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1. Introduction

In recent years, translational studies comparing 
imaging data of animals and humans have 
gained increasing scientific interests with crucial 
findings stemming from both human and 
animal works. In order to harmonize statistical 
analysis of data from different species and to 
optimize the transfer of knowledge between 
them, shared data acquisition protocols and/
or combined statistical approaches have to 
be identified. Following this idea, we applied 
a statistical approach, which has until now 
mainly been used to model neural responses 
of electrophysiological recordings from rodent 
data, on human hemodynamic responses (i.e. 
Blood-Oxygen-Level-Dependent BOLD signal) 
as measured via fMRI. The statistical approach 
is Bayesian Adaptive Regression Splines (BARS). 
BARS is a smoothing algorithm/curve fitting 
technique. In neuroscience it is used to smooth 
neural time courses, spike trains and tuning 
curves from neurophysiological recordings 

[1-3], as well as regional fMRI time courses 
[4]. The graphical data representation of peri-
stimulus-time histograms (PSTH) of a data set, 
for example spike trains of a single neuron is 
accumulated for all trials under a particular 
set of experimental conditions to show the 
firing rate varies over time. One reason the 
PSTH works well is that our eye is able to 
smooth the PSTH so that we see the temporal 
evolution of the firing rate. However, once we 
have articulated the goal of estimating the 
firing rate, it is possible to improve the PSTH 
by smoothing [5]. Estimating the firing rate in 
this context means producing an estimate of 
the instantaneous firing rate, which we write 
as λ(t), at each time t, where t varies across a 
whole range of experimental values of interest. 
In other words, we are interested in estimating 
the curve described by λ(t) [5]. BARS uses cubic 
splines (piecewise cubic polynomials) which 
are joined at selected points called ‘knots’ [4,6], 
with the number of knots and their locations 
being based on a posterior probability 

distribution. The expectation of the unknown 
function of time is then taken to be the fitted 
curve [2,5,7-9]. 

In our study, BARS describes the fluctuations 
of the amplitude of the BOLD signal over 
the course of the entire measurement. The 
resulting curve is described by estimating the 
expectation value of a certain event (e.g. neural 
firing, increase of the amplitude of the BOLD 
signal), which is written as λ  at each time point 
t (λ(t)) and its fluctuation over the time course 
in terms of peaks and valleys. 

The relation between electrophysiological 
recordings and BOLD response has been 
empirically proven by Logothetis and 
coworkers in numerous studies. They have 
found that local field potentials (LFPs) reflect 
the best hemodynamic responses and it is 
mainly the component of the gamma band 
(60–120 Hz) which correlated positively with 
fMRI data [10]. Subsequent studies were 
able to differentiate between amplitude and 
timing characteristics the way the amplitude 
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of the BOLD signal reliably reflected both the 
increases and decreases in gamma power. 
Timing dynamics of the BOLD signal, in turn, 
reflect activity in the beta band (18-28 Hz) [11], 
with a higher beta power corresponds to faster 
increases (slower decreases) of the BOLD signal, 
and reciprocally a lower beta power to faster 
decreases (slower increases) of the BOLD signal. 
In the cognitive domain, neural oscillations in 
the gamma frequency band play a crucial 
role in the synchronization of neural firing 
as well as in conscious cognitive information 
processing and focused attention [12]. On the 
other hand, beta band oscillations have been 
associated with selective attention [e.g. 13], 
where a decrease of activity reflects a state of 
increased processing capabilities [14]. In order 
to prove that BARS when applied on fMRI time 
series corresponds to neural processing like 
it does on neurophysiological recordings, we 
have additionally performed: i) conventional 
analyses of brain activation patterns using GLM 
in terms of an external validation and, ii) task 
performance of an attention task which the 
volunteers had to peform in the MRI scanner 
for behavioral correlate/ecological validation. 

The present sample of healthy volunteers 
underwent a task-fMRI measurement using 
the Attentional Network Task (ANT) by Fan 
et al. (2005) [15]. The ANT has been used in 
numerous fMRI as well as EEG-studies to show 
most robust responses in the fronto-parietal 
regions as well as the striatum in terms of 
increased brain activation [16,17], as well as 
reflected by the event-related potential P300 
in parietally-located electrodes [e.g. 18]. In 
addition, behavioral attention network scores 
significant correlation of the beta and gamma 
powers in the fronto-central regions [19]. Within 
a fronto-parieto-striatal attention network, the 
fronto-striatal loop has been associated with 
inhibiting response of the prefrontal cortex (PFC) 
representing a top-down control, which means 
the ability to focus on the current task and not 
being distracted by further stimulations [20], 
and the striatum being responsible for motor 
and impulse control. The parietal lobe (PL), in 
turn, is understood as a bottom-up structure, 
perceiving task-relevant and irrelevant stimuli 
and then reporting these perceptions to higher-
order cortical structures such as the PFC. 

Within the fronto-parieto-striatal attention 
network, brain activation patterns and  λ(t) 
were determined. Task performance was 
operationalized by splitting the subjects 
into groups of good and bad performers 
according to their overall accuracy. Group 
differences were addressed in the behavioral 
data, brain activation maps and expectation 
values λ(t). We expected to differentiate 
good performers from bad performers: 
(a) based on the behavioral level with a 
significantly higher overall accuracy (the 
grouping criteria), and (b) brain activation 
with a stronger frontal top-down control 
reflected by higher activation in the fronto-
striatal regions. With regard to the relation 
between brain activation and BARS, we 
expected to find that (c) regions with a 
higher brain activation would also present 
higher expectation values, reflecting a higher 
gamma power. On the other hand, regions of 
reduced brain activation were supposed to go 
along with stronger fluctuating expectation 
values λ(t), indicating stronger beta power. 

2. Materials And Methods

2.1 Subjects
Forty-seven participants (f=23, m=24; mean 
age: 25.43+2.7 years) were examined in the 
present fMRI study. This sample has previously 
been investigated for the genetic influence 
of brain activation patterns of alerting and 
executive attention using GLM [16,21]. Subjects 
were drawn from a large pool of healthy 
German subjects consecutively recruited 
at the Department of Psychiatry, University 
of Wuerzburg, Germany. All subjects were 
screened for the absence of current or life-time 
history of mental axis I disorders by experienced 
clinical psychologists or psychiatrists using the 
Mini International Neuropsychiatric Interview 
(MINI) [22]. Right-handedness was ascertained 
using the Edinburgh Handedness Inventory 
[EHI; 23]. The study was approved by the 
ethics committee of the Faculty of Medicine, 
University of Wuerzburg, Germany, and was 
conducted in accordance with the declaration 
of Helsinki in its latest version from 2008. 
Written informed consent was obtained from 
all subjects. 

2.2 Paradigm
The used paradigm was the ANT as described 
in Fan et al. 2005. The ANT requires the 
participants to determine whether the central 
arrow out of 5 horizontally-arranged arrows 
pointing left or right. Each trial consisted of five 
events. First, there was a 400 ms fixation period, 
followed by a 150 ms warning cue. There was 
either a non-spatially informative double 
cue, a spatial cue, or alternatively, no cue was 
presented. After a cue-target interval of 400 ms, 
a target was presented for 1050 ms, consisting 
of the target arrow and 4 context flankers.

In order to ensure a variation between 
stimulus onset and image acquisition, null 
events were randomly presented in the course 
of the task. Null events did not represent an 
experimental condition and thus were not 
included into the statistical model. Out of 256 
trials, there were 64 target events preceded by 
a double cue, 64 events preceded by a spatially 
informative cue, 64 events without a cue and 64 
null events. In 50% of the experimental trials, 
targets were congruent (96 trials) and another 
50% for incongruent. Trials were presented in 
a randomized order across all subjects. Total 
trial duration for null events was 2000 ms, 
target events were 3000 ms long. Overall, the 
completion of the task took 14 minutes.

