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Abstract: Reported here is the design of an electrochemical sensor for dopamine (DA) based on a
screen print carbon electrode modified with a sulphonated polyether ether ketone-iron (III) oxide
composite (SPCE-Fe3O4/SPEEK). L. serica leaf extract was used in the synthesis of iron (III) oxide
nanoparticles (Fe3O4NPs). Successful synthesis of Fe3O4NP was confirmed through characterization
using Fourier transform infrared (FTIR), ultraviolet–visible light (UV–VIS), X-ray diffractometer
(XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) was used to investigate the
electrochemical behaviour of Fe3O4/SPEEK in 0.1 M of phosphate buffer solution (PBS) containing
5 mM of potassium ferricyanide (III) solution (K3[Fe(CN)6]). An increase in peak current was
observed at the nanocomposite modified electrode SPCE-Fe3O4/SPEEK) but not SPCE and SPCE-
Fe3O4, which could be ascribed to the presence of SPEEK. CV and square wave voltammetry (SWV)
were employed in the electroxidation of dopamine (0.1 mM DA). The detection limit (LoD) of
7.1 µM and 0.005 µA/µM sensitivity was obtained for DA at the SPCE-Fe3O4/SPEEK electrode with
concentrations ranging from 5–50 µM. LOD competes well with other electrodes reported in the
literature. The developed sensor demonstrated good practical applicability for DA in a DA injection
with good resultant recovery percentages and RSDs values.

Keywords: electrochemical; dopamine; sulphonated polyether ether ketone; Fe3O4; cyclic and square
wave voltammetry

1. Introduction

Dopamine (3,4-dihydroxyphenethylamine), an organic chemical of the catecholamine
neurotransmitters, is one of the most researched neurotransmitters (NTs) because of its
major role in the human body such as in the hormonal, renal, central, and cardiovascular
systems, and the human metabolism [1–7]. DA plays an important role within and outside
the brain’s rewards system by reinforcing certain behaviour that results in rewards. In
addition, DA controls movements, emotional response functions as a vasodilator, and
expands the urine output in the pancreas and kidneys by reducing the formation of insulin.
However, elevated dopamine concentration in the brain could cause many neurological
disorders such as Tourette’s syndrome, restless leg syndrome (RLS), and several illnesses
such as drug dependence, schizophrenia, Parkinson’s disease, depression, degenerative
diseases, and attention deficit hyperactivity disorder (ADHD) [8–14]. As a result, main-
taining and controlling the high levels of DA in the human body is important. The health
import of DA calls for the need to develop a cost-effective, simple, sensitive, and selective
assay with a fast response for DA investigation in pharmaceutical samples.

Different assays such as chromatography [15,16], chemiluminescence [17], fluores-
cence [18], and electrochemistry [19–22] is employed for DA detection. The use of electro-
chemistry has found wide attraction among the various methods owing to high selectivity,
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sensitivity, simple instrumentation with a fast response, and cost-effectiveness [19–22].
Iron (III) oxide (Fe3O4) nanoparticles are one of the most researched forms of iron oxides
due to their attractive characteristics, which include low toxicity, biocompatibility, super
magnetism, high surface area, and low cost [23]. Fe3O4 nanoparticles have found appli-
cations in catalysis, magnetic resonance imaging contrast, lithium batteries, antibacterial
studies, and the removal of heavy metals such as arsenic in water [24]. Fe3O4 nanopar-
ticles are prepared via a chemical process [25–27] or biological (green) methods [23,24].
SPEEK, a non-fluorinated polymer, has found application in electrochemical studies ow-
ing to its properties such as excellent stability (chemical, thermal, and mechanical), good
thermo-oxidative resistance, and proton conductivity [28]. Polymer metal oxide compos-
ites are used as electrode modifiers in electrochemical studies, because of the interactions
of intrinsic properties of metal oxide nanoparticles and polymers with increased electri-
cal conductivity and stability [29]. For instance, composites of zinc oxide-sulphonated
polyether ether ketone (SPEEK/ZnO), polyaniline–iron (III) oxide (PANI/Fe3O4) [19–22],
polyaniline-bismuth oxide (PANI-Bi2O3) [30], polypyrrole-iron (III) oxide (PPy/Fe3O4) [29],
polyaniline-binary metal oxide (NiO/CuO/PANI) [30], and polypyrrole-tunsgten oxide
(PPy-WO3) [31] were applied as electrode materials for the sensing of dopamine (DA),
pramipexole, serotonin, glucose, and gas (hydrogen sulphide) accordingly. Polypyrrole-
titanium oxide (PPy-TiO2) and polyaniline–zinc oxide (PANI/ZnO) nanocomposites were
employed for light-emitting diodes and corrosion protection, respectively [32,33]. More-
over, SPEEK/TiO2 was employed in the fabrication of electrodes for fuel cells [28]. In
addition, nanostructured carbon black was applied in DA detection [34].

