting pair of ions then undergoes a ‘Coulomb
explosion’, which is one of the experimental signatures of ICD
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where rA and rD are, respectively, the positions of the acceptor
and donor, ωD is the transition frequency of the donor and
ħωA= ħωD−Ucoul, where Ucoul is the Coulomb energy of the
system. The allowed channels in the above expression are those
satisfying ħωD ≥Ucoul+Uion, where Uion is the ionisation
potential of the acceptor. We make use of the following short-
hands; γD is the free-space single-atom decay rate of the donor,
given explicitly by

γD ¼ ω3
D dDj j2

3π�hc3ε0
; ð3Þ

and σA(E) is the photoionization cross section of the acceptor

σA Eð Þ ¼ πE
3ε0c�h

d
dE

dAj j2; ð4Þ

which is expressed as a function of the energy E of the incident
photon. We see from equations (3) and (4) that formula (2)
contains four dipole moments, each of which corresponds to an
interaction vertex in our fourth-order perturbation theory.

Formula (2) can be physically understood as the product of
three factors. The first is the free-space decay rate γD of the donor,
which is simply a measure of how strongly its coupling to the
vacuum causes it to emit, even in the absence of the acceptor or
an environment. The second factor is the trace over Green’s
tensors, describing the impact of the environment between and
around donor and acceptor on the transmission of energy
between them. The final factor is the photoionisation cross
section σA of the acceptor, evaluated at the photon frequency
ħωD. This factor corresponds to how likely it is that a photon
arriving at the acceptor will cause a photoionisation event, freeing
an electron from the acceptor. This means the three factors each
loosely correspond to a probability of a step in the process
(emission, propagation and then absorption), meaning that their
product represents an overall rate for ICD.

Relativistic retardation in ICD. The first consequence of Eq. (2)
that we will highlight is the effect of retardation originating from
the finite speed of light (note that the related process of two-
centre resonant photoionisation has also been shown to be
affected by retardation in free space33). The consequences of this
are expected to be the most dramatic at large donor–acceptor
distances—systems with this character have been the focus of
recent experimental work34,35. Using the vacuum Green’s tensor
[see, for example, ref.29 or the Methods section] in our formula
(2) we find;

Γvac ¼
1
4

X
channels

γDσA �hωAð Þ
2π=λDð Þ4ρ6 3þ 2πρ

λD

� �2

þ 2πρ
λD

� �4
" #

; ð5Þ

where ρ= |rD− rA| is the donor–acceptor separation and λD=
2πc/ωD is the wavelength of the photon emitted from the donor.
In the limit of short distances only the first term in the square
brackets of (5) remains, this is is the non-retarded vacuum rate
ΓNRvac ;

ΓNRvac ¼
3
4

X
channels

γDσA �hωAð Þ
2π=λDð Þ4ρ6 : ð6Þ

This is the only part of Eq. (5) accessible without using our
theory, and as such is reproduced by the more traditional
instantaneous Coulomb approach32,36, and its inverse sixth power
of distance can be understood as coming from the ρ−3

dependence of the near-field limit of the electric field of a dipole,
which is then squared during calculation of dipole–dipole

coupling. The second and third terms of Eq. (5) are new and
come from the inclusion of the far-field of the dipole which
decays as ρ−1. The new terms are proportional to ρ−4 and ρ−2,
which obviously means they decay much more slowly at large
distances than the ρ−6 found without including retardation. This
can cause dramatic enhancement relative to the rate expected
from the non-retarded theory if the condition 2πρ > λD is
satisfied, as shown in Fig. 2.

Systems undergoing ICD are typically separated by around
3–10 Å, meaning that the condition ρ > λD/2π is comfortably
satisfied by, for example, taking Ne9+ (nine-fold ionised neon) as
a donor species. There the transition energy from the 2P1/2→ 2S1/2
levels is around 1.02 keV, corresponding to λD/2π of approxi-
mately 1.9 Å.

The importance of retardation is not limited to small, extreme
systems such as hydrogen-like ions—even large, multi-electron
ions can be near enough to each other to undergo ICD ≲10Å

� �
,

while also being far enough for the assumption of negligible
orbital overlap to be applicable. The degree of orbital overlap
depends strongly on specific choice of donor and acceptor
species, so here we refer to the specific example studied in ref.32,
where it was shown that the effects of orbital overlap become
negligible in Ne–Mg ICD if the separation is above ~6–7 Å. In
that system the transition wavelength is far too long for
retardation to play a role. However, if one replaces the neon
donor with a neon-like ion, the transition wavelength will be
much shorter, but the degree of orbital overlap should to remain
similar, meaning its influence will still become negligible at at
about 6–7 Å. We have included in the inset of Fig. 2 the ICD rate
for three selected neon-like donors, with arbitrary acceptor
species. While one would have to carefully consider the degree of
orbital overlap for a neon-like donor and a specific acceptor
species in order to decide in which specific distance range our
model applies, the preceding discussion and the inset of Fig. 2
together show that ICD between large, multi-electron systems can
in principle also be subject to significant retardation corrections.

ICD in a host medium. The second application of our formula
(2) is to ICD processes in a medium. A naive approach to cal-
culating the ICD rate in this situation would be simply changing
the optical path length of the photon, but this is not an adequate
description of interatomic processes in media, as discussed in
ref.37. Such an approach misses the fact that an atom embedded
in a medium has a small region of empty space around it,
meaning the field it experiences is different from that found in the
bulk medium—this is known as the local-field effect (LFE). Our
approach to ICD can include this by using the appropriate
Green’s tensor in Eq. (2), in particular that described in ref.38

where the local-field corrected Green’s tensor is calculated for
arbitrary media described by a frequency-dependent permittivity
ε(ω). For illustrative purposes we concentrate on the small-
distance limit of our formula (2), but we emphasise that our
general theory can take into account retardation and medium
effects simultaneously. Using the local-field corrected Green’s
tensor (see Methods) in the non-retarded limit of our formula (2)
we find the rate for a single ICD channel in a bulk medium as;

ΓNRbulk ¼ ΓNRvac � η � ηLFE ηLFE ¼ 3ε ωDð Þ
2ε ωDð Þ þ 1

����
����
4

ð7Þ

where η= |ε(ωD)|−2 is the correction factor that arises in the
simple bulk model, ηLFE is the correction due to the LFE, and we
have expressed the rate in terms of ΓNRvac as given by Eq. (6).
In order to assess the impact of the LFE, we have also shown in
Eq. (7) the result that is found if the LFE is ignored (ηLFE= 1).
For quantitative analysis of (7) we have used the measured
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permittivities for water40 and liquid helium41, relevant to biolo-
gical processes and experiments on nanodroplets22, respectively.
Our results are shown in Fig. 3 where we make a comparison with
the rate that would be predicted if LFEs were not taken into
account. There we see that inclusion of the LFE can cause
enhancement or suppression of the ICD rate, on top of the
suppression or enhancement that the simple bulk (that is, without
the LFE) causes. The LFE-corrected bulk causes suppression
when η⋅ηLFE < 1, which is satisfied when, for example, ε < 1 as is

the case near the absorption resonance of helium, which is the
origin of the enhancement there. For water in the displayed fre-
quency range, the ICD rate is always suppressed by the solvent
medium where the neglect of the LFE leads to an overestimation
of this suppression. For helium, the LFE significantly narrows the
frequency window where the ICD rate is enhanced. The experi-
ment reported in ref.22 reveals an ICD signal at 21.6 eV inside a
He nanodroplet. Our calculations as shown in Fig. 3 predict an
enhancement of the respective ICD rate by a factor 1.7 due to the
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presence of the bulk nanodroplet medium. To confirm this
quantitatively, one has to first use our Eq. (2) in conjunction with
the known Green’s tensor of the spherical nanodroplet (see, for
example ref.42) to calculate the ICD rate for arbitrary donor and
acceptor positions with respect to the droplet, a similar study of
the effect of a dielectric sphere on the van der Waals interaction
between two atoms has been carried out in ref.43. Subsequently,
the geometric distributions of donors and acceptors, as well as
additional decay channels and processes, have to be accounted for
to generate a predicted experimental signal. Finally, we note that
in this discussion we have concentrated on the effects that the
medium has on field propagation between donor and acceptor. In
addition, the medium has an impact on the donor and acceptor’s
properties such as transition frequencies and dipole moments.
This could be studied alternatively using molecular dynamics or
macroscopic QED44.

ICD near a dielectric surface. Another demonstration of the
power of our general formula (2) is calculation of the effect an
inhomogenous environment has on ICD, taking inspiration from
the Purcell enhancement of the spontaneous decay rate. Similarly
to our presentation of the rates in a bulk medium, we will con-
centrate on the short-distance limit of our formula (2), but again
emphasise that our general theory can simultaneously take into
account all the effects discussed so far. Using the dyadic Green’s
tensor for a dielectric surface29,30 with frequency-dependent
permittivity ε(ω) occupying the region z < 0 (see Methods) in our
formula (2), we find the following rate in the non-retarded
regime;

ΓNRplate ¼
3
4

X
channels

γDσA �hωAð Þ
ω4
D=c

4

´
1
ρ6

þ 2Re R ωDð Þ½ � 1
3ρ3�ρ3

� ρ2 þ �ρ2

2ρ5�ρ5
ρ2jj

� �
þ R ωDð Þj j2

�ρ6

	 

;

ð8Þ

where �ρ ¼ ρ zD ! �zDð Þ, ρ2jj ¼ xD � xAð Þ2þ yD � yAð Þ2 and
R ωð Þ ¼ ε ωð Þ � 1ð Þ= ε ωð Þ þ 1ð Þ is the Fresnel reflection coefficient
of the surface. In order to make quantitative predictions we
assume a permittivity of the Drude–Lorentz form,

ε ωð Þ ¼ 1� ω2
p

ω2 � ω2
T þ iγω

; ð9Þ

where ωp is the plasma frequency, ωT is a transition frequency
and γ is a damping constant. This choice of dielectric function
causes the reflection coefficient R(ω) defined above to exhibit a

resonance at a frequency ωS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
T þ ω2

p=2
q

, commonly known

as the surface plasmon frequency. In Fig. 4 we display the plate-
dependent ICD rate (normalised to that for free space) for a
donor at a fixed position near the interface while allowing the
position of the acceptor to vary. We choose a range of transition
frequencies for the donor, both above and below the resonance
frequency of the material. It is seen that the medium-dependent
ICD rate has an intricate dependence on both the relative posi-
tions of the donor and acceptor, and the relationship between the
ICD photon frequency and that of the material resonance. For
example, at frequencies below the material resonance and with
rA− rD aligned parallel to the surface, the ICD rate is suppressed
by a factor of up to 2. This placement of donor and acceptor
could be envisaged in a biological context as two molecules sitting
on a cell membrane, our theory predicts that the ICD rate
between the two will be slower due to the presence of
the membrane. Similarly, if the frequency remains below reso-
nance but now rA− rD is aligned perpendicular to the surface,

the ICD rate can be enhanced by a similar factor. This could arise
in a biological setting as an aid to efficient energy transport; our
theory predicts that the presence of an interface at the end of a
linear arrangement of emitters and absorbers would cause a
noticeable enhancement of energy transfer between neighbours.

Finally, we emphasise that although we have separately
presented three ICD-modifying effects (retardation, immersion
in a bulk medium and placement near a surface) in order
to maintain a clear conceptual divide between each, all of
these and more can be taken into account simultaneously in
our framework simply by using the appropriate well-known
Green’s tensors (c.f. ref.29). As an example, we report here
the ICD rate found from Eq. (2) for donor and acceptor
embedded in an absorbing medium of complex refractive index
�n ωð Þ ¼ ffiffiffiffiffiffiffiffiffi

ε ωð Þp ¼ n ωð Þ þ iκ ωð Þ, simultaneously including local-
field corrections and relativistic retardation. To do this we use the
retarded bulk Green’s tensor and the local-field prescription
(both of which are found in the Methods section) in Eq. (2),
finding;

Γbulk ¼
X

channels

ΓNRbulke
�2κρωD=c

´ 1þ 2κζ þ ζ2

3
4κ2 þ �nj j2� �þ 2κζ3

3
�nj j2þ ζ4

3
�nj j4

� �
;

ð10Þ

where ζ= ρωD/c. The material parameters n(ω) and κ(ω) are both
evaluated at the donor frequency ωD, and we have used the rate
defined by (7) as a shorthand. From Eq. (10) it is evident that
there is a complex interplay between the various factors discussed
so far, including an exponential screening factor that depends on
the extinction coefficient κ, as well as polynomial dependence on
various combinations of distance and material parameters. In
Fig. 5 we plot the separation-dependence of the rate (10) in
vacuum and in helium, both with and without local-field
corrections. The rates (5) and (7) emerge from Eq. (10) in its
vacuum (n → 1, κ → 0), and non-retarded ρωD=c � 1ð Þ limits,
respectively.

In conclusion, we have presented a description of the ICD rate
in arbitrary environments that are described via the electro-
magnetic Green’s tensor. We have demonstrated some of the
explicit consequences of our main result (2), the first being the
fundamental importance of retardation which can cause ICD
rates to be orders of magnitude higher than expected from any
previous theory. We have also studied local-field corrections in a
bulk medium, as well as the intricate dependence of the ICD rate
upon a nearby macroscopic body. All of these effects should be
taken into account when calculating the impact of ICD in the
non-idealised, messy situations found in the life sciences, as well
as to more fundamental research into medium-dependent ICD.
We emphasise that every calculation here proceeded analytically
from the same very general formula (2), which was derived using
the established power and broad applicability of macroscopic
QED, which can now be unleashed across the fast-developing
field of ICD.

Methods
Derivation of ICD rate. In this section we derive our central result (2), which is the
ICD rate Γ in arbitrary environments. We will calculate Γ from Fermi’s golden rule;

Γ ¼
X
f

2π
�h

Mfi

��� ���2δ Ei � Ef
� 


: ð11Þ

where Mfi is a transition matrix element and Ei,Ef are the energy eigenvalues of the
unperturbed Hamiltonian for the initial and final states |i〉 and |f〉, respectively. The
transition matrix element arising from a time-dependent perturbation V̂ can be
calculated using time-dependent perturbation theory. In the causal adiabatic
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coupling approach (see, for example ref.45) one has;

Mfi ¼ lim
ε!0þ

X
k

hf jV̂ jkihkjV̂ jii
Ei � Ek þ i�hε

ð12Þ

where Ek is the energy eigenvalue of the intermediate state k. In writing Eq. (12) we
have assumed that all diagonal elements of V̂ vanish, which is true for the per-
turbation we shall consider here. The leading-order processes supported by our
interaction Hamiltonian (1) are shown in Fig. 6.

We will use δ, γ and α, β to represent the states of the donor D and acceptor A,
respectively. The donor and acceptor may each be atoms, ions or molecules, though
for brevity we describe their states simply as atomic in the rest of this section. In
general the states of the acceptor can either be bound or belong to the continuum.
During the ICD process the donor decays (δ → γ), while the acceptor becomes
excited (α → β). In terms of product states |a⟩⊗|b⟩≡ |a, b⟩ we can therefore write the
ICD process as |δ, α⟩→ |γ, β⟩. Then the contributions to the sum over intermediate
states k in Eq. (12) are simply the two possible time-orderings of a process where a
single polariton-like field-matter excitation (coinciding with the usual notion of a
photon if the process takes place in vacuum) |1(r, ω)⟩ at position r with frequency ω
is exchanged, as shown in Fig. 6. We can hence write the following initial,
intermediate and final product states for the composite system of the donor and

acceptor coupled to the medium-assisted field whose ground state is |{0}⟩

Initial : jii ¼ jδ; αij 0f gi;
Intermediate : jk 1ð Þi ¼ jγ; αij1 r;ωð Þi or kð2Þ ¼ jδ; βij1 r;ωið Þ ;
Final : jf i ¼ jγ; βij 0f gi:

ð13Þ

Combining the contributions from both diagrams yields the following
expression for the coupling matrix element

Mfi ¼� lim
ε!0þ

X
γ;α

Z
d3r

Z 1

0
dω

hf jd̂A � Ê rAð Þjk 1ð Þihk 1ð Þjd̂D � Ê rDð Þjii
�h ω� ωδγ � iε
� 


2
4

þ hf jd̂D � Ê rDð Þjk 2ð Þihk 2ð Þjd̂A � Ê rAð Þjii
�h ωþ ωβα � iε
� 


3
5;

ð14Þ

where ωab≡ (Ea− Eb)/ħ are all positive. We can use the dipole operators d̂ to
directly evaluate the atomic part of each term, for example the numerator of the
first term becomes;

hf jd̂A � Ê rAð Þjk 1ð Þihk 1ð Þjd̂D � Ê rDð Þjii
¼ dαβ � h 0f gjÊ rAð Þj1 r;ωð Þi

� 

dδγ � h1 r;ωð ÞjÊ rDð Þj 0f gi

� 
 ð15Þ

with dδγ � hγjd̂Djδi and dαβ � hβjd̂Ajαi. To evaluate the field-dependent part
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of each term, we use the definition of the macroscopic QED electric field26,29