2.3 Data Acquisition
fMRI data was acquired on a 3 Tesla TRIO scanner 
(Siemens, Erlangen, Germany). Whole-brain 
T2*-weighted BOLD images were recorded 
with a gradient echo isotropic 3x3x3mm3 EPI 
sequence (repetition time TR=2000 ms, echo 
time TE=30 ms, 36 slices, 3 mm slice thickness, 
field of view FoV=192 mm, flip angle=90°, 
420 volumes). In addition, anatomical images 
were obtained from each subject using a T1-
weighted MPRAGE (Magnetization Prepared 
Rapid Gradient Echo) with the sequence 
parameters TR=2.3 s, TE=2.95 ms, 176 slices, 
1 mm slice thickness, FoV=270 mm, flip 
angle=9°). 

2.4 Behavioral Data Processing and 
Statistical Analysis
Accuracy was defined as the proportion of 
correct trials from all trials, reaction time 
was calculated between target presentation 

Translational Neuroscience



184

and response. On the behavioural level, 
the efficiency of three different attentional 
networks, namely the alerting, orienting and 
executive attention system was assessed 
by measuring how response times were 
influenced by cues without spatial information 
(alerting), spatial cues indicating the position of 
the target position (orienting), and congruent 
and incongruent flankers (executive attention): 
alerting= rtno cue –rtdouble cue, orienting= rtdoucle cue –
rtspatial cue and executive attention= rtincongruent targets 
–rtcongruent targets. Performance-based differences 
were revealed using a two sample t-test with 
the performance group as a group factor and 
behavioral parameters as dependent variables. 
Results were significant when they passed 
a threshold of p<.05, FDR-corrected for five 
comparisons.

2.5 fMRI-Data Preprocessing 
fMRI data was pre-processed and analysed 
with SPM12 (Wellcome Trust Centre for 
Neuroimaging London, UK). During pre-
processing, all functional images were 
realigned to the first functional volume 
for movement correction, unwarped as a 
correction of field inhomogenities, spatially 
normalized into a standard stereotactic 
space (Montreal Neurological Institute, MNI), 
resampled to isotropic 2 * 2 * 2 mm3 voxel and 
spatially smoothed with a Gaussian kernel of 8 
mm full width at half maximum (FWHM). Pre-
processing did not include high-pass filtering 
or global mean correction. 

The resulting images entered in both 
analyses, GLM and BARS, in different formats; 
whereas whole-brain images (sw*.nii) entered 
GLM-based analyses, region-specific time 
courses were extracted from pre-processed 
images (for selection of regions see 2.7).

2.6 GLM: Statistical Analysis
On a single subject level, GLM analysis was 
performed as follows: onset regressors of the 
five experimental conditions ‘double cue’, 
‘spatial cue’, ‘no cue’, ‘congruent target’ and 
‘incongruent target’ were implemented as 
regressors of interest within the statistical 
model. Onsets of the cue conditions ‘double 
cue’ and ‘spatial cue’ were defined as the time 
point when a cue was presented, onsets of 

the ‘no cue conditions’ were determined as 
550 ms before target presentation (150 ms 
cue presentation, 400 ms cue-target interval). 
Onsets of target conditions were defined as 
the onset of target presentation. Only correct 
trials entered statistical analyses, onsets of 
error trials and six movement parameters from 
realignment, respectively, were added in terms 
of regressors of no interest. As basis set the 
canonical hemodynamic response function 
was chosen, model derivatives were not used. 
Data was high-pass filtered with a default size 
of 120s to reduce data from physiological noise 
such as breathing, heart rate etc.

On the group level, we aimed to identify 
these regions, which were activated by the 
task, i.e. the Main Effect of the Attention 
Network Task defined as ‘double cue’ + 
‘spatial cue’ + ‘no cue’ + ‘congruent target’ 
+ ‘incongruent target’ > implicit baseline 
(contrast weights: 1 1 1 1 1). We analysed this 
contrast over all subjects as well as with regard 
to potential group differences. Therefore, we 
performed a one-way ANOVA model using 
the performance group as an independent 
factor (good vs. bad performers) and activation 
maps as the dependent variables. Activation 
was considered significant when p<.05 FDR-
corrected for multiple comparisons. 

2.7 BARS: Expectation value of a 
BOLD event
In general, BARS is used to address generalized 
nonparametric regression (curve-fitting) 
problems by assuming that a function f(x) is 
approximated by cubic splines. The latter is 
piecewise cubic polynomials, which are joined 
at locations called ‘knots’. A Bayesian Monte 
Carlo method searches through the space of 
possible numbers of knots and their locations 
and provides an optimally fitted curve. The 
resulting curve is a data-driven estimate of the 
expectation value of a certain event (e.g. neural 
firing, increase in MRI signal), which is written λ 
for each time t [5]. 

2.8 fMRI Time course Extraction
For the extraction of fMRI time course, (i) the 
underlying data is important (in our case the 
pre-processed data) as well as (ii) the exact 
localization of the region (i.e. the coordinates 

of the individual global activation maximum on 
single subject level). 

Regions of Interest (ROI) were areas which 
have been associated with attention processing 
in earlier studies (see introduction), namely the 
prefrontal, parietal and striatal regions. For the 
identification of global activation maxima for 
each subject, the contrast Main Effect of the 
Attention Network Task was defined on a single 
subject level and the local maxima of each ROI 
were identified. 

Time course extraction was performed on 
the pre-processed data. Coordinates were then 
used as the centre of 10mm spheres using 
MarsBar [24]. Thus, five ROIs (cf. Table 1) were 
built as the basis of time course extraction for 
each subject. Following the routine suggested 
by Brett et al. (2002) (see MarsBar manual, 
http://marsbar.sourceforge.net/ marsbar.pdf ), 
time courses of raw fMRI data were extracted 
(i.e. smoothed files resulting from the pre-
processing procedure) [24]. 

2.9 BOLD event definition
As the amplitude of the BOLD signal correlates 
with the activity of the neurons located in the 
specific region where it is extracted, we picked 
the amplitude value as the event of interest. 
An event corresponds to a BOLD amplitude 
that exceeds a certain threshold. Threshold 
definition in BARS is data-driven [2,4-5] or 
based on the natural scales as described in 
the blood pressure study by Muniz-Terrera et 
al (2016). In order to find the right value for 
the threshold, 10% of the maximal value of 
the amplitude was taken and increased step-
wisely until a value was found to differentiate 
the amplitudes between experimental 
groups. In our case, a thirty per cent of 
its overall maximum value. In probability 
theory, stochastic sequences of event times 
are best modeled using the point processes 
models. The simplest and most important 
point process model is the Poisson process. 
A number of events within a time window, 
the number of events one would expect to 
happen during an interval of time, therefore 
follows the Poisson distributions. In its general 
form, a point process is modeled by specifying 
its conditional intensity, λ(t), which represents 
the infinitesimal rate at which events are 

Translational Neuroscience



185

expected to occur around a particular time t, 
conditional on the prior history of the point 
process prior to time t. For a non-parametric 
estimate of λ(t), we applied BARS to smooth 
the Peri Event Time Histogram (PETH) of MRI 
data to get the average ROI response of all 
subjects.

2.10 Raster Plot and PETH
A raster plot marks the occurrence of an event 
along the X-axis with a tick mark indicating the 
time it happens (see Fig. 1A). It displays the trial 
response of a specific ROI. To get the average 
response of a task, this procedure is repeated 
several times on a single subject level or over 
several subjects. An average ROI response 

is captured by the PETH showing how the 
behavior varies across time (see Fig. 1B). For the 
Y-axis to indicate the conditional intensity, each 
bin event count is divided by both, the bin width 
and the number of trials on single subject level/
subjects. The shape of a histogram, or a PETH, 
changes every time the bin size changes. To get 
accurate values and comparable results across 
different trials, it is therefore important to look 
for an optimal size for the bin. The algorithm 
we used to calculate the optimal bin size was 
suggested by Shimazaki and Shimoto, 2007 
[25]. The resulting optimal bin number is 60 in 
our case. In the last step, we used the MATLAB 
version of the code published by Wallstrom et 
al. (2008) to smooth the PSTH [26] (see Fig. 1C).