This study, for the first time, reports dopamine electroxidation at the sulphonated
polyether ether ketone-Iron (III) oxide modified screen-printed carbon electrode (SPCE-
Fe3O4/SPEEK). The Fe3O4 nanoparticle (Fe3O4NPs) was synthesized through a green
route (from L. serica leaf extract) because the method is environmentally safe, less toxic,
and cheap since materials are naturally available. There is no report on nanoparticles
synthesized from the L. serica leaf. The nanocomposite-modified electrode displayed a
well-defined redox voltammogram in the redox probe and good electrocatalytic oxidation
of dopamine than the bare SPCE. It also had a good detection limit, selectivity, and was
successfully utilized to determine DA in the pharmaceutical sample. Fabrication of the
electrode was simple, convenient, and economical.

2. Results
2.1. Characterization of Fe3O4 and Fe3O4/SPEEK
2.1.1. UV–Visible Study

The formation of Fe3O4NPs is ascribed to ferrous, ferric salts (iron (II) chloride tetrahy-
drate, iron (III) chloride tetrahydrate, and the leaf extract of L. serica. The reduction that
occurred on the Fe2+ ions is explained by the visible colour change in the reaction mixture
which physically confirms the Fe-O nanoparticles by using a UV–Visible spectrophotometer.
Figure 1 shows the UV–visible spectra of green mediated Fe3O4NPs with an absorbed
peak of approximately 296 nm, which is close to absorption peaks (296, 259, and 282)
reported in previous studies [35]. However, the obtained results show a great biomolecule
capping surface of the Fe3O4NPs without the presence of a Plasmon resonance surface. The
energy band gap was calculated to be 4.19 eV according to Equation (1) using the obtained
maximum absorption peak (296 nm):

Ebg =
1240

λ
(eV) (1)
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flect the –C=C stretch aromatic vibrations [38]. The intense peaks at 1090, 1242, and 1215 
cm−1 are attributed to the –C-O stretch, phenol or alcohol group, and deformation bands 
in the lignin [37]. The absorption peaks at 469 and 654 cm−1 corresponding to Fe-O stretch, 
confirms the successful synthesis of Fe3O4NPs, and Fe3O4/SPEEK nanocomposites, respec-
tively. It is possible that the presence of the phenol –OH group and the amide –N-H group 
played a role in the reduction of the precursor compound into iron oxide nanoparticles. 
The polymer SPEEK and iron oxide nanoparticles showed a significant interaction as 
shown in the composite peaks absorbed (Figure 2). 
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Figure 1. UV–Vis spectra of Fe3O4NPs using L. serica leaf extract.