Ê rð Þ ¼ i
Z 1

0
dω

Z
d3r′

ω2

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h
πε0

Imε r′;ωð Þ
s

G r; r′;ωð Þ � f̂ r′;ωð Þ þH:c: ð16Þ

where f̂ and f̂
y
are a set of bosonic operators that create and annihilate combined

matter-field excitations26,29. For the field evaluated at a general position ra we have;

h 0f gjÊ rað Þj1 r;ωð Þi ¼ R
d 3r′

R1
0 dωi ω

2

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h
πε0

Imε r′;ωð Þ
q

G ra; r′;ωð Þδ r� r′ð Þδ ω� ω′� �
¼ i ω

2

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h
πε0

Imε r;ωð Þ
q

G ra; r;ωð Þ:
ð17Þ

Using this result in (14) we find;

Mfi ¼ �P
γ;α

μ0
π lim
ε!0þ

R1
0 dω ω2

ω�ωδγ�iε

R
d3r ω

2

c2 Imε r;ωð Þ
n

´ dαβ �G rA; r;ωð Þ
h i

dδγ �G� rD; r;ωð Þ
h i

þR1
0 dω ω2

ωþωβα�iε

R
d3r ω2

c2 Imε r;ωð Þ dγδ �G rD; r;ωð Þ
h i

dαβ �G� rA; r;ωð Þ
h io

:

ð18Þ

We can now use the following integral relation for the Green’s tensor26,29

ω2

c2

Z
d 3s Im ε s;ωð Þ½ �G r; s;ωð Þ �G� s; r′;ωð Þ ¼ Im G r; r′;ωð Þ½ �; ð19Þ

to carry out the position integral in (18), obtaining

Mfi ¼ � μ0
π lim
ε!0þ

P
γ;α

R1
0 dω ω2

ω�ωδγ�iε dδγ � ImG rD; rA;ωδγ

� 

� dαβ

h

þ ω2

ωþωαβ�iε dδγ � ImG rD; rA;ωβα

� 

� dαβ

i ð20Þ

where we have assumed that the dipole moments are real. Deforming the
integration contour into the upper half of the complex frequency plane we pick up
a resonant term from a pole at ωδγ and an off-resonant contribution along the
positive imaginary axis. Taking the limit ε→0+ we find;

Mfi ¼� μ0
X
γ;α

dδγ � ω2
δγ G rD; rA;ωδγ

� 

þ F rD; rA;ωδγ

� 
h in

� ω2
βαF rD; rA;ωβα

� 
o
� dαβ

ð21Þ

where

F r; r′;ωð Þ �
Z 1

0
dξ

ωξ2G r; r′; iξð Þ
ω2 þ ξ2

ð22Þ

is the off-resonant contribution. This expression is now suitable for substitution
into Fermi’s golden rule (11), giving the rate Γδα for one particular choice of initial
state |δ,α⟩;

Γδα ¼
X
β;γ

2π
9�h

μ20 dαβ

��� ���2 dδγ

��� ���2Tr G rA; rD;ωδγ

� 

G

� rD; rA;ωβα

� 
h i

´ δ �hωδγ � �hωβα

� 

;

ð23Þ

where we have taken isotropically averaged dipole moments,

d� d ¼ 1
3
dj j2I ð24Þ

where I is the identity matrix.
In evaluating the sum over final states in (23), one must be mindful of the fact

that the transition |α〉 → |β〉 is a photoionisation process, meaning that its final state
is part of the continuum. This means that the relevant observable is the
photoionisation cross section σα at a certain incident energy E, rather than the
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normalised in the same way as that of Fig. 2, and the dashed lines correspond to the non-retarded limits of the three rates shown. The material parameters
chosen for the absorbing medium are n(ωD)= 1.49 and κ(ωD)= 0.35, corresponding to the first absorption line of helium41
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dipole moment d. The two quantities can however be related;46,47

X
β2C

d
dω

dαβ ωð Þ
��� ���2¼ 3ε0c�h

πω
σα Eð Þ: ð25Þ

Similarly, the continuum nature of the final states means that the formal sum
over β is in a fact sum over discrete states β 2 D corresponding to distinct ICD
channels, as well as an integral over continuum states β 2 C for each individual
channel. We use the following rule for converting a sum over discrete states with
energies �hω′i to an integral over a continuous variable ω′;

X
β 2 C

dαβ ω′ð Þ
��� ���2f ω′ð Þδ �hω� �hω′ð Þ !