2.11 BARS: Statistical Analysis
In order to statistically approach the spline, we 
determined: (a)  λmean, i.e. the average expectation 
value of all bin-specific λ(t), (b) the range of  
λ(λ range) being the range from the maximum 
and minimum λ value, and (c) bin-specific λ(t), 
group comparisons were statistically addressed 
using the non-parametric Mann-Whitney Tests 
with performance group as an independent 
factor (good vs. bad performers) and  λmean,  λrange 
as well as bin-specific λ(t) as the dependent 
variables. Effects were considered significant 
when passing a statistical threshold of p<.05 
FDR-corrected. 

The characterisation of the timing was based 
on the number of peaks and valleys and was 
reported descriptively. 

3. Results

3.1 Behavioral results
We found that good performers committed 
less errors (accuracy), responded faster 
(reaction times) and were not as distracted 
by incongruent targets as bad performers 
(executive attention network score). The 
attention network scores of alerting and 
orienting we did not differ significantly 
between groups - (i) accuracy: good performers 
97.9±1.6%, bad performers 95.1±5.2%, T=2.5, 
p<.05.; (ii) reaction time: good performers 
504±57ms, bad performers 558±68ms, T=2.9, 
p<.05; (iii) executive attention network: 
good performers 55±13ms, bad performers 
97±16ms, T=9.5, p<.01; (iv) alerting network: 
good performers 54±17ms, bad performers 
51±24ms, T=0.5, n.s.; (v) orienting network: 
good performers 77±26ms, bad performers 
64±32ms, T=1.4, n.s. 

3.2 GLM results
Across all subjects, we found a significantly 
activated bilateral fronto-parieto-striatal 
attention network with significant activation 
bilaterally within the superior parietal lobe 
(SPL), middle frontal gyri (MFG) and pallidum 
(for details see table 1 and Fig. 2), accompanied 
by an increased activation within the primary 
motor cortices, reflecting motor activation 
during button presses (x=-56, y=-20, z=30, 
k=367, T=7.1). Only attention-related regions 

Fig. 1. Analysis Steps. Figure 1 represents the analysis steps exemplarily for the task-related time course of the 
right prefrontal cortex (PFC). In (A), tick marks represent BOLD events of a specific subject (y-axis) at a certain time 
point (x-axis). In (B), tick marks have been converted into a Peri Event Time Histogram (PETH) by counting the 
overall number of BOLD events (y-axis) at a certain time bin (x-axis); BARS: Bayesian Adaptive Regression Splines. 
In (C), the smoothed  PETH is shown.
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were considered as ROIs and processed for 
BARS analysis.

The group comparison of the Main Effect of 
Attention Network Task revealed a significantly 
stronger activation bilaterally in the SPL, 
right PFC and striatum in good performers as 
compared to bad performers. In contrast, bad 
performers activated the left PFC more strongly 
(see table 1) (figure 3A).

3.3 BARS results
Analyses revealed differences between 
performance groups bilaterally in the parietal 
regions, left PFC and striatum with regard 
to both the average expectation value λmean 
and range λrange. The λmean was significantly 
higher in the left PFC of bad performers 
as compared to good performers (lSPL: 
Mgood=0.35±0.07, Mbad=0.40±0.09, Z=1.9, n.s.; 
rSPL: Mgood=0.36±0.10, Mbad=0.36±0.07, Z=0.1, 
n.s.; lPFC: Mgood=0.34±0.07, Mbad=0.41±0.08, 
Z=3.0, p<.05; rPFC: Mgood=0.33±0.05, 
Mbad=0.34±0.05, Z=0.5, n.s.; striatum: 
Mgood=0.32±0.04, Mbad=0.37±0.09, Z=2.2, n.s.), 
whereas they were similar in all other regions 
between performance groups. However, 
expectation values varied more strongly in 
terms of higher λrange in the left SPL and striatal 
region in bad performers (lSPL: Rangegood=0.53, 
Rangebad=0.61, Z=3.2, p<.05; rSPL: 
Rangegood=0.58, Rangebad=0.47, Z=4.1, p<.01; 
lPFC: Rangegood=0.50, Rangebad=0.46, Z=1.6, n.s.; 
rPFC: Rangegood=0.42, Rangebad=0.44, Z=1.2, 
n.s.; striatum: Rangegood=0.16, Rangebad=0.61, 
Z=21.9, p<.01) with no significant differences 
in the PFC region. In the right SPL, the range 
was higher in good performers as compared to 
bad performers. Finally, significant differences 
in bin-specific λ(t) values were found in all 
regions except for the right PFC, and also in 
the enhanced λ(t) values of bad performers as 
compared to good performers (for detail see 
table 2). 

With regard to the timing characteristics, 
good performers presented a flat U-shaped 
curve in all regions except for the right SPL. 
Bad performers, however, presented several 
fluctuations in the left SPL (ngood=1, nbad=3), 
striatum (ngood=1, nbad=4), and left PFC (ngood=1, 
nbad=2) with significant deviations in the 
expectation value in several bins (for exact 

localization see table 2 and figure 3B). In the 
right SPL (ngood=2, nbad=2), fluctuations were 
similar between both groups but were more 
pronounced in good performers. 

3.4 Comparing GLM and BARS results

For the last step, we descriptively contrasted 
results from both analyses, GLM and BARS, 
to identify convergent and complementary 
information of both methodological 
approaches (see table 3). In doing so, we have 
identified three different patterns in reference 

Table 1. Network Regions, results from GLM analyses

Contrast x,y,z Z Region

Main Effect of the ANT --28 -56 54 7.8 lSPL

22 -60 62 7.8 rSPL

-40 10 34 5.2 lPFC

38 6 32 4.2 rPFC

-18 -2 6 4.6 pallidum

good > bad performers -22 -48 74 3.2 lSPL

34 -42 48 3.0 rSPL

32 26 36 3.0 rPFC

pallidum

bad > good performers -52 34 2 3.1 lPFC

Note. lSPL: left superior parietal lobe, lPFC: left prefrontal cortex, rSPL: right  superior parietal lobe, activation was 
significant when p<.05, FDR-corrected  for multiple comparisons

Table 2. Bin-specific expectation value

Region Bins Good performers Bad performers Z

lSPL 4-19 .38(.02) .47(.04) 3.9**

31-51 .32(.04) .40(.04) 4.3**

lPFC 37-51 .32(.03) .37(.03) 3.9**

rSPL 17-44 .25(.01) .30(.01) 4.0**

striatum 11-28 .24(.004) .28(.001) 3.4*

34-54 .32(.01) .38(.02) 4.2**

Note. lSPL: left superior parietal lobe, lPFC: left prefrontal cortex, rSPL: right superior parietal lobe, **: p<.01, FDR-
corrected for multiple comparisons; *: p<.05, FDR-corrected for multiple comparisons.

Fig. 2. Brain activation. Figure 2 shows GLM results of the contrast Main effect of the Attention Network Task. The 
bilateral fronto-parieto-striatal network was significantly activated in n=47, and p<.05 FWE-corrected.
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to altered processing in bad performers: 
(a) stronger activation was combined with 
an enhanced average expectation values λ 
and bin-specific λ(t) values in the left PFC, 
(b) reduced activation was combined with 
enhanced fluctuation in terms of significantly 
enhanced range width of the expectation value  
λ and a higher number of peaks and valleys 
in the left SPL and striatum. In addition, some 
of the peaks λ increased significantly, and (c) 
reduced activation did not show significant 
differences with regard to λ (e.g. rPFC). 

4. Discussion

In this study, we have investigated the influence 
of task performance on multiple levels of 
attention processing: behavioral performance, 
brain activation as well as the amplitude and 
timing of regional time course. We found that 
bad performers had longer reaction times and 
higher executive attention network scores 
on the behavioral level. On the neural level, 
altered performance was associated with 

(a) reduced right fronto-striatal and bilateral 
parietal activation and (b) an enhanced left 
PFC activation. Additionally, across the entire 
time course, the left PFC region presented 
an enhanced BOLD signal amplitude in bad 
performers, hinting towards a compensatory 
enhanced gamma power in the left PFC. In the 

left SPL and striatum, reduced neural activation 
was accompanied by an enhanced range width 
of λ as well as stronger fluctuations during 
these time courses, suggesting a stronger beta 
power in bad performers within these regions. 
Splines in the right SPL and right PFC were 
similar between performance groups.

Fig. 3. Significant differences in BOLD events in the PFC. In figure 3(A), performance-specific activation patterns are presented: left side- good > bad performers, right side- 
bad > good performers. Significant activation was overlaid on a standard anatomical brain image. 3(B) shows group-specific BARS for brain regions. The x-axis shows the 
timeline, indicated by scans, the y-axis represents the expectation value λ for a BOLD event. Blue line - bad performers, black line - good performers, criss-cross lines indicate 
the bins with significant differing expectation values.

Table 3. Schematic overview of the relation between GLM and BARS parameters highlighting BARS advantage 
over GLM with regard to timing/beta power information 

Region GLM λmean λrange Timing λBin-spec

(a) enhanced activation & enhanced λ in bad performers

lPFC ↑ ↑ n.s. ↑ ↑

(b) reduced activation & enhanced fluctuation in bad performers

lSPL ↓ n.s. ↑ ↑ ↑

stria ↓ n.s. ↑ ↑ ↑

(c) similar curvature between performance groups

rSPL ↓ n.s. ↓ n.s. ↑

rPFC ↓ n.s. n.s. n.s. n.s.

Note. lSPL: left superior parietal lobe, lPFC: left prefrontal cortex, rSPL: right superior parietal lobe
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4.1 Reduced right fronto-parieto-
striatal functioning and enhanced 
beta power
As introduced, the right frontal and bilateral 
parietal regions form the core of attention 
networks [17,27,28], thus the relation between 
impaired performance and reduced activation 
in these regions seems plausible. The finding 
that reduced right fronto-parietal activation 
was related to an increased beta activity fits 
nicely into this context, with an increased beta 
activity hinting towards decreased processing 
abilities [14]. In detail, bad performers showed 
higher fluctuations mainly in parietal and 
striatal processing. Within a fronto-parietal 
attention network, parietal activity has 
been associated with bottom-up attentional 
orienting [29], reflecting screening processes 
for stimuli [30]. Thus, continuous parietal 
processing in bad performers might reflect a 
constant parietal bottom-up processing and 
indicate a hyperaroused basal attentional state. 
With regard to beta oscillations in attention 
processing, firing rates in the pallidum 
exhibited a linear decrease in sequences of 
correct responses in a reward learning task in 
monkeys [31]. In addition, beta oscillations 
in the human pallidum have been associated 
with motor control in healthy volunteers 
[32], as well as with alterations of the same 
in patients with Parkinson’s Disease [33,34]. 
In sum, a higher beta power in the parietal 
and striatal regions is associated with altered 
attentional performance and motor control. In 
combination with reduced brain activation in 
the right PFC, reflecting impaired top-down 
control, our findings revealed a plausible 
neural explanation for impaired behavioral 
performance in bad performers. 

4.2 Enhanced activation and gamma 
power in the left PFC
Brain activation as well as gamma activity in 
the PFC have predominantly been associated 
with cognitive control, top-down control 
and attention allocation [35-38]. However, 
prefrontal recruitment in attentional networks 
induced by the ANT shows a right-hemispheric 
preference [15,17], which seems to be 
ontogenetically determined as developmental 
studies have reported that a reduction of 

left PFC activation with network maturation 
paralleled with performance improvement [39-
41]. Thus, additional activation and increased 
gamma power in the contralateral PFC might 
reflect a compensatory mechanism to optimize 
performance. Alternatively, the left PFC plays a 
role in attentional processing of verbal learning 
[42,43], auditory conflict processing [44], and 
selective attention to lexical and speech sound 
[45,46]. Thus, it is possible that bad performers 
in our study used a verbal strategy before or 
during responding with a button press. A verbal 
indication of the direction would be mirrored 
by left PFC activation and gamma power and 
this might also explain the longer reaction time 
as verbalization might take some milliseconds. 

4.3 The combination of GLM and 
BARS and the transfer of knowledge 
between species
In this study, we aimed to prove that BARS 
applied on human fMRI time courses 
reflects neural processing as it is the case 
in the modeling of neural responses of 
electrophysiological recordings on rodents. 
We argue that the present combined findings 
are in line with earlier findings from EEG and 
fMRI studies as well as from animal and human 
studies. 

However, the application of BARS on fMRI 
data, to date, has mainly been theoretically in 
terms of BARS acting as “a flexible denoiser for 
fMRI time courses, where all smooth sources 
of variation are combined into the function 
being estimated”, and serving as “a front-end 
to spatial and regional analyses and group 
comparisons, automatically incorporating 
variation in response shape and magnitude 
across the replicated task blocks in the 
experiment” [4]. Therefore, this is the first fMRI 
study empirically applying the BARS approach 
on fMRI time courses and contrasting it with 
the standard fMRI data analysis to explore 
the validity of the approach in cognitive 
processing, instead of a methodological one. 
Thus we relied on the theoretical combination 
of statistical (fluctuations of λ(t) of the BOLD 
signal) and neuroscientific findings (amplitude 
and timing of the BOLD signal reflect gamma 
and beta power). However, to empirically prove 
the validity of these assumptions, we directly 

compare findings from BARS (new approach) 
with findings from GLM analyses (standard 
approach) of the same data set as a first data-
set specific validation and discuss them in 
the context of earlier findings in terms of a 
second external validation. This way  we aimed 
to undermine that BARS is a valid statistical 
approach to look at characteristics of the BOLD 
response beyond the usual activation and 
connectivity patterns.

Nevertheless, it is crucial to gain more 
experience especially with this approach 
because BARS addresses brain activation 
data in terms of curves, not condition-specific 
activation patterns. To interpret the findings, a 
change of perspective is needed. For example, 
Behseta and Chenouri (2011) compared curves 
of neuronal data between two populations 
and their reports predominantly consist of 
the description of differences between groups 
in curve shapes [3,8]. In our study, we also 
found that differences were bin-specific, which 
means they were only significantly different in 
certain periods of time. For example, gamma 
power in the left PFC was enhanced in bad 
performers only in the last quarter of the task. 
Does this finding reflect a stronger need for 
concentration in bad performers as compared 
to good performers at the end of the task based 
on a higher fatigue in this group? Or is it more 
likely that this is based on general differences 
in fluctuations in this region over the course 
of the whole experiment but significantly only 
within these bins? To better understand the 
information provided by BARS from fMRI data, 
further studies are crucial and needed.

Furthermore, we propose BARS as a potential 
statistical approach for data analysis across 
species. In the present human fMRI study, we 
were not able to directly relate our findings 
to neurophysiological recordings measuring 
gamma and beta powers, so the transfer of 
results relied on literature references and had 
to be considered theoretically. Therefore, a 
translational study design would be of high 
interest, including both neurophysiological 
recordings from rodents and fMRI time courses 
from humans acquired while performing the 
same behavioral paradigm [e.g., 5-choice serial 
reaction time task; animal version: 47; human 
version: 48, human fMRI version: 49). Species-
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specific neural data could be analyzed with 
BARS to extract neural firing/BOLD responses 
facilitating the direct comparison of findings, 
and also to improve the interpretation of 
human results significantly. 

Based on the current findings, we conclude 
that the present results suggest performance 
variations to be associated with alterations in 
BOLD amplitude and its temporal dynamics 
of frontal top-down and bottom-up parietal 
processing. Based on the relationship between 
neural signaling and BOLD response, we argue 

that bad performance is associated with both 
increased activation and gamma power in the 
left PFC, along with a reduced brain activation 
and an increased beta power in the parietal and 
striatal areas. With regard to the harmonization 
of translational study protocols, BARS seems to 
be a promising tool for data analysis. 
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