2.1.2. FTIR Study

FTIR spectra of SPEEK, Fe3O4NPs, and Fe3O4/SPEEK nanocomposites recorded on
the wavenumber from 400–4000 cm−1 presented in Figure 2 gives the information on
different functional groups of the compounds present. The absorption peak at 3485, 2929,
and 2858 cm−1 correspond to the –OH stretching of the phenol group and –C-H stretch,
which agrees with the literature [36]. The absorption at the 1656, 1596, and 1460 cm−1 band
corresponds to –C=C stretch which indicates the nitriles group [37]. The 1639 and 1591 cm−1

peaks reflect the –C=C stretch aromatic vibrations [38]. The intense peaks at 1090, 1242, and
1215 cm−1 are attributed to the –C-O stretch, phenol or alcohol group, and deformation
bands in the lignin [37]. The absorption peaks at 469 and 654 cm−1 corresponding to Fe-O
stretch, confirms the successful synthesis of Fe3O4NPs, and Fe3O4/SPEEK nanocomposites,
respectively. It is possible that the presence of the phenol –OH group and the amide
–N-H group played a role in the reduction of the precursor compound into iron oxide
nanoparticles. The polymer SPEEK and iron oxide nanoparticles showed a significant
interaction as shown in the composite peaks absorbed (Figure 2).
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2.1.3. XRD Study

The crystallographic structure of the samples can be determined using XRD. Figure 3
shows the XRD pattern of Fe3O4NPs with diffraction peaks and their corresponding planes
at 2thetha (θ) values of 26.75◦ (120), 35.16◦ (200), 39.22◦ (123), 52.01◦ (115), and 55.99◦

(122), which are similar to a reported study [39]. The diffraction peaks observed confirm
the crystalline nature of Fe3O4 nanoparticles, and the planes of the magnetite Fe3O4NPs
also confirm the rhombohedral hematite phase. The diffraction peak obtained in the XRD
patterns indicates that there was no trace of additional planes observed, which indicates
the mediated Fe3O4NPs were obtained in high purity at room temperature [40,41].
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Figure 3. XRD pattern of mediated Fe3O4NPs using L. serica plant species leaf extract.

2.1.4. SEM Study

The surface morphology of the prepared Fe3O4NPs from the green synthesis of L. serica
leaf extract was analyzed by scanning electron microscopy (SEM). Figure 4a,b represent
the SEM images of Fe3O4NPs and Fe3O4/SPEEK nanocomposites, respectively. Figure 4a
depicts the morphology of Fe3O4NPs that appears to be roughly agglomerated spherical
particles in shape, which could be due to the steric effect associated with the magnetic
Fe3O4NPs surface interaction by the active sites [42]. Figure 4b shows the morphology
of the Fe3O4/SPEEK nanocomposites that appeared to have some crystal-like structure
which indicates the presence of the SPEEK polymer in the nanocomposite, indicating
the occurrence of interaction between Fe3O4 and SPEEK. Hence, particles appeared to be
clustered together, thus, maintaining the agglomerated spherical shape [43].
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2.2. Electrochemical Characterization
2.2.1. Electrochemical Characterization of Electrodes

The electrochemical efficiency and electron transport properties of electrodes (bare-
SPCE, SPCE-Fe3O4NPs, SPCE-SPEEK, and SPCE-Fe3O4/SPEEK nanocomposites) were
investigated using cyclic voltammetry (CV) at a scan rate of 25 mV/s within −0.2–1.0 V
potential window in 0.1 M PBS of pH 7.4 containing 5 mM K3[Fe(CN)6]. A comparative
cyclic voltammogram of the electrodes is presented in Figure 5. The current response was
enhanced at the SPCE-SPEEK and SPCE-Fe3O4/SPEEK electrodes as opposed to the bare
and nanoparticle-modified electrodes, which could be due to the presence of SPEEK which
has excellent electrocatalytic properties. Table 1 shows the parameters measured at the
electrodes.
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Table 1. Summary of cyclic voltammetric data recorded at different unmodified and modified electrodes in K3[Fe(CN)6]
solution.

Electrode Ipa (µA) Ipc (µA) Ipa/Ipc Epa (V) Epc (V) E1/2 (V) ∆Ep (V)

Bare-SPCE 16.40 −16.97 −0.26 0.36 −0.16 0.10 0.52
SPCE-Fe3O4NPs 7.99 −40.56 −0.11 0.42 −0.14 0.14 0.56

SPCE-SPEEK 54.48 −32.69 −1.67 0.31 0.22 0.26 0.09
SPCE-Fe3O4/SPEEK 17.93 −15.18 −1.18 0.29 0.18 0.22 0.11

Where Ipa = Anodic peak current, Ipc = Cathodic peak current, Epa = Anodic peak potential, Epc = Cathodic peak potential,

E1/2 =
Epa+Epc

2 , and ∆Ep = Peak potential separation.

2.2.2. Scan Rate Study at SPCE-Fe3O4/SPEEK Electrode

The effect of scan rate variation on peak currents of modified SPCE-Fe3O4/SPEEK
in 5 mM prepared in 0.1 M PBS, pH 7.4 solution was studied using CV in the range from
25–500 mV/s scan rate as shown in Figure 6a. As the scan rate increases, the oxidation
peak potentials shifted to the more positive. In consequence, a linear plot of peak currents
versus square root of scan rate (v1/2) was deduced (Figure 6b). The graph clearly shows an
increase of the peak currents with an increase in the square root of the scan rate, indicating
a diffusion-controlled electrochemical process, which was also confirmed by the correlation
coefficient (R2) value of 0.99 [44]. The surface area of the modified nanocomposite electrode
(SPCE-Fe3O4/SPEEK) was found to be 2.799 cm2, using a Randle–Sevcik Equation (2)
which is higher than the geometry of the bare SPCE (0.125 cm2):

Ip =
(

2.69 × 105
)

n
3
2 AD

1
2 Cv

1
2 n (2)

where Ip represents peak current (A), n is the number of electron transfer, A represents
surface area (cm2), D represents diffusion coefficient (cm2/s), C represents concentration
(mol/cm3), and v represents scan rate (V/s).
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From the cyclic voltammetric measurement in Figure 6a, a linear plot of potential
peaks (Epa/Epc) versus the log of scan rate (Figure 7) gave two straight lines with slopes of
equal Equations (3) and (4):

Epa =
2.303RT

( 1 − α)nF
log v (3)

Epc = −2.303RT
αnF

log v (4)
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According to Laviron’s Equations (3) and (4), the number of electron transfer (n) and
charge transfers coefficient (α) were calculated to be 1 and 0.53, respectively. Additionally,
the Tafel value (b) was found to be 0.375 Vdec−1 using Equation (5) which is higher than
the theoretical value (0.118 Vdec−1), suggesting adsorption on the electrode surface by
reactants:

Ep = (
b
2
) logv + constant (5)

2.2.3. Electrocatalysis of Dopamine

Figure 8 shows the schematic diagram summarizing the electrode chemical modifica-
tion of the electrode and the response detection of the electrochemical on the Fe3O4/SPEEK
electrode in dopamine prepared in 0.1 M PBS of pH 7.4.
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Figure 8. Schematic diagram of electrode modification procedure and the electrochemical response
of dopamine at the electrode.

The behaviour of DA on bare and modified screen-printed electrodes (bare-SPCE,
SPCE-Fe3O4NPs, SPCE-SPEEK, and SPCE-Fe3O4/SPEEK) was studied using cyclic voltam-
metry at a 25 mV/s scan rate as shown in Figure 9. Redox peaks were observed in all the
electrodes. The oxidation peak current of the SPCE-Fe3O4/SPEEK electrode was slightly
higher than the bare, which could be due to the presence of SPEEK ascribed to its good
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electrical conductivity, but smaller than the SPCE-SPEEK electrode. However, obtained
oxidation potential for DA at the SPCE-Fe3O4/SPEEK electrode was nearer to 0.25 V ex-
pected for DA. The high peak current observed on the SPCE/SPEEK electrode, compared
with SPCE-Fe3O4/SPEEK, could be due to the excellent electronic conductivity property
of SPEEK, which enhanced the reