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Long non-coding RNAs (lncRNAs) can potentially regulate all aspects of cellular activity
including differentiation and development, metabolism, proliferation, apoptosis, and
activation, and benefited from advances in transcriptomic and genomic research
techniques and database management technologies, its functions and mechanisms in
physiological and pathological states have been widely reported. Liver fibrosis is typically
characterized by a reversible wound healing response, often accompanied by an
excessive accumulation of extracellular matrix. In recent years, a range of lncRNAs
have been investigated and found to be involved in several cellular-level regulatory
processes as competing endogenous RNAs (ceRNAs) that play an important role in
the development of liver fibrosis. A variety of lncRNAs have also been shown to contribute
to the altered cell cycle, proliferation profile associated with the accelerated development of
liver fibrosis. This review aims to discuss the functions and mechanisms of lncRNAs in the
development and regression of liver fibrosis, to explore the major lncRNAs involved in the
signaling pathways regulating liver fibrosis, to elucidate the mechanisms mediated by
lncRNA dysregulation and to provide new diagnostic and therapeutic strategies for liver
fibrosis.
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1 INTRODUCTION

1.1 Overview of Liver Fibrosis
As a globally important public health problem, liver fibrosis is typically characterized by a reversible
wound healing response and an accompanying imbalance between increased synthesis and
deposition and decreased degradation of extracellular matrix (ECM), resulting in programmed
overaccumulation of ECM components (Nudelman et al., 1998; Aydin and Akcali, 2018). Numerous
epidemiological studies have revealed the etiological role of various chronic liver diseases and
associated liver injury-healing reactions in liver fibrosis, such as hepatitis (non-alcoholic
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steatohepatitis (NASH), hepatitis B and C and so on) and biliary
obstruction, which are closely associated with its progression
(Parola and Pinzani, 2019). Mechanistic studies at the cellular
level suggest that hepatic stellate cells (HSCs) located in the Disse
space between hepatic sinusoidal endothelial cells and hepatic
epithelial cells and maintaining a close interaction with both are
the main sites for the production of ECM components (Geerts,
2001; Khomich et al., 2019), and furthermore, numerous studies
have revealed that their intracellular lipid droplets, which are
specific organelles for hepatic retinoic acid storage (Blaner et al.,
2009; Elpek, 2014), could lead to liver disease disorders through
efflux, depletion, and loss. undesirable progression (Yin et al.,
2013; Ray, 2014; Krizhanovsky et al., 2008). Thus, studies on the
activation mechanisms of hematopoietic stem cells are of great
concern in proposing new therapies against hepatic fibrosis and
in improving the original strategies (Figure 1).

1.2 Overview of LncRNAs
In recent years, numerous non-coding RNAs (ncRNAs) molecules
have been identified benefiting from the application of RNA
microarrays and next-generation transcriptome sequencing
technologies, enabling humans to deepen their understanding of
the pathophysiology of multiple diseases from a new perspective
(Consortium et al., 2007). ncRNAs are well known for not encoding
proteins at the RNA level but can perform as key regulators of
multiple regulatory gene expression as well as cellular signaling
pathways (Heo et al., 2019). NcRNAs are categorized according to
their relative size into two types: small or short non-coding RNAs
(miRNAs) of less than 200 nucleotides (nt) and long non-coding
RNAs (lncRNAs) of greater than 200 nucleotides (Riaz and Li, 2019).
The most prominently researched endogenous small ncRNAs,

known as miRNAs, mainly regulate the post-transcriptional levels
of target genes by binding to the 3′ untranslated region (3′ UTR) of
mRNAs, thus playing an important role in regulating the cell growth
cycle as well as the expression of specific cell differentiation and cell
death-related genes, lipid metabolism, and inflammatory responses.
miRNAs have shown association with various liver diseases
including liver fibrosis (Zhang CY. et al., 2016; Lan et al., 2018;
Zhao et al., 2019).

As a novel ncRNAs, lncRNAs are predominantly transcribed by
RNA polymerase II and exhibit multiple functions at themolecular
level (Figure 2) (Ma et al., 2016b), the lncRNAs are classified
according to their relative position on the chromosome to the
coding gene as: 1. antisense lncRNAs, 2. intronic lncRNAs, 3.
divergent lncRNAs, 4. intergenic lncRNAs, 5. promoter upstream
lncRNAs, 6. promter-associated lncRNAs, 7. transcription start
site-associated lncRNAs. LncRNAs regulate the expression of
different genes based on their different cellular locations in
multiple molecular mechanistic pathways including chromatin
modification, transcriptional regulation, and post-transcriptional
regulation (Zhang et al., 2014; Kopp and Mendell, 2018).

1.2.1 LncRNA Regulates DNA Methylation
Modifications
Tsix inhibits Xist transcription by recruiting CTCF to the Xist
promoter region, while JPx inhibits CTCF transcriptional
repression of Xist by binding CTCC (CCCTC-binding factor);
Khps1a participates in the T-DMR (tissue-dependent) region
demethylation of Sphk1 by an unknown mechanism; Dum cis-
recruits DNMT1, DNMT3A, DNMT3B, and etc. to the promoter
region of the neighboring gene Dppa2. differentially methylated
region) of Sphk1; Dum cis-recruits DNMT1, DNMT3A and

FIGURE 1 | Pathogenesis of liver fibrosis. The release of damage-related patterns (DAMPs). and apoptotic bodies can be induced by chronic hepatocyte injury,
which activates hematopoietic stem cells and recruits immune cells. Moreover, the complex multidirectional interaction between activated hematopoietic stem cells and
Kupffer cells and innate immune cells promotes transformation and differentiation into proliferation and ECM to generate myofibroblasts.
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DNMT3B to the promoter region of the neighboring gene Dppa2
and causes silencing of methylation in this region, thereby
suppressing Dppa2 expression and leading to differentiation of
skeletal muscle myogenic cells into myoblasts (Guttman et al.,
2011; Bian et al., 2019; He et al., 2020).

1.2.2 LncRNAs Are Involved in Pre-transcriptional
Regulation
Xist (X chromosome inactivation specific transcript) and RepA
(transcript of the adenine repeat region at the 5′ end of the Xist
gene) synergistically wrap the X chromosome and recruit PRC2 to
establish H3K27me3 to cause X chromosome inactivation; Bxd
(Bithoraxoid) binds to ubx-TRE (Ubx cis-regulatory trithorax
response elements) and recruits ASH1 to activate Ubx
transcription; HOTAIR regulates the expression of the HoxD gene
cluster in trans by interacting with two histone modification
complexes: catalytic PRC2 complex established by H3K27me3, and
the LSD1-CoREST-REST complex catalyzing H3K4me2/3 erasure
(lysine-specific demethylase1-RE1-Silencing Transcription factor
corepressor 1-RE1 -Silencing Transcription factor complex);
HOTTIP (HoxA transcript at the distal tip) recruits MLL (Mixed
lineage) viaWDR5 (WDrepeat-containing protein 5) leukemia) to the
5′ region of the HoxA gene cluster, which catalyzes the establishment
of H3K4me3 and activates the expression of genes such as Hoxa11
and Hoxa13 in cis; Mira can form a DNA/RNA heterodimer with its
locus and recruit MLL1, a member of the TrxG complex, which
catalyzes the establishment of H3K4me3 and activates adjacent genes
Hoxa6 and Hoxa7 expression, leading to differentiation of mES to the
germline; Evf2 acts as a coactivator of DLX2 at high concentrations,
enhancing Dlx5/6 enhancer activity and activating Dlx5 and Dlx6
transcription, while at low concentrations it can cis-suppress Dlx6
transcription through its Dlx6 antisense property, by recruiting
MECP2, and thus HDAC Dlx5; asOct4-pg5 can recruit histone
methyltransferases such as EZH2 and G9a to bind to the promoter
regions of Oct4 and Oct4-pg5, establishing repressive chromatin
modifications such as H3K27me3 and H3K9me3, which in turn
repress transcription of Oct4 and Oct4-pg5, and when as Oct4-pg5 is
combined with PURA (purine rich element binding protein A) and
NCL (nucleolin), the ability to recruit EZH2 and G9a is lost and the
repressive function is lost; the nascent ANRIL (antisense noncoding
RNA in the INK4 locus) binds to CBX7 and ANRIL binds to CBX7
and promotes heterochromatin formation, while the formed ANRIL-
CBX7 complex unbinds CBX7 to H3K27me3, leaving transcriptional
repression in a dynamic state of flux. ANRIL recruits PRC2, allowing
the INK4β/INK4α/ARF gene cluster to establish repressive
modifications such as H3K27me3. ANRIL binds to SUZ12 and
cis-represses INK4β transcription; DBE-T cis-recruits Ash1L to the
4q35 region, catalyzing the establishment of activating chromatin
modifications such as H3K36me2, which activates gene transcription
in the 4q35 region, ultimately leading to FSHD (facioscapulohumeral
muscular dystrophy) disease (Guttman et al., 2011; Kopp and
Mendell, 2018; Riaz and Li, 2019).

1.2.3 LncRNAs Are Involved in Transcriptional
Regulation
Xite and DXPas34 regulate Tsix expression in cis with
enhancer activity; transcription of SER3 gene biosynthesis-

associated 3-phosphoglycerate dehydrogenase in the
biosynthesis of serine is regulated by lncRNA SRG1 (SER3
regulatory gene 1); Pwr1 interferes with the transcription of
Icr1; Icr1 interferes with the transcription of Fol11; DHFRtinc
interferes with the transcription of DHFR; Airn interferes with
the transcription of Igf2r; Gas5 inhibits the binding of
activated GR to target genes (Zhang et al., 2014; Ma et al.,
2016b).

1.2.4 LncRNAs Are Involved in Post-transcriptional
Regulation
Malat1 regulates variable shear of Cat1 pre-mRNA; Zeb2-anti is
involved in variable shear of Zed2; PTENpg1 asRNA β promotes
PTENpg1 exit from the nucleus; Neat1 promotes retention of
mRNA with IRAlus structure in the 3′ UTR region within
paraspeckles; BACE1-AS increases BACE1 stability; MDRL as
ceRNA promotes pri-miR484 maturation (Bian et al., 2019; He
et al., 2020).

It has been reported that lncRNAs are usually involved in the
progression of human-related diseases by such ways as being
deregulated (Guttman et al., 2011; He et al., 2020), and some
studies have shown that lncRNAs are involved in the key process
of liver fibrosis by acting as regulators of HSC activation (Wang
et al., 2014; Bian et al., 2019). Even though we can observe an
impressive amount of literature suggesting an important role of
lncRNAs in the liver fibrosis process, it is undeniable that the
detailed mechanisms of lncRNAs in liver fibrosis remain unclear
until now. In this review, we aim to provide a review of the latest
developments in lncRNAs research, elaborate on the interactions
between lncRNAs and miRNAs, and further evaluate the
potential of lncRNAs as new therapeutic targets in liver fibrosis.