Z 1

0
dω′

d
dω′

dαβ ω′ð Þ
��� ���2

�h
f ω′ð Þδ ω� ω′ð Þ

¼ 3ε0c
πω

σα �hωð Þf ωð Þ
ð26Þ

where f(ω) is an arbitrary smooth function. This finally gives;

Γδα ¼ 2π2
X
γ

γδγσα �hωδγ

� 

Tr G rA; rD;ωδγ

� 

�G� rD; rA;ωδγ

� 
h i
; ð27Þ

with γδγ being the free-space decay rate of the donor;

γδγ ¼
ω3
δγ dδγ

��� ���2
3π�hc3ε0

: ð28Þ

In the main text we make use of the fact that the sum in Eq. (27) represents a
sum over allowed ICD channels for a given initial state |δ,α〉, so that we writeP

channels instead of
P

γ . Upon using the shorthands dD≡ dδγ, ωD= ωδγ and Γδα=
Γ, and renaming σα= σA, the derivation of Eq. (2) in the main text is now complete.

Green’s tensors. In this section we specify the Green’s tensors G r; r′;ωð Þ used to
derive the ICD rates (5), (7), (8) and (10) in the main text. Subject to appropriate
boundary conditions, these are defined to solve;

∇ ´∇ ´G r; r′;ωð Þ � ω2

c2
ε r;ωð ÞG r; r′;ωð Þ ¼ Iδ 3ð Þ r� r′ð Þ; ð29Þ

where ε(r, ω) is relative permittivity, which in general depends on both position
r and frequency ω. Here we denote the 3 × 3 identity matrix as I.

Bulk medium. A translationally-invariant medium has ε(r, ω)= ε(ω), for which the
Green’s tensor is (see, for example ref.29):

G
0ð Þ r; r′;ωð Þ ¼ � I

3k2
δ 3ð Þ ρð Þ

� eikρ

4πk2ρ3
1� ikρ� kρð Þ2� �

I� 3� 3ikρ� kρð Þ2� �
eρ � eρ

n o
;

ð30Þ

where k ¼ ω=cð Þ ffiffiffiffiffiffiffiffiffi
ε ωð Þp

, ρ= r−r′, ρ= |ρ|, and eρ= ρ/ρ. The vacuum Green’s
tensor G 0ð Þ

vac r; r′;ωð Þ is found from this by setting ε(ω)= 1.

Local-field corrections. Local-field corrections can be introduced on the level of
the Green’s tensor. Ultimately, the LFE leads to a correction factor for the bulk
Green’s tensor, which amounts to a replacement;

G
0ð Þ r; r′;ωð Þ ! 3ε ωð Þ

2ε ωð Þ þ 1

� �2

G
0ð Þ r; r′;ωð Þ; ð31Þ

as discussed in detail in ref.39.

Dielectric half-space. Here we consider a dielectric medium of permittivity ε(ω)
filling the region z < 0, with z > 0 being vacuum. We are interested in the non-
retarded (near-field) limit defined by ωρ=c � 1, for which the half-space Green’s
tensor GHS r; r′;ωð Þ in the region z > 0 can be obtained by an image construction
based on the non-retarded vacuum Green’s tensor above. One finds, in agreement
with ref.48;

GHS r; r′;ωð Þ ¼ G
ð0Þ
vac;NR r; r′;ωð Þ þ ε ωð Þ � 1

ε ωð Þ þ 1
G

ð0Þ
vac;NR r;�r′;ωð Þ �

�1 0 0

0 �1 0

0 0 1

0
B@

1
CA;

ð32Þ

where �r ¼ x; y;�zð Þ, and

G
ð0Þ
vac;NR r; r′;ωð Þ ¼ Ic2

3ω2
δ ρð Þ � c2

4πω2ρ3
I� 3eρ � eρ

� 

ð33Þ

is the non-retarded limit of the vacuum Green’s tensor. Given relations (30),
(31) and (32) it is then a matter of algebra to arrive at the ICD rates (5), (7),
(8) and (10).

Data availability. All data contained within the figures are generated solely from
the formulae in the manuscript using the given parameters, with the exception of
Fig. 3 where optical data from refs.40,41 were used. The transition frequencies of
hydrogen- and neon-like ions are publicly available in the NIST Atomic Spectra
Database37.
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