2 THE REGULATORY ROLE OF LNCRNAS
IN LIVER FIBROSIS

The distribution of lncRNAs in liver fibrosis has been detected
by the latest high-throughput methods such as next-
generation sequencing and microarrays (Zheng et al., 2015;
Xiong et al., 2016), and the pleiotropic nature of lncRNAs has
been demonstrated in the activation and apoptosis of HSCs
and the progression of multiple liver fibrosis by interacting
with molecules such as miRNAs, specific structural domains,
and proteins to regulate key genes in liver fibrosis, thus
exerting their potential (Bu et al., 2020). In this paper, we
review the role of lncRNAs in liver fibrosis and their potential
mechanisms in the development of liver fibrosis. Table 1
provides a summary of the expression patterns, functional
roles, and regulatory mechanisms of lncRNAs.

2.1 LncRNAs Involved in the Promotion of
Liver Fibrosis
2.1.1 LncRNA HULC
Panzitt et al. identified for the first time the highly up-regulated
hepatocellular carcinoma LncRNA (HULC) of approximately
500 nucleotides containing two exons located on chromosome
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6p24.3 as the most highly expressed lncRNA in human
hepatocellular carcinoma, whose transcribed RNA does not have
a considerable open reading frame nor does it produce any protein
(Panzitt et al., 2007). The HULC promoter and its first exon are in a
long terminal repeat sequence (LTR) retrotransposon-like sequence
(Kapusta et al., 2013). The upregulation trend of HULC can be
observed in all accessible studies on hepatocellular carcinoma (HCC)
(Chen et al., 2017; Xin et al., 2018; Ghafouri-Fard et al., 2020b).
Several literatures have reported that HULC is upregulated in cancer
and is regulated as an oncogene lncRNA in tumorigenesis and
progression (Kitagawa et al., 2013; Parasramka et al., 2016).
Considering its high expression in HCC cells, previous studies
have also shown the potential of HULC as a novel antitumor
therapeutic agent (Klec et al., 2019). cAMP response element
binding protein (CREB) is usually bound to and activated by the
target promoter (Mayr andMontminy, 2001; Kong et al., 2016), and
Wang et al. demonstrated the presence of CREB binding sites in the
HULC promoter region and the ability to further activate the HULC
promoter (Wang et al., 2010), which can affect the expression of
HULC at the transcriptional level (Shen X. et al., 2019). Shen et al.
revealed the role of lncRNAHULC in the progression of liver fibrosis
in rats with nonalcoholic fatty liver disease (NFALD) and that
inhibition of HULC suppressed steatosis. The degree of hepatic
steatosis, inflammation, hepatocyte red lipid vesicles and apoptosis
were also significantly reduced with the knockdown of HULC gene.
Inhibition of HULC significantly reduced liver fibrosis scores and
liver fibrosis indices (HA, LN, PC III, and IV-C) (Shen X. et al.,
2019). Inhibition of HULC improved liver fibrosis and reduced
hepatocyte apoptosis in NAFLD rats. In general, the above findings
not only provide valuable candidate molecular markers for liver
fibrosis and indicators of advanced liver fibrosis but also provide new
insights into the role of lncRNA in the biology of cancer.

2.1.2 LncRNA Nuclear Paraspeckle Assembly
Transcript 1
Nuclear paraspeckle assembly transcript 1 (NEAT1) was
characterized as an unusual RNA polymerase II transcript that

lacks introns and accompanied by non-canonical processing of
the non-polyadenylated 3′-end by RNase P (Ding et al., 2019).
NEAT1 was found to be upregulated in gastric adenocarcinoma
and human laryngeal squamous cell carcinoma (Ma et al., 2016a;
Wang et al., 2016), which suggested that it promotes tumor
development by promoting cell proliferation and survival as
well as inhibiting apoptosis (Choudhry et al., 2015). A similar
situation has been observed in hepatocellular carcinoma (Guo
et al., 2015). Yu et al. examined NEAT1 expression in cCl4-
induced mice. qRT-PCR analysis showed increased expression of
NEAT1 in CCl4-treated livers compared to control livers, and a
significant increase in NEAT1 expression in HSCs was also
observed during different weeks of CCl4 treatment (Yu et al.,
2017b), Huang et al. screened the aberrantly expressed
microRNAs in the CCl4-induced mouse liver fibrosis model
by analyzing the GSE77271 microRNA microarray based on
the Agilent-046065 mouse miRNA V19.0 platform. Neat1
simultaneously targeted miR-148a-3p and miR-22-3p, and
showed the most significant increase in liver fibrosis mice that
displayed the most marked increase in expression upregulation,
and its expression in the CCl4 group exceeded 2-fold that of the
control group (Huang et al., 2021), and inhibition of NEAT1 was
observed to reverse isotropic liver fibrosis with concomitant
reduction in α-SMA and type I collagen content, which was
further confirmed by NEAT1 knockdown assays and NEAT1
overexpression assays (Yu et al., 2017b). A similar situation was
confirmed in the alcoholic steatohepatitis (ASH) assay by Ye et al.
(Ye et al., 2020). Inhibition of NEAT1 suppressed ethanol-
stimulated elevated lipid metabolism and inhibited
inflammatory responses in AML-12 cells. More importantly,
inhibition of NEAT1 upregulated ethanol-induced hepatic
function in ASH mice and inhibited lipid, inflammatory
responses, hepatocyte apoptosis, and hepatic fibrosis,
demonstrating that knockdown of NEAT1 inhibited hepatic
fibrosis in ASH mice and thus slowed down the development
of ASH (Ye et al., 2020). Related mechanistic studies suggest that
Kruppel-like factor 6 (KLF6), as an important pro-fibrotic gene, is

TABLE 1 | The expression of lncRNA in liver fibrosis.

lncRNAs Expression Role Functional role References

lncRNA NEAT1 Upregulated Promotion of liver
fibrosis

HSC activation, inflammatory response Yu et al. (2017b); Ye et al. (2020)

lncRNA SNHG7 Upregulated Promotion of liver
fibrosis

HSC activation, autophagy and proliferation, survival, cell cycle Yu et al. (2019); Xie et al. (2021)

lncRNA H19 Upregulated Promotion of liver
fibrosis

proliferation, activation, metabolism of lipid droplets, trans-
differentiation

Song et al. (2017); Wang et al.
(2020a)

lncRNA
MALAT1

Upregulated Promotion of liver
fibrosis

HSC proliferation, cell cycle, and activation Yu et al. (2015a); Wu et al. (2015)

lncRNA
HOTTIP

Upregulated Promotion of liver
fibrosis

HSC cell proliferation and activation Li et al. (2018a); Zheng et al. (2019)

lncRNA TUG1 Upregulated Promotion of liver
fibrosis

HSC activation Han et al. (2018); Zhang et al.
(2020a)

lncRNA HULC Downregulated Inhibition of liver fibrosis Hepatic steatosis, inflammation, hepatocyte red lipid vesicles, HSC
apoptosis

Shen et al. (2019a)

lincRNA-p21 Downregulated Inhibition of liver fibrosis HSC activation, proliferation, apoptosis Yu et al. (2017c); Tu et al. (2017)
lncRNA MEG3 Downregulated Inhibition of liver fibrosis HSC activation, proliferation, EMT Yu et al. (2018); Chen et al. (2019)
lncRNA GAS5 Downregulated Inhibition of liver fibrosis HSC activation, EMT Yu et al. (2015b); Dong et al. (2019a)
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involved in the regulation of liver fibrosis by NEAT1 (Yu et al.,
2017b), and that NEAT1 overexpression induces KLF6 mRNA
and protein expression. However, it is of interest that KLF6
knockdown experiments showed NEAT1-induced proliferation
of HSC, while KLF6 siRNA blocked NEAT1-induced α- SMA and
type I collagen production, suggesting that NEAT1 could mediate
HSC activation through KLF6 (Yu et al., 2017b). Huang et al.
suggested that NEAT1 knockdown could inhibit the process of
liver fibrosis and HSCs activation by regulating the expression of
a cellular adhesion element 3 (Cyth3) associated with allosteric
insulin signaling inmammals (Jux et al., 2019; Huang et al., 2021).
And Ye et al. further identified that downregulation of NEAT1
could limit the inflammatory response and liver fibrosis in ASH
mice by reducing suppressor of cytokine signaling 2 (SOCS2) (Ye
et al., 2020), which is a feedback inhibitor of the growth hormone/
insulin-like growth factor axis (Monti-Rocha et al., 2018).

2.1.3 LncRNA Small Nucleolar RNA Host Gene 7
It was first reported by Chaudhry in 2013 that a new full-length
2,176 bp oncogenic lncRNA, known as lncRNA small nucleolar
rna host gene 7 (SNHG7), expressed in lymphoblastoid cell lines
TK6 and WTK1 (Chaudhry, 2013), which is located on
chromosome 9q34.3. Recent studies have shown a significant
increase in its expression in tumor cells of digestive system,
breast, and prostate (Wu F. et al., 2020; Wu X. et al., 2020),
and further studies have demonstrated that SNHG7 is widely
involved in the proliferation, invasion and migration of various
tumor cells (Xia et al., 2020), including its regulation in the
progression of HCC and liver fibrosis (Cui et al., 2017). Just as Xie
et al. found increased expression of SNHG7 in primary HSCmice
as well liver fibrosis, suggesting its regulation of HSC activation
(Xie et al., 2021), and SNHG7 knockdown experiments showed
decreased expression levels of α-SMA and Col. I (Xie et al., 2021),
similarly SNHG7 inhibition was associated with reduced survival
and proliferation rates in liver fibrosis mice. Current studies have
identified several types of high confidence indicators of
autophagy, such as the cytoplasmic form of LC3, a key protein
in autophagosome formation (LC3-I), the active membrane-
bound form of LC3 (LC3-II), and Beclin1 (Wirawan et al.,
2012; Alirezaei et al., 2015; Dodson et al., 2017; Feng et al.,
2017). Xie et al. revealed that knockdown of SNHG7 could reduce
the decrease the expression level of Beclin1, LC3-II and LC3-I
ratio, demonstrating the inhibitory effect of SNHG7 knockdown
on HSC autophagy (Xie et al., 2021). DNMT3A induces a
DNMT-regulated DNA ab initio methylation process, and
DNA methylation/hydroxy methylation, a key step in HSC
activation and liver fibrosis development, can be inhibited by
activation of DNMT3A expression in HSCs (Garzon et al., 2009;
Page et al., 2016). Several recent mechanistic studies suggest that
SNHG7 knockdown is significantly associated with low
expression levels of DNMT3A. These results confirm the
relationship between SNHG7 and DNMT3A, which are novel
regulators of HSC activation, autophagy, and proliferation in liver
fibrosis (Xie et al., 2021). Yu et al. identified a positive correlation
between SNHG7 levels and type I collagen mRNA levels in
patients with cirrhosis (Yu et al., 2017b). In addition, SNHG7
showed a significant association in regulating activated HSCs

proliferation and the cell cycle associated with increased G0/G1
phase cells and decreased S phase cells. SNHG7 knockdown
experiments performed in activated HSCs inhibited type I
collagen expression (Yu et al., 2017b), as well as collagen
deposition and hydroxyproline due to carbon tetrachloride
were similarly blocked by silencing of SNHG7 in vivo,
suggesting that inhibition of liver fibrosis can be mediated by
downregulation of SNHG7 (Yu et al., 2017b). Furthermore, Yu
et al. demonstrated at the mechanistic level the role of SNHG7 in
regulating the expression level of irregular fragment polarity
protein 2 (DVL2) (Yu et al., 2017b; Nielsen et al., 2019),
which was positively correlated with DVL2, the deletion of
which also blocked its effect on HSCs activation (Yu et al.,
2017b). In conclusion, all these data suggest that SNHG7 is an
impressive possible therapeutic target and a potential diagnostic
marker for liver fibrosis.

2.1.4 LncRNA H19
LncRNA H19 is expressed only by the maternal allele 11p15.5,
which can encode 2.3 kb RNA and is transcribed by RNA
polymerase II (Gabory et al., 2006), splicing and
polyadenylation (Ghafouri-Fard et al., 2020a). It is exported
from the nucleus to the cytoplasm, adjacent to the insulin-like
growth factor 2 (IGF2) gene, and they are expressed from the
maternal and paternal genetic chromosomes, respectively (Raveh
et al., 2015; Wang J. et al., 2020). H19 RNA molecules have now
been observed to be present in the cytoplasm at much higher
levels than in the nucleus. H19 plays an essential role in biological
processes such as apoptosis, angiogenesis, inflammation and cell
death through regulatory RNA or ribosomal regulators
(Yoshimura et al., 2018). This includes the regulation of
proliferation, invasion, and metastasis processes in a variety of
tumors of the digestive system (Zhou et al., 2017; Wei LQ. et al.,
2019). Multiple complex mechanisms have been demonstrated in
different cancers (Zhang D. M. et al., 2017; Zhou et al., 2017). Of
interest is the upregulation of the level of intracellular transcripts
(Zhu et al., 2019) and extracellular exosomes (Li X. et al., 2018),
known as lncRNA-H19, observed in activated HSCs, which is
thought to be associated with HSCs-activated metabolic processes
like lipid (Liu et al., 2018) and cholesterol metabolism (Xiao et al.,
2019). Previous research concluded that the level of fibrosis in the
liver was positively correlated with the level of H19, and that H19
knockdown attenuated Bcl-2-induced liver injury (Zhang Y. et al.,
2016), while conversely H19 overexpression significantly
exacerbated the process of HSCs and EMT activation in
hepatocytes (Zhu et al., 2019). Song et al. demonstrated the
overexpression of H19 in bile duct ligation (BDL)-induced
liver fibrosis with abnormal liver function parameters (Song
et al., 2017), and identified a new downstream target gene of
ZEB1, called EpCAM (Song et al., 2017), which promotes
cholestatic liver fibrosis by interacting with the ZEB1 protein
to prevent its binding to the EpCAM promoter and thus the
inhibitory effect of ZEB1 (Song et al., 2017). Liu et al. reported
that cholangiocyte-derived exosomal H19 promotes cholestatic
liver injury in Mdr2−/− mice and promotes HSCs
transdifferentiation and activation, along with upregulation of
fibrotic gene expression in HSCs-derived fibroblasts (Liu et al.,
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2019). Wang et al. discovered that H19 can promote RARα and
RXRβmRNA and protein synthesis (Wang ZM. et al., 2020), and
its reduced expression reversed the extent of HSCs activation
induced due to increased retinoic acid signaling. Meanwhile, it
should be mentioned that H19 knockdown-mediated HSCs
inactivation was inhibited by the activation of retinoic acid
signaling. Furthermore, they demonstrated that H19
enhancement was positively associated with a synergistic
increase in retinoic acid metabolism during HSCs activation
(Wang ZM. et al., 2020). More significantly, they confirmed
that inhibition of ethanol dehydrogenase III (ADH3)
completely abolished the effect of H19-mediated retinoic acid
signaling, and that dihydroartemisinin (DHA), a natural inhibitor
of H19, reduced both H19 and ADH3 expression and thus
inhibited HSC activation (Wang ZM. et al., 2020). Taken
together, these results reveal some of the molecular
mechanisms underlying the increase in retinoic acid signaling
during HSCs activation and suggest that the lncRNA-H19/ADH3
pathway is a potential target for the treatment of liver fibrosis.
Similarly, H19 expression levels were increased in CCl4-induced
fibrotic liver thereby activating HSCs (Wang Z. et al., 2020).
Further studies revealed the role of hypoxia-inducible factor-1α
(HIF-1α) in promoting H19 expression by binding to the H19
promoter at two hypoxia response element (HRE) sites located at
492–499 and 515–522 bp (Wang Z. et al., 2020). H19 knockdown
experiments also resulted in significant inhibition of HSC
activation and attenuated liver fibrosis, suggesting that
lncRNAH19 may be a potential target for antifibrotic
therapeutic approaches. Moreover, the H19 silencing assay
reduced the degree of lipid oxidation and the H19 knockdown
assay restored the levels of lipid droplets, triglycerides, cholesteryl
esters and retinyl esters in HSCs without changes in lipid uptake
and synthesis (Wang Z. et al., 2020). In conclusion, as described
above, the results highlight the role of H19 in the proliferation,
activation and metabolism of lipid droplets in HSCs and reveal its
feasibility as a new molecular target to attenuate liver fibrosis.

2.1.5 LncRNA Metastasis-Associated Lung
Adenocarcinoma Transcript1
Ji et al. characterized a metastasis-associated lung
adenocarcinoma transcript (MALAT1) transcribed by RNA
polymerase II located on human chromosome 11q13 and
mouse chromosome 19qA (Zhang et al., 2012; Wilusz, 2016),
which is widely known for its properties in predicting early
NSCLC metastasis and survival (Ji et al., 2003), the major
transcript of MALAT1 is approximately mid-8 kb in humans
and 6.7 kb in mice (Wilusz et al., 2008). MALAT1-associated
small cytoplasmic RNA (mascRNA) is a larger fragment of
approximately 6.7 kb and a smaller fragment of 61 nucleotides
produced by the action of ribonuclease P and ribonuclease Z on
MALAT1 (Brown et al., 2014), while the larger fragment or
mature transcript is highly stable due to a unique triple-helix
structure at the 3′ end that protects it from nucleic acid
exonucleases (Zhang et al., 2012). The highly conserved and
widespread expression of MALAT1 in mammalian tissues and
cancers implies its functional importance; MALAT-1
dysregulation in a variety of cancers has been extensively

studied. In most cases, it functions as a promoting role in the
development of different types of tumors (Kim et al., 2018; Feng
et al., 2019). MALAT1 upregulation is closely associated with the
development of cancers such as lung (Wei S. et al., 2019),
glioblastoma (Voce et al., 2019), esophageal squamous cell
carcinoma (Chen M. et al., 2018), renal cell carcinoma (Zhang
H. et al., 2019), colorectal cancer (Zhang H. et al., 2019; Xie et al.,
2019), osteosarcoma (Chen Y. et al., 2018), multiple myeloma
(Amodio et al., 2018), gastric cancer (Zhang YF. et al., 2020),
gallbladder cancer (Lin et al., 2019), and other cancers (Tian and
Xu, 2015), as well as other clinicopathological features including
tumor location, tumor size, differentiation and tumor stage
(Goyal et al., 2021). Numerous studies have shown that as a
biomarker for tumor diagnosis and prognosis, the abnormal
expression of MALAT1 in tumor tissues and/or body fluids is
highly indicative (Leti et al., 2017; Peng et al., 2018). In a physical
and functional interaction study with the liver fibrosis process, Yu
et al. found that MALAT1 expression was significantly
upregulated in fibrotic liver tissues and simultaneously
activated HSCs (Yu et al., 2015a), while silencing MALAT1
suppressed the mRNA levels of α-SMA and Col.I and
downregulated the protein levels of α-SMA and collagen type I
in HSC respectively (Yu et al., 2015a). Sirius red staining of
collagen in mouse liver tissue resulted in the observation that
mice transduced by silencing MALAT1 showed a 54%
downregulation of collagen accumulation compared to CCl4-
treated mice (Yu et al., 2015a), reflecting the role of MALAT1 in
accelerating the progression of liver fibrosis in vivo. Dai et al. used
arsenite treatment of L-02 cells as well as co-culture of LX-2 cells
and found thatMALAT1 expression levels increased as well as co-
culture promoting activation of LX-2 cells (Dai et al., 2019). They
further discovered that MALAT1 levels were increased in
exosomes of arsenite-treated L-02 cells and LX-2 cells exposed
to exosomes from arsenite-treated L-02 cells (Dai et al., 2019),
and these exosomes also promoted LX-2 cell activation; blocking
MALAT1 expression simultaneously inhibited these changes,
thus suggesting a mechanism by which MALAT1 induces LX-
2 cell activation via exosomes. Silent information regulator 1
(SIRT1), as a member of the mammalian sirtuin family of
proteins (SIRT1-SIRT7) (Dai et al., 2019), is homologous to
the yeast Sir2 protein, and SIRT1 is involved in a variety of
biological processes and exhibits multiple physiological functions
through the deacetylation of many non-histone proteins
(Houtkooper et al., 2012). Wu et al. verified the important
role of SIRT1 in hepatic stellate cell activation and reversal
and its overexpression counteracting TGF-β1-induced LX-2
cell activation (Wu et al., 2015), suggesting its potential as an
alternative for the treatment of liver fibrosis. Further studies
found that the evolutionarily highly conserved MALAT1 has a
strong tendency to interact with SIRT1 (discriminatory power
100%) (Wu et al., 2015), which was verified in CCL4-treated mice
and LX-2 cells exposed to TGF-β1, considering that the
expression level of MALAT1 mRNA was significantly
upregulated and accompanied by negative changes in SIRT1
protein (Wu et al., 2015). MALAT1 silencing assay yielded
results that eliminated the TGF-β1-induced upregulation of
myofibroblast markers and the downregulation of SIRT1
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protein. These phenomena suggest a role for MALAT1 in
mediating the expression as well as the function of SIRT1 in
regulating liver fibrosis. In conclusion, these findings highlight
the role of MALAT1 in liver fibrosis and suggest a mechanism for
fibrosis development (Wu et al., 2015). However, future efforts
should be devoted to elucidating other regulatory mechanisms
and clinical implications of MALAT1 in liver fibrosis.

2.1.6 LncRNA HOXA Transcript at the Distal Tip
HOXA transcript at the distal tip (HOTTIP) is a functionally
characterized lncRNA (Li et al., 2016). Wang et al. demonstrated
that the HOTTIP gene is located at chromosomal locus 7p15.2
and encodes a 4665 bp transcript (Wang et al., 2011). Its function
is to directly interact with the Trithorax protein WDR5 and
induce open DNA chromatin conformation, target the WDR5/
MLL complex and drive histone H3 lysine 4 trimethylation for
transcriptional regulation of the 50-terminal HOXA locus gene
(Wang et al., 2011). This suggests that HOTTIP is not only
involved in developmental processes but also enhances the effect
of this lncRNA as a cancer-associated lncRNA considering its role
as a signaling transmitter from higher-order chromosome
conformation to chromatin coding (Wang et al., 2011).
Overall survival (OS), distant metastasis (DM), lymph node
metastasis (LNM), and tumor staging of human tumors have
been extensively studied and determined to be closely associated
with HOTTIP expression, suggesting that HOTTIP expression
may influence the prognosis and metastasis of several human
cancers (Broerse and Crassini, 1984; Quagliata et al., 2014). The
most representative case is the high HOTTIP expression in
human HCC specimens (Quagliata et al., 2014) and its close
correlation with clinical progression and disease outcome (Tsang
et al., 2015). It is worth mentioning that HOTTIP has long been
shown to be dysregulated in the early stages of hepatocellular
carcinoma formation, and recent studies suggest a positive
correlation between its expression and liver fibrosis
progression (Yang et al., 2019; He et al., 2020). Zheng et al.
verified the specific expression status of HOTTIP in liver fibrotic
tissue and primary quiescent HSC (Zheng et al., 2019), and their
qRT-PCR results showed a 22.6-fold increase in HOTTIP
expression on day 10 compared to day 2 increased 22.6-fold,
similar to the results from the group of oil-treated mice compared
to the group of CCl4-treated mice suggesting a significant
upregulation of HOTTIP expression in HSCs however this
phenomenon was not observed in hepatocytes (Zheng et al.,
2019). Furthermore, the mRNA and protein levels of α-SMA
and Col. I was also found to be reduced by hot-end silencing but
Edu incorporation assay demonstrated that hot-end
downregulation inhibited the proliferation of activated HSCs.
The above results suggest that HOTTIP downregulation could
inhibit HSCs activation and proliferation. Related mechanistic
studies suggest that HOTTIP is a target of miR-150 and is also
recruited to Ago2-associated miRNPs (Zheng et al., 2019),
possibly acting through miR-150 association. In addition,
bioinformatics analysis and luciferase analysis of a series of
experiments also confirmed the role of serum response factor
(SRF) as a target of miR-150. They further demonstrated that the
inhibition of HSCs activation was caused by an increase in SRF

mRNA expression due to HOTTIP overexpression (Zheng et al.,
2019). Li et al. revealed that HOTTIP expression was significantly
upregulated in fibrotic and cirrhotic liver samples, with the
highest in cirrhotic samples (Li Z. et al., 2018), and this was
also found in liver fibrotic tissue, primary HSC and activated LX-
2 cells. Inhibition of HOTTIP at themRNA and protein levels was
effective in reducing the expression of α- SMA and Col. I. They
found that downregulation of HOTTIP attenuated CCl4-induced
liver fibrosis in mice. In contrast, the relative survival of HSC in
LX-2 cells and the mRNA and protein levels of α-SMA and Col. I
were significantly reduced by HOTTIP knockdown (Li Z. et al.,
2018). Li et al. proposed a possible mechanism to promote HSC
activation, i.e., negative regulation of HOTTIP mediated by miR-
148a, considering that TGFBR1 and TGFBR2 were identified as
miR-148a novel targets in HSCs. TGFBR1 and TGFBR2 levels
were increased by high levels of HOTTIP, which led to the
progression of liver fibrosis (Li Z. et al., 2018). These results
highlight the potential of the HOTTIP/miR-148a/TGFBR1/
TGFBR2 axis as a potential marker and target in patients with
liver fibrosis. In conclusion, HOTTIP promotes HSCs cell
proliferation and activation suggesting its possible role as a
fibrogenic gene in liver fibrosis and plays a key role as a
prognostic marker and novel therapeutic target. However,
these still need to be investigated further.

2.1.7 LncRNA Taurine Upregulated Gene 1
The 7,598 nucleotide lncRNA sequence localized on chromosome
22q12.2, also known as taurine upregulated gene 1 (TUG1), was
initially identified in a genomic screen of taurine-treated mouse
retinal cells (Young et al., 2005; Zhang et al., 2013). Functional
studies in mice further demonstrated that knockdown of TUG1
inhibits retinal developmental processes (Khalil et al., 2009).
Khalil et al. demonstrated by whole genome RNA
immunoprecipitation analysis that approximately 20% of
lncRNAs (including TUG1) with methyltransferase activity
promote demethylation and trimethylation of lysine residue 27
of histone 3 (H3K27me3) in the target gene and inhibit its
expression by binding to polyclonal repressor complex 2
(PRC2), which inhibits its expression (van Kruijsbergen et al.,
2015). Besides other PRC2-associated lncRNAs involved in
tumorigenesis and progression, TUG1 regulates the biological
behavior and molecular mechanisms of different cancer cells,
including cell proliferation, invasion, apoptosis, differentiation,
migration, drug resistance, radiation resistance, angiogenesis,
mitochondrial bioenergetics, epithelial-mesenchymal transition
(EMT), and regulation of blood-tumor barrier permeability
among other different cancer cell (Niland et al., 2012;
Katsushima et al., 2016; Cai et al., 2017; Chiu et al., 2018).
TUG1 is closely associated with the mediation of radio
resistance and angiogenesis in hepatoblastoma (Dong et al.,
2016). TUG1 has also been extensively studied in liver diseases
such as cirrhosis and liver fibrosis. Zhang et al. demonstrated that
TUG1 is highly expressed in liver sinusoidal endothelial cells
(LSEC), and the results of TUG1 knockdown experiments
revealed inhibition of the extent of expression of autophagy
and EMT-related genes (Zhang R. et al., 2020). In contrast,
knockdown of TUG1 eliminated the most significant increase
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in autophagy-related genes in LPS-treated LSEC under starvation.
The increase in ATG5 expression while inhibition of ATG5
attenuated autophagy and EMT (Zhang R. et al., 2020). Han
et al. demonstrated that TUG1 was overexpressed in liver samples
from patients with CCl4 and BDL-induced liver fibrosis in vivo as
well as cirrhosis and activated HSCs while promoting a degree of
expression of SMA, Col1a1, Mmp2/9/10, and Timp1. The
possibility that TUG1 accelerates the progression of liver
fibrosis by promoting the expression of these pro-fibrotic
genes through downregulation of miR-29b is mechanistically
argued (Han et al., 2018). Collectively, these studies revealed
the mechanisms of TUG1 play a crucial role in liver fibrosis,
suggesting its ability to monitor human liver fibrosis and its
potential to be a candidate biomarker for new therapeutic
strategies.

2.2 LncRNAs Involved in the Inhibition of
Liver Fibrosis
2.2.1 Long Intergenic Non-Coding RNA p21
LincRNA-p21 (long intergenic non-coding RNA p21) localized at
human chromosome 6p21.2 situated approximately 15 kb
upstream of the cell cycle regulatory gene p21/Cdkn1a and
approximately 3.0 kb in length has been described as an
inducer of p53-dependent apoptosis in mouse embryonic
fibroblasts (Huarte et al., 2010). lincRNA-p21 is available in
two types both containing an exon and an Alu isoforms with
a reverse repeat element (Yoon et al., 2012a; Yoon et al., 2012b;
Wilusz and Wilusz, 2012). Coordinates the degree of
autoregulation and expression of its target transcripts by
interacting with RNA-binding proteins, miRNA, and mRNA
targets (Yoon et al., 2012a). As a transcriptional target of p53
it is involved in the p53 pathway, downregulating many p53
target genes and triggering the apoptotic process by physically
interacting with the p53 repressor complex (Fatica and Bozzoni,
2014). lincRNA-p21 has also been reported to regulate gene
expression by directing protein binding partners in chromatin
localization and thus directly binding to target mRNAs to act as a
translational repressor and thus by activating p21 in cis
participate in the regulation of the G1/S checkpoint
(Dimitrova et al., 2014). It is also noteworthy that it can
feedback regulate p53 activity by regulating the interaction of
p53, p300, and MDM2 (Wu et al., 2014; Tang et al., 2015), thus
participating in different tumorigenesis including hepatocellular
carcinoma (Jia et al., 2016). In terms of tumor invasion lincRNA-
p21 overexpression can be inhibited by Notch pathway (Wang
et al., 2017). Besides it plays a key regulatory role in DNA damage
response, apoptosis, and cell proliferation among other different
processes (Ozgur et al., 2013). Zheng et al. observed in animal
experiments that lincRNA-p21 expression was downregulated in
liver fibrosis (Zheng et al., 2015). lincRNA-p21 was negatively
correlated with disease progression and HSCs activation status,
while in vitro and in vivo distribution inhibited HSCs activation
and reduced liver fibrosis progression. Notably the reversibility of
the inhibitory effect of lincRNA-p21 was confirmed by the
removal of lincRNA-p21 leading to classical morphological
changes associated with HSCs activation. lincRNA-p21 was

found by Zhang et al. to inhibit the cell cycle and proliferation
of primary HSCs by enhancing p21 (Zheng et al., 2015), while Tu
et al. found a significant increase in hepatocyte lincRNA-p21
expression during hepatic fibrosis (Tu et al., 2017). These suggest
that lincRNA-p21 contributes to a positive role in hepatocyte
apoptosis and inhibition of hepatocyte growth in fibrotic livers.
Knockdown of hepatocyte lincRNA-p21 attenuated CCl4-
induced hepatocyte apoptosis thereby reducing CCl4-induced
inflammatory cell infiltration and secretion levels of pro-
inflammatory and pro-fibrotic cytokines in the fibrotic liver.
Mechanistic studies have shown that inhibition of miR-30
impairs the effect of lincRNA-p21 in the development of liver
fibrosis (Tu et al., 2017). lincRNA-p21/miR-30 axis has been
highlighted as a potential marker and target for patients with liver
fibrosis. Yang et al. found that lincRNA-p21 overexpression
promotes hepatocyte apoptosis, but its results can be blocked
by thymosin β4 (Tβ4) blocked, and additionally Tβ4 reversed
lincRNA-p21- induced cleavage of caspase-3 and caspase-9 levels
(Tu et al., 2017). LincRNA-p21 overexpression increases the
levels of fibrosis-associated proteins (type I collagen, α- SMA,
and TIMP-1) and induces hydroxyproline and ALT production
leading to pathological damage of liver tissue and progression of
fibrosis. The potential utility of lincRNA-p21 in predicting
cirrhosis is supported by the results of downregulation of
serum lincRNA-p21 levels in cirrhotic patients (Yang L. et al.,
2020). Yu et al. reported a decrease in serum lincRNA-p21 levels
in patients with chronic hepatitis B that negatively correlated with
the stage of liver fibrosis, thus revealing its diagnostic value (Yu
et al., 2017c). There was also a negative correlation between
serum lincRNA-p21 levels andmarkers of liver fibrosis (including
α-SMA and Col. I) but not in markers of viral replication, liver
inflammatory activity and liver function. The primary HSC
culture results suggested that the deletion of lincRNA-p21
expression was associated with promoter methylation, and
these conditions implied the potential of serum lincRNA-p21
as a potential biomarker of liver fibrosis in patients with chronic
hepatitis B/cirrhosis. Promoter methylation may be involved in
the downregulation of lincRNA-p21 in liver fibrosis (Yu et al.,
2017c). Collectively, these findings demonstrate the ability of
lincRNA-p21 to act as a mediator of HSCs activation and
proliferation, suggesting its potential as a new therapeutic
target for liver fibrosis.

2.2.2 LncRNA Maternally Expressed Gene 3
The maternally expressed gene 3 (MEG3), located within the
human chromosome 14q32.3 DLK1-MEG3 locus (Wylie et al.,
2000), is 35 kb in size consisting of 10 exons (Zhou et al., 2012)
and encodes an approximately 1.6 kb long non-coding RNA as a
contained 10 exons (Zhang et al., 2010). Selectively spliced
transcripts of Gtl2 (gene trap site 2 (Gtl2) is the mouse
homolog of human MEG3) extend to contain intron-encoded
C/D box SNORNAs and miRNAs, suggesting that Gtl2 may
function as a host gene for these small RNAs (Cavaille et al.,
2002; Lin et al., 2003; Tierling et al., 2006). MEG3 can be observed
in unimprinted embryonic cells to silence genes involved in
neurogenesis by regulating the chromatin targeting of
multicomb proteins and plays an important role in neuronal
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development (Mercer et al., 2008; Kaneko et al., 2014; Mondal
et al., 2015). Recent studies have suggested that MEG3 may act as
a tumor suppressor considering the extent to which its loss of
expression in several cancers is associated with inhibition of cell
proliferation (Ghafouri-Fard and Taheri, 2019). Yu et al. showed
that the process of liver fibrosis is accompanied by a decrease in
MEG3 in vivo and in vitro and that restoration of MEG3
expression inhibits liver fibrosis while reducing α-SMA and
type I collagen production (Yu et al., 2018). MEG3
overexpression inhibits HSC activation through EMT and is
associated with E-calcium activation. The Hedgehog (Hh)
pathway is one of the pathways involved in HSC activation by
MEG3 as an EMT process. Smoothing (SMO) plays an important
role in the Hh pathway. Bioinformatics analysis, RNA
immunoprecipitation and deletion mapping results suggest
that the interaction between MEG3 and SMO is involved in
EMT repression caused by MEG3 overexpression (Yu et al.,
2018). Gene expression in the DLK1-MEG3 region is
controlled by two differentially methylated regions (DMRs)
consisting of multiple methylated CpG sites located
approximately 13 kb upstream of the MEG3 transcription start
site intergenic DMR (IG-DMR) and overlaps with a 1.5-kb
upstream promoter in the post-fertilization-derived secondary
(MEG3-DMR) (Murphy et al., 2003), indicating the important
role that DNA methylation plays in silencing the MGE3 gene
(Anwar et al., 2012). The most widely studied epigenetic
modification, DNA methylation and its relevance to the
pathogenesis of liver fibrosis have been well established
experimentally (Benetatos et al., 2008; Li et al., 2010), and
previous studies have suggested a role for DNA methylation in
the deletion of MEG3 expression in tumors (Zhao et al., 2005;
Benetatos et al., 2008). He et al. revealed that MEG3 levels were
significantly reduced in CCl4-induced liver fibrosis in mice and
humans, while MSP was significantly reduced in CCl4-treated
mouse liver tissue and human liver fibrosis tissue and TGF-β1-
treated LX-2 cells where MEG3 promoter methylation was
observed (He et al., 2014). The effect of 5-azadC to block
MEG3 methylation could be achieved by the methylation
inhibitor 5-azadC significantly eliminating TGF-β1-induced
aberrant MEG3 hypermethylation and restoring MEG3 in
TGF-β1-treated LX-2 cells thereby inhibiting HSC activation
and proliferation expression illustration (He et al., 2014). The
inhibition of activation and the degree of proliferation of LX-2
cells and the reversal of methylation of the MEG3 promoter
were both closely associated with the deletion of DNMT1
thereby restoring MEG3 expression. While 5-azadC
treatment or knockdown of DNMT1 downregulated mRNA
and protein production of α-SMA and Col. I in TGF-β1-treated
LX-2 cells, overexpression of MEG3 was detected in TGF-β1-
treated LX-2 cells (He et al., 2014), which significantly activated
p53 protein levels and induced a Bax/Bcl-2 ratio accompanied
by a significant increase in cytoplasmic cytochrome c
significantly increased. These suggest that the p53-dependent
mitochondrial apoptotic pathway is partially involved in the
MEG3-induced apoptosis process (He et al., 2014). In
conclusion, these findings demonstrate that MEG3 may play
an important role in stellate cell activation and liver fibrosis

progression and presents as a new potential treatment target for
liver fibrosis.

2.2.3 LncRNA GAS5
Situated at 1q25 and composed of 12 exons, GAS5 was originally
identified from a subtractive cDNA library, named according to
the increased level of expression found in mammalian cells at
growth arrest (Sun et al., 2017). Its exons are selectively spliced to
produce two possible mature lncRNAs: GAS5a and GAS5b (Li
J. et al., 2018) and 11 introns responsible for encoding 10 cassettes
of C/D small nucleolar RNA (snoRNA) (Ni et al., 2019). Sequence
similarity to the hormone receptor element of the glucocorticoid
receptor (GR) in terms of function inhibits the effect of GR on its
target gene expression (Zhong et al., 2020). Considering other
regions of sequence similarity suggests a role for this lncRNA in
regulating the function of other hormones such as androgen,
progesterone, and salt corticosteroid receptors (Dong P. et al.,
2019; Yang X. et al., 2020). Additionally, plasma GAS5 is involved
during diabetes and coronary heart disease. Yu et al. showed that
GAS5 could directly bind to miR-222 in mouse, rat and human
fibrotic liver samples as well as in activated HSC but its
overexpression inhibited the activation of primary HSC
in vitro while attenuating collagen accumulation levels in
fibrotic liver tissues in vivo, but this was not observed in
response to GAS5 is predominantly localized in the cytoplasm
(Yu et al., 2015b) accompanied by a higher copy number than
miR-222 and is noted to increase p27 protein levels by binding to
miR-222, thereby acting as a suppressor in HSC activation and
proliferation (Yu et al., 2015b). Han et al. revealed that GAS5
expression was strongly correlated with liver fibrosis in patients
with nonalcoholic fatty liver disease (NAFLD) (Han et al., 2020),
and plasma GAS5 expression was significantly higher in patients
with advanced stages than in non-advanced stages (Han et al.,
2020). The progression of fibrosis was linearly correlated with
plasma GAS5 expression, which also suggests the potential of
plasma GAS5 as a noninvasive marker of liver fibrosis in patients
with NAFLD (Dong Z. et al., 2019). Dong et al. investigated CCl4-
induced in vivo assays in model rats and TGF-β1-induced in vitro
assays in HSC and found that miR-23a expression was
significantly increased while compared with miR-23a
Compared with the NC group (Dong Z. et al., 2019), miR-23a
inhibitor did not affect the expression levels of E-calmodulin,
α-SMA and type I collagen in normal rats while up-regulating the
expression levels of E-calmodulin and down-regulating the
expression levels of α-SMA and type I collagen in model rats,
suggesting that miR-23a plays a critical regulatory role in the
development of liver fibrosis (Dong Z. et al., 2019). Further co-
transfection revealed that the relative luciferase activity of pGL3-
GAS5-wt was inhibited by miR-23a mimics while the luciferase
activity of miR-23a NC and pGL3- GAS5-mut was unchanged
(Dong Z. et al., 2019). RNA pull-down analysis suggested that
approximately 5% of GAS5 bound to miR-23a compared to 100%
of GAS5 in total RNA, and these results suggest that miR-23a
could pull down GAS5 in liver tissue and HSC. lncRNA GAS5
silencing resulted in increased expression levels of miR-23a while
addition of exogenous miR-23a resulted in downregulation of
lncRNA GAS5 expression levels, this evidence suggested the
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ability of lncRNA GAS5 to bind directly to miR-23a. Thus, the
ability of lncRNA GAS5 to act as a sponge platform for miR-23a
and competitively reduce the expression level of miR-23a to
inhibit liver fibrosis can be confirmed. Additionally, it is
essential to mention the fact that TCM has been selected as an
alternative therapy for liver fibrosis in view of the ineffectiveness
and frequent occurrence of adverse side effects of synthetic drugs
currently used to treat liver diseases, including liver fibrosis (Lam
et al., 2016). Dahuang Zhezhuo Pill (DHZCP) as a typical Chinese
medicine can inhibit the proliferation of vascular smooth muscle
cells or further development of liver fibrosis in vivo by inhibiting
the MAPK pathway (Zhang et al., 2009; Cai et al., 2010). Gong
et al. identified that the proliferation of HSC was significantly
inhibited after overexpression of GAS5 and DHZCP reversed the
relative mRNA expression of GAS5, which suggest that DHZCP
can mitigate liver fibrosis by enhancing the GAS5 expression
(Gong et al., 2018).

2.3 LncRNAs Functions as Competitive
Endogenous RNAs in Liver Fibrosis
Competitive endogenous RNAs (ceRNAs) act as reciprocal
regulators of transcripts at the post-transcriptional level
through competing shared miRNAs (Salmena et al., 2011;
Qi et al., 2015). ceRNA hypothesis suggests that it provides
a pathway to predict the non-coding function of any non-
featured RNA transcript by identifying putative miRNA
binding sites and linking the function of protein-coding
mRNAs to that of e.g., miRNA, lncRNA, and MiRNAs
negatively regulate gene expression at the post-
transcriptional level by direct base pairing with target sites
within the untranslated region of messenger RNAs (Franco-

Zorrilla et al., 2007; Thomson and Dinger, 2016; Braga et al.,
2020), considering that more than 60% of human protein-
coding genes are under the selective pressure of MiRNAs and
that any transcript containing miRNA response elements
could theoretically function as ceRNAs the ability to
function (Salmena et al., 2011; Li et al., 2014; Yang X. et al.,
2020), which may typify a wide range of post-transcriptional
forms of regulation of gene expression in physiology and
pathology (Karreth et al., 2011; An et al., 2017; Wang L. X.
et al., 2019). Many lncRNAs may have poor results on their
effectiveness as ceRNAs under steady-state conditions due to
low abundance and/or nuclear localization. Thousands of
lncRNAs have cell type, tissue type, developmental stage,
and disease-specific expression patterns and localization
suggesting that in some cases individual lncRNAs may be
effective natural miRNA sponges (Guttman and Rinn, 2012;
Tay et al., 2014) (Figure 3). Preliminary experimental evidence
has been given for ceRNA crosstalk results between the tumor
suppressor gene PTEN and the pseudogene PTENP1 (Tay et al.,
2011), and recent studies have focused on the ability of lncRNAs to
act as ceRNAs to regulate miRNA concentrations and biological
functions in hepatic fibrosis. using CCl4-induced mice (Zhang
et al., 2018; He et al., 2020; Mahpour and Mullen, 2021). Zhu et al.
explored that overexpression of H19 significantly exacerbated
hepatocyte HSC and EMT activation (Zhu et al., 2019). Dual
luciferase reporter analysis mechanistically revealed that miR-
148a significantly inhibited the luciferase activity of pmirGLO-
H19-WT and deregulated this inhibition by targeted mutation of
the binding site. miR-148a inhibitor rescued H19 levels in LX-2
cells but miR-148a mimicked the down-regulated H19 levels in L-
02 cells. Overexpression of H19 did not affect miR-148a levels in
fibrotic livers but miR-148a could inhibit HSC and EMT activation

FIGURE 2 | The function and regulation mechanism of lncRNA. (1): In the nucleus, lncRNA could inhibit and/or activate gene expression by transferring chromatin
modifiers and various transcriptional regulators into DNA. In addition, target gene activation could be further enhanced by lncRNA. They can also induce proteins tomove
away from specific DNA locations and pass as molecular decoys. (2): In the cytoplasm, lncRNA could bring two or more proteins into a complex by acting as a scaffold. In
addition, they could regulate other transcripts or proteins by acting as sponges and protein templates, or regulating mRNA degradation and translation.
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by targeting ubiquitin-specific protease 4 (USP4) (Zhu et al., 2019).
They demonstrated that the maintenance of USP4 levels could be
mediated by H19 as ceRNA spongy miR-148a hair, and this
evidence suggests that H19 may be a promising target for the
treatment of liver fibrosis through the novel H19/miR-148a/USP4
axis that can promote liver fibrosis in HSC and hepatocytes (Zhu
et al., 2019). Yu et al. found that liver fibrosis tissue and activation
reduced levels of lincRNA-p21 expression in HSC, and
overexpression of lincRNA-p21 played a key role in the
inhibition of its activation by inducing a significant reduction in
HSC expression of α-SMA and Col (Yu et al., 2016). Noticeably,
these effects were blocked if in the absence of lincRNA-p21-
induced PTEN enhancement, and these circumstances
demonstrate the fact that lincRNAp21 inhibits liver fibrosis
through PTEN. Further studies showed that miR-181b mimics
inhibited the effect of lincRNA-p21 on PTEN expression and HSC
activation. Combined with the above data lincRNA-p21 enhances
PTEN expression levels by competitively binding miR-181b (Yu
et al., 2016). Thus, these results reveal a novel lincRNA-p21-miR-
181b-PTEN signaling cascade in liver fibrosis and its potential to
suggest lincRNA-p21 as amolecular target for anti-fibrotic therapy.
Yu et al. confirmed that lincRNA-p21 inhibits miR-17-5p levels,
with this phenomenon missing in lincRNA-p21-miR-17-5p
binding site could block miR-17-5p expression in the inhibition
assay (Yu et al., 2017a). The function of miR-29b in mediating the
downregulation of extracellular matrix genes involved in the TGF-
β and NF-κB signaling pathways in HSC has long been reported
(Roderburg et al., 2011). Han et al. suggested that TUG1 promotes
the expression of these pro-fibrotic genes through the
downregulation of miR-29b and thus plays a ceRNA role in
accelerating the progression of liver fibrosis (Han et al., 2018).
Xie et al. demonstrated that SNHG7 as a ceRNA can also bind to
miR-29b in HSC and inhibit the expression level of miR-29b,
which may affect the expression of DNMT3A (a downstream
target gene of miR-29b) thus regulating the activation, autophagy,
and proliferation of HSC (Xie et al., 2021). The downregulation of
miR-378a-3p, a target of SNHG7, which is co-localized with
SNHG7 in the cytoplasm, could block SNHG7 deletion and
thus alleviate the outcome of HSC activation. Analogously,
SNHG7-induced HSC activation was almost confirmed to be
blocked by irregular fragment polarity protein 2 (DVL2)
knockdown of the target site of miR-378a-3p (Yu et al., 2019).
These discoveries suggest that lncRNA SNHG7 may interact with
different miRNAs to play a critical role in the development of liver
fibrosis. Zhou et al. investigated sperm-mediated primaryHSC and
found that lncRNA Gm5091 overexpressed and knocked
downplayed important roles in negatively regulating cell
migration, ROS content, IL-1β secretion and HSC activation,
respectively (Zhou et al., 2018). lncRNA Gm5091 exhibited
direct binding to miR-27b, miR-23b, and miR-24 and inhibited
miR-27b, miR-23b, and miR-24 expression. All these suggest the
potential of lncRNA Gm5091 to function as ceRNA and thus
attenuate liver fibrosis through spongy miR-27b/23b/24 (Zhou
et al., 2018). lncRNA ATB containing a common binding site for
miR-200a was found to be upregulated in fibrotic liver tissue and
simultaneously involved in LX-2 cell activation by Fu et al. in the
same field. Knockdown experiments of lncRNA ATB upregulated

endogenous miR-200a while downregulating β-catenin expression
while suppressing the activation state of LX-2 cells (Fu et al., 2017).
Significant increase in lncRNA NEAT1 expression in vitro and in
vivo, as well as the inhibitory effect of its deletion on liver fibrosis
were observed (Yu et al., 2017b). lncRNA NEAT1 and miR-122
interacted directly in that lncRNA NEAT1 could regulate KLF6
expression in liver fibrosis by competitively binding to miR-122,
thereby acceleratingHSC activation and increased cell proliferation
and collagen activation (Yu et al., 2017b). The lncRNA NEAT1,
which is upregulated in NAFLD progression, binds to miR-506,
and GLI3, and regulates GLI3 expression levels as well as fibrosis,
inflammatory response and lipid metabolism in NAFLD by
secreting miR-506 and miR-506/GLI3 axis, respectively (Jin
et al., 2019). lncRNA NEAT1 was found to be elevated in ash
by Ye et al. was elevated in ash and acted as a ceRNA sponge for
miR-129-5p′s ability to suppress SOCS2 expression. It is also
important to note that inhibition of lncRNA NEAT1 inhibits
the development of liver fibrosis and ASH by elevating miR-
129-5p and inhibiting SOCS2 (Ye et al., 2020). These findings
clarify that lncRNA NEAT1 may contribute to the development of
liver fibrosis and provide new insights into the pathogenesis and
potential therapeutic strategies for liver fibrosis. In conclusion these
results suggest that lncRNA-miRNA interactions regulate target
genes and play a role in liver fibrosis, and these evidence will
provide the basis for a better understanding of this interaction to
develop a new liver fibrosis treatment strategy (Table 2).

3 REGULATORY MECHANISM OF
LNCRNAS IN LIVER FIBROSIS

Deep understanding of the disease is essential to improve patient
survival and to identify effective biomarkers for the development
of liver fibrosis. How to detect liver fibrosis early in disease
progression and develop effective therapies is critical in
reducing the risk of cirrhosis, subsequent decompensation or
liver cancer and reducing cancer mortality (Chang et al., 2015;
Tacke and Trautwein, 2015; Aydin and Akcali, 2018). We already
know that multiple signaling pathways are involved in the
pathogenesis of liver fibrosis (Yang et al., 2014; Roehlen et al.,
2020; Zhu et al., 2021). We therefore summarize some of the
regulatory mechanisms associated with hepatic fibrosis
development and progression (Figure 4).

3.1 Notch Signaling Pathway
The importance of lncRNAs in mediating various signaling
pathways has been recently highlighted in the direction of
liver fibrosis onset and progression as well (Peng et al., 2018;
Yang et al., 2019; Ganguly and Chakrabarti, 2021). The Notch
signaling pathway, which induces developmental interactions and
is a major player in liver biology and pathophysiology (Kovall
et al., 2017; Nowell and Radtke, 2017; Meurette and Mehlen,
2018), is thought to be involved in cell proliferation, survival,
apoptosis and differentiation events at various stages of
development thereby controlling events such as organogenesis
and morphogenesis (Zhang K. et al., 2019; Chen T. et al., 2020), as
well as being significantly associated with HSC activation and
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HCs EMT in liver fibrosis (Zhang K. et al., 2019). Chen et al.
found that lncRNA Meg8, through the Notch pathway inhibited
hepatic stellate cell activation and EMT in hepatocytes while its
silencing assay exhibited a significant promotion of Notch2,
Notch3 and Hes1 expression levels in primary HSC and LX-2
cells (Chen T. et al., 2020). lncRNAs Notch2, Notch3, and Hes1
expression could also be inhibited by knocking down lncRNAs in
primary HCs and AML-12 cells Meg8 was significantly increased.
Increased mRNA and protein levels of type I collagen and α-SMA
were observed in LX-2 cells transfected with lncRNA Meg8
siRNA, while knockdown lncRNA Meg8 experiments showed
that overexpression of type I collagen and α-SMA was eliminated
by RO4929097, evidence suggesting that this signal may be
involved in mediating the function of lncRNA Meg8 (Chen T.
et al., 2020). The regulatory role of lncRNAs in liver fibrosis via
the Notch signaling pathway was recently reported, and protein
and mRNA levels of Notch signaling-related molecules and target
genes Notch2, Notch3, and Hes1 were reduced in HSCs with
lncRNA LFAR1 downregulation and increased in HSCs with
lncRNA LFAR1 overexpression (Zhang K. et al., 2017). CCl4-and
BDL-treated mice showed significantly increased expression of
Notch2, Notch3, Hes1, and Hey2 compared to lenti NC infection.
Lentivirus-mediated knockdown of lncRNA LFAR1 resulted in
decreased expression of Notch2, Notch 3, Hes1, and Hey2 while
suppressing CCl4-and BDL-induced upregulation of these genes,
and this evidence suggests that lncRNA LFAR1 promotes
processes such as liver fibrosis and HSC activation through
activation of the Notch signaling pathway as well as acting as
a Notch signaling pathway provides new insights to elucidate the
molecular mechanisms of liver fibrosis (Zhang K. et al., 2017).

3.2 Wnt/β-Catenin Signaling Pathway
The Wnt/β-catenin signaling pathway, which is highly conserved
among species and controls a variety of biological processes
during animal development and life cycle (Zhou and Liu,
2015; Fu et al., 2018; Zuo et al., 2019), is essential in the
regulation of EMT and can recur during the onset and
progression of various diseases (Sebio et al., 2014; Schunk
et al., 2021). Salvianolic acid B (Sal B), one of the water-
soluble components extracted from Salvia miltiorrhiza, plays
an important role in the treatment and inhibition of activated
HSC, and increases the expression of lincRNA-p21 (Yu et al.,

2017a). Sal-B increased the expression of P-β-catenin and
decreased the cytoplasmic and nuclear expression levels of
β-catenin thus significantly reducing the pathway activity
while this phenomenon could be restored by lincRNA-p21
knockdown. The deletion of lincRNA-p21 is involved in the
inhibition of Sal-B-induced P-β-cateni and the restoration of
reduced β-linked proteins in the cytoplasm and nucleus,
suggesting that Sal-B may inhibit Wnt/β-linked protein
pathway processes through lincRNA-p21 (Yu et al., 2017a). In
conclusion, the Wnt/β-linked protein pathway inhibited by
lincRNA-p21 is involved in the effect of Sal B on HSC
activation and thus inhibits HSC activation and provides new
evidence for the role of Wnt/β-linked protein signaling inhibited
by lincRNA-p21 in the progression of liver fibrosis disease.
proliferation, survival, differentiation, and invasion (Lee
JJ. et al., 2015; Alzahrani, 2019; Corti et al., 2019).

3.3 PI3K/AKT/mTOR Signaling Pathway
lncRNAs silencing experiments can reduce the phosphorylation
levels of ERK, Akt, and mTOR, while PI3K/AKT/mTOR
signaling has also been reported to be closely associated with
HSC proliferation, activation, and ECM synthesis, which is also
significantly inhibited by pharmacological and genetic
approaches through inhibition of PI3K signaling (Khemlina
et al., 2017; Kong et al., 2020; Jung et al., 2021). Huang et al.
revealed that increased expression of H19 could be inhibited by
LY294002. These results suggest a role for lncRNA H19 in HSC
activation as a downstream site regulated by the PI3K/AKT/
mTOR pathway (Huang et al., 2019). Beyond this the pathway of
lncRNAH19 promoting HSC activation through autophagy must
be highlighted. It has also been reported that lncRNA H19
significantly decreased the expression of p-AKT and p-mTOR,
and this effect was further enhanced by LY294002 and rapamycin
(Huang et al., 2019). This suggests that lncRNA H19 can be
involved in the PI3K/AKT/mTOR-promoted autophagy-
activated HSC pathway 30735452. Dong et al. reported that
silencing of lncRNA GAS5 increased the expression levels of
p-PI3K, p-Akt, and p-mTOR thus revealing that activation of
PI3K/Akt/mTOR signaling pathway in liver fibrosis can be
mediated by the lncRNA GAS5 (Dong Z. et al., 2019).
LOC102551149 knockdown assay promoted the expression of
p-PI3K, p-Akt, and p-mTOR in activated HSC, while the

TABLE 2 | lncRNA as ceRNA in liver fibrosis.

lncRNAs miRNA Mechanism of interaction Targets References

lncRNA NEAT1 miR-122/miR-506/miR-
129-5p

lncRNA NEAT1 act as sponge of miR-122/miR-506/
miR-129-5p

KLF6/GLI3/
SOCS2

Yu et al. (2017b); Jin et al. (2019); Ye et al.
(2020)

lncRNA
SNHG7

miR-29b/miR-378a-3p lncRNA SNHG7 act as sponge of miR-29b/miR-
378a-3p

DNMT3A/DVL2 32893175 Yu et al. (2019); Xie et al. (2021)

lncRNA H19 miR-148a lncRNA H19 act as sponge of miR-148a USP4 Zhu et al. (2019)
lncRNA
Gm5091

miR-27b/23b/24 lncRNA Gm5091 act as sponge of miR-27b/23b/24 — Zhou et al. (2018)

lncRNA TUG1 miR-29b lncRNA TUG1 act as sponge of miR-29b — Han et al. (2018)
lincRNA-p21 miR-181b/miR-17-5p lncRNA lincRNA-p21 act as sponge of miR-181b/miR-

17-5p
PTEN/β-catenin Yu et al. (2016); Yu et al. (2017a)

lncRNA ATB miR-200a lncRNA ATB act as sponge of miR-200a β-catenin Fu et al. (2017)
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overexpression of LOC102551149 in activated HSC 30735452
suppressed the expression levels of p-PI3K, p-Akt, and p-mTOR
(Dong Z. et al., 2019). This evidence imply that lncRNAs can
reduce the activation response of HSC by inhibiting the activation
of PI3K/AKT/mTOR signaling pathway in liver fibrosis (Karin
et al., 2002; De Simone et al., 2015).

3.4 NF-κB Signaling Pathway
The NF-κB signaling pathway, an important transcription factor
for many inflammatory mediators and cytokines, remains a
dormant molecule in the cytoplasm by binding tightly to IκB
inhibitor proteins (Inoue et al., 1992; Yang et al., 2012), and
phosphorylation of IκB by IκB kinase (IKK) upon stimulation
separates IκB from NF-κB leading to translocation and activation
of NF-κB, a process reported to be involved in the formation and
progression of liver fibrosis (Luedde and Schwabe, 2011; Wang T.
et al., 2019; Zhang K. et al., 2020; Zhao et al., 2020). Shi et al.
found that LINC01093 31450097 knockdown assay confirmed
the promotion of NF-κB p65 nuclear translocation and elevated
levels of NF-kB p65 in the cytoplasm (Shi et al., 2019). On the
contrary, overexpression of LINC01093 is involved in the
inhibition of nuclear translocation of NF-κB p65 leading to an
increase in the nuclear level of NF-κB p65 and a decrease in NF-
κB p65 at the cytoplasmic level, and this evidence suggests that
overexpression of LINC01093 could be involved in inhibiting
hepatocyte apoptosis and attenuating the process of liver fibrosis
by suppressing the NF-κB signaling pathway (Shi et al., 2019).

3.5 AMP-Activated Protein Kinase Signaling
Pathway
The AMP-activated protein kinase (AMPK) signaling pathway,
which plays an important role in regulating cellular energy
homeostasis, could respond to changes in intracellular adenine
nucleotide levels and is involved in the process of HSC activation
(Shackelford and Shaw, 2009; Mihaylova and Shaw, 2011; Zhao
et al., 2017). Yang et al. determined that the proliferation rate of
HSC transfected with LncRNA- ANRIL siRNA was significantly
higher than that of NC and vector-identified AMPK as a key gene
in LncRNA-ANRIL-mediated HSC activation (Zhang T. et al.,
2019; Kim MH. et al., 2020). Overexpression of LncRNA-ANRIL
suppressed the level of phosphorylated AMPK in activated HSC
while LncRNA-ANRIL-siRNA increased the level of
phosphorylated AMPK in activated HSC, this evidence suggest
that LncRNA-ANRIL deletion can trigger HSC activation
through AMPK pathway (Yang JJ. et al., 2020). Wang et al.
revealed that lncRNA- H19 regulates lipid droplet metabolism by
mechanisms that rely on the AMPKα pathway acting as a sensor
for maintaining energy homeostasis (Wang Z. et al., 2020). The
upregulated lncRNA-H19 initiates the catabolic pathway by
binding to AMPKα to maintain the necessary energy supply.
In addition to acting as a scaffold between AMPKα and LKB1,
lncRNA-H19 links AMPKα and LKB1 and plays a facilitating role
in the phosphorylation of AMPKα by LKB1 (Wang Z. et al.,
2020). lncRNA-H19/AMPKα pathway is thought to be involved
in HSC activation-induced lipid droplet disappearance in liver
fibrosis given that lncRNA-H19 can be observed to induce HSC

-formation of the AMPKα/LKB1 complex in LX2 cells and its
potential as a novel target for liver fibrosis treatment (Wang Z.
et al., 2020).

In conclusion, these findings highlight the possibility that
there may be new therapeutic targets and biomarkers for liver
fibrosis in the future from lncRNAs, Figure 4 schematically
demonstrates the potential mechanism of lncRNA on liver
fibrosis.

4 POTENTIAL CLINICAL APPLICATION OF
LNCRNAS IN HUMAN CANCERS

As a serious infectious disease caused by hepatitis B virus (HBV)
infection, hepatitis B currently infects 350–400 million people
worldwide (McMahon, 2009). Patients with chronic hepatitis B
(CHB) are characterized by progressive liver fibrosis and
inflammation (Guo et al., 2021) as the main pathological
manifestations representing the ultimate common pathway for
almost all types of CLD (Cai et al., 2020; Roehlen et al., 2020).
However, it must be emphasized that liver fibrosis characterized
by excessive accumulation of extracellular matrix (ECM) proteins
also represents a manifestation of the liver’s trauma healing
response to various types of liver injury (e.g., HBV infection)
(Lee Y. A. et al., 2015; Tacke and Trautwein, 2015). The
application of liver biopsy as the gold standard for assessing
the presence and staging of liver fibrosis is often limited by its
invasive nature, possible complications, and potential sampling
errors. Consequently, there is a need for effective early detection
studies of liver fibrosis to control and treat the patient’s liver
fibrosis progression (Cadranel et al., 2000; Bravo et al., 2001;
Rockey et al., 2009). lncRNAs are frequently deregulated in a
variety of human diseases as well as in many important biological
processes thereby generating abnormal lncRNAs involved in the
development of various diseases 29330108 (Peng et al., 2017; Ma
et al., 2018). It must be emphasized that lncRNAs are stable in the
circulatory system and readily detectable in serum due to their
inability to be degraded by nucleases (Faghihi et al., 2008; Gupta
et al., 2010), a property that makes them highly diagnostic in
different diseases including liver fibrosis (Zhang K. et al., 2017;
Liu et al., 2019). They further demonstrated that reduced serum
lincRNA-p21 levels in chronic hepatitis B patients correlated with
fibrosis stage (Yu et al., 2017c). Subject operating characteristic
curve (ROC) analysis suggested that serum lincRNA-p21 could
differentiate chronic hepatitis B patients with liver fibrosis from
healthy controls, specifically the area under the ROC curve
(AUC) was 0.854 [0.805–0.894], with a sensitivity and
specificity of 100 and 70%, respectively, at a critical value of
3.65. A sensitivity of 100% and specificity of 70% accompanied by
an AUC of 0.760 (0.682–0.826) in differentiating chronic
hepatitis B patients with low fibrosis scores from healthy
controls; a sensitivity of 100% and specificity of 73.3%
accompanied by an AUC of 0.856 in differentiating chronic
hepatitis B patients with moderate fibrosis scores from healthy
controls (0.801–0.901); 100% sensitivity and 77.5% specificity
accompanied by an AUC of 0.935 (0.882–0.969) were observed in
differentiating patients with chronic hepatitis B with high fibrosis
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score versus healthy controls (Yu et al., 2017c). Furthermore, the
levels of lincRNA-p21 could be distinguished in chronic hepatitis
B patients with different fibrosis scores, specifically: 70.9%
sensitivity and 92.3% specificity (AUC 0.875, 0.800–0.930) for
moderate fibrosis score and mild fibrosis score; 81.4% sensitivity
and 96.1% specificity (AUC 0.954, 0.859–0.993) for high fibrosis
score and low fibrosis score; and Yu et al. showed that serum
lincRNA-p21 levels were associated with liver Fibrosis markers
including α-SMA and Col1A1 were negatively correlated but
markers of viral replication, liver inflammatory activity and liver
function showed no correlation (Yu et al., 2017c). lncRNA
SNHG7 was also found to be correlated with liver fibrosis
progression by Yu et al. (Yu et al., 2019) and ROC curve
analysis showed an area under the ROC curve (AUC) of 0.955
(95% confidence interval [CI], 0.868–0.990), where it is
noteworthy that at a critical value of 1.0, its sensitivity is 90%
and specificity is 100%, suggesting its potential as a potential
diagnostic biomarker for liver fibrosis. lncRNA SNHG7 is higher
in the cytoplasm of human LX-2 cells as well as primary HSC
than in the nucleus (Yu et al., 2019), and this evidence indicates
that the expression of lincRNA-p21 and lncRNA SNHG7 plays a

key role in the progression of liver fibrosis and its potential as a
potential biomarker of liver fibrosis. Han et al. experimentally
confirmed that plasma lncRNA GAS5 was significantly elevated
in patients with advanced fibrosis compared to patients without
progressive fibrosis, but this did not show any statistical
difference in tissues, but lncRNA GAS5 tissue expression was
positively correlated with the stage of fibrosis prior to the
development of cirrhosis as well as significantly
downregulating lncRNA in plasma of NAFLD patients with
cirrhosis GAS5 expression (Han et al., 2020). However,
significant differences in tissue levels of lncRNA GAS5 were
not shown in patients with advanced fibrosis and cirrhosis, a
phenomenon that emphasizes the accuracy of the association
between plasma levels and fibrosis stage. The significance of
serum lncRNA GAS5 in the diagnosis of liver fibrosis was
proposed by Gou et al. through the detection of abnormalities
in lncRNA GAS5 in the serum of patients with chronic hepatitis
B, and although the significance of serum lncRNA GAS5 in the
age and gender distribution subgroups were not statistically
significant (Han et al., 2020). The results of qRT PCR analysis
suggested lower serum lncRNAGAS5 levels in CHB patients, and

FIGURE 3 | The mechanism of ceRNA. (A) In the cytoplasm, miRNAs could regulate 3′- UTR of mRNAs through base pairing with partial complementarity in the
conventional crosstalk of RNA transcripts, thus inhibiting mRNAs. (B) Under the ceRNA mechanism of cancer cells, miRNAs are isolated from each other by abnormally
expressed lncrna and MREs, thus reducing the interaction between miRNA and mRNA, thereby weakening the inhibition of downstream mRNA.
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the results of ROC curve analysis showed that serum lncRNA
GAS5 could effectively differentiate between CHB liver fibrosis
patients and healthy controls (AUC of 0.993, 0.972–0.992).
Altogether, circulating elevated lncRNA GAS5 levels correlated
with the progression of liver fibrosis prior to the development of
cirrhosis can be used to serve as a valid non-invasive marker in
patients with NAFLD and CHB with liver fibrosis (Han et al.,
2020). Chen et al. contributed significantly to the promotion of
lncRNA MEG3 as a serum bi-diagnostic marker for chronic
hepatitis B and to improve early diagnosis and treatment
outcomes (Chen et al., 2019). qRT PCR data showed a
significant decrease in serum lncRNA MEG3 levels in patients
with chronic hepatitis B. lncRNA MEG3 expression was
negatively correlated with the degree of liver fibrosis (AUC of
0.8844 and the critical value was 5.112) in the low-level fibrosis
group versus the control group (AUC and critical value were
0.5237 and 2.988, respectively) (Chen et al., 2019), in the
moderate fibrosis group and the control group (AUC and
critical value were 0.7085 and 3.812, respectively), and in the
high fibrosis group and the control group (AUC and critical value
were 0.9395 and 4.689, respectively). Finally, they focused on the
possibility of lncRNA MEG3 levels as a differentiating marker in
chronic hepatitis B types with different degrees of liver fibrosis
(Chen et al., 2019). The AUC and critical values were found to be
0.8281 and 3.963 for the low and intermediate level fibrosis
groups, respectively. 0.8857 and 4.818 for the high and low
levels fibrosis groups, respectively, and conversely, 0.7861 and
5.312 for the high and intermediate level fibrosis groups,
respectively. The results show the important diagnostic value
of serum lncRNA MEG3 in patients with chronic hepatitis B
combined with liver fibrosis. Yu et al. also concluded that lncRNA
MEG3 was negatively correlated with the transcript level of α-

SMA and positively correlated with E-calmodulin mRNA
expression. Moreover, the increase in fibrosis score was
accompanied by a gradual increase in liver MEG3ΔCt value,
which indicated that MEG3 expression was negatively correlated
with fibrosis score (Yu et al., 2018). In conclusion, all the above
results demonstrate that lncRNA MEG3 is a biomarker in the
detection and prognosis of liver fibrosis.

Given the current delayed diagnosis and relapse as the
biggest barriers to liver fibrosis treatment, ideal biomarkers
are of great importance for clinical efforts such as improving
early diagnosis rates. These results suggest a potential role of
lncRNAs in the diagnosis and prognosis of liver fibrosis.
Nevertheless, we must realize that the exact molecular
mechanism of the role of lncRNAs in liver fibrosis is still
unclear therefore the functional role of lncRNAs in liver
fibrosis still needs further exploration and validation
including clinical applications.

5 PROSPECTS

lncRNAs have been receiving increasing attention along with the
rapid development of the field of molecular biology, and
breakthroughs in new high-throughput sequencing technologies
such as RNA-Seq, microarrays and deep sequencing have provided
the basis for expanding our understanding of complex
transcriptomic networks and enabling us to identify the
dysregulated expression of various lncRNAs in liver fibrosis.
Our review details the role of lncRNAs as important regulators
in the development of liver fibrosis and the relationship between
aberrant lncRNA expression andHSC activation (Yang et al., 2019;
De Vincentis et al., 2020). In addition to this, given the increasing

FIGURE 4 | The mechanism of lncRNA to liver fibrosis. Multiple stimuli such as chronic hepatitis B (CHB) damage hepatocytes to initiate wound healing responses,
and LncRNAs play a role in promoting activation and apoptosis of hepatic stellate cells and inducing epithelial-mesenchymal transition (EMT) at multiple stages, leading to
excessive accumulation of extracellular matrix (ECM) proteins in hepatocytes, resulting in liver fibrosis generation and progression.
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number of studies providing data on lncRNAs measured between
normal and liver fibrotic tissues, it not only suggests that lncRNAs
may be involved in the progression of liver fibrosis but also
provides a solid theoretical basis for lncRNAs to become
biomarkers for the clinical diagnosis of liver fibrosis (Jiang and
Zhang, 2017; Unfried and Fortes, 2020). However, we still need to
clarify the regulatory network of lncRNAs in liver fibrosis and the
underlying molecular mechanisms are still complex and still
inconclusive (Kim YA. et al., 2020; Ganguly and Chakrabarti,
2021). Therefore, the next work should focus on screening
effective lncRNAs for the diagnosis and treatment of liver
fibrosis and actively promote the development of effective
lncRNAs that can be applied in the clinical setting.

On the other hand, a series of lipid bilayer membrane-bound
organelles that are released by cells into the environment, which we
call “EVs” (Xu et al., 2016), vary in size and could be released from
almost all cells under appropriate physiological and pathological
conditions (Walker et al., 2019; Mo et al., 2021). One of the hot
topics of research is their cargo-carrying function given that their
cargo can partially reflect the cellular properties of their origin,
exosomes carry significantly different types of RNAs compared to
parental cells (Abels and Breakefield, 2016; vanNiel et al., 2018).Most
importantly, ncRNAs can be shipped in a way that avoids the fate of
unprotected ncRNAs that are readily degraded by RNA enzymes in
the blood and can furthermoremaintain their integrity and activity in
circulation (ShenM. et al., 2019;Mori et al., 2019; Hu et al., 2020). Liu
et al. found that hepatic lncRNA H19 expression levels correlated
with serum exosomal lncRNAH19 levels and severity of liver fibrosis
in a mouse model of cholestatic liver injury and in human patients
with primary sclerosing cholangitis (PSC) and primary biliary
cholangitis (PBC). In contrast, exogenous lncRNA H19 promotes
liver fibrosis and enhances the activation and proliferation of HSC
(Liu et al., 2019). Our review highlights the status of exogenous
lncRNA H19 as a potential diagnostic marker and therapeutic target
in the development of cholestatic liver fibrosis, and the potential of
targeting these intercellular signaling mechanisms and mediators to
increase sensitivity and improve response to conventional therapeutic
agents used to treat liver fibrosis and to complement exogenous
lncRNAs strategies in liver prevention, diagnosis and treatment.
Finally, we must emphasize that gene editing is a technique for
targeted modification of DNA nucleotide sequences characterized by
the precise severing of targeted DNA fragments and insertion of new
gene fragments (Jinek et al., 2012), and that CRISPR/Cas9, which has
been successfully applied to the disruption of protein-coding24
sequences in various organisms (Sharma et al., 2021), is a very
powerful gene editing tool, and that it also plays a key role in the
progression and development of liver fibrosis (Barrangou et al., 2007;
Strotskaya et al., 2017). For example, RSPO4-CRISPR applied in a rat
model of liver fibrosis showed excellent performance in reducing liver
injury and restoring the gut microbiota (Yu et al., 2021). HSC
reprogramming via exon-mediated CRISPR/dCas9-VP64 delivery
(Luo et al., 2021) has also been reported. Among them it is
important to note that lncRNAs have been successfully edited/
regulated by the CRISPR/Cas9 system therefore no transgene
needs to be introduced (Konermann et al., 2015; Chen B. et al.,
2020). Due to its specificity, efficiency, simplicity, and versatility
CRISPR/Cas9 has achieved many encouraging successes as a

powerful genome engineering tool for the treatment of many
diseases including cancer (Goyal et al., 2017; Esposito et al.,
2019). For example, the fact that CRISPR/Cas9’s specifically
designed GRNA targeting suppresses the upregulated lncRNA
UCA1 (uroepithelial carcinoma associated 1) in bladder cancer
once again highlights the potential of the CRISPR/Cas9 system for
regulating the expression of lncRNAs and for further use as a
therapeutic approach in clinical cancer treatment (Yang et al., 2018;
Shen M. et al., 2019). Therefore, it is reasonable to assume that
CRISPR/Cas9 can regulate the expression of lncRNAs and thus
achieve the treatment of liver fibrosis through relevant molecular
mechanisms. Importantly, our review provides a summary of the
stages by which this budding andmaturing technology can be used
in the future for drug discovery, cancer therapy, and treatment of
other genetic diseases previously considered incurable.

6 CONCLUSION

Research on the involvement of lncRNAs in regulating the
development of liver fibrosis are increasing year by year, and
the results of in vivo and ex vivo experiments confirm the
significant effect of overexpression and knockdown of lncRNAs
in reducing or enhancing the extent of liver fibrosis, suggesting that
lncRNAs are promising as new targets for liver fibrosis treatment.
The expression of lncRNAsmay be a suitable candidate in the issue
of potential markers for the diagnosis and prognosis of liver
fibrosis. lncRNAs regulate the proliferation, activation and
apoptosis of HSC involved in the process of liver fibrosis. The
regulation of lncRNAs expression mediated by miRNAs and the
inverse regulation of miRNAs expression by lncRNAs are
demonstrated. miRNAs are involved in the regulation of
lncRNAs expression through sequence-specific binding between
them. Multiple molecular mechanisms regulated by lncRNAs
including NF-κB signaling pathway are involved in the
pathological process of liver fibrosis, while examples of
successful implementation of strategies applying regulation of
lncRNA expression in preclinical models can already be
observed. On the one hand, we can optimistically anticipate the
promising clinical applications of therapeutic strategies based on
the regulation of lncRNA expression, but on the other hand, we
must realize that their safety and reliability still depend on the
advancement of knowledge and sophisticated technologies.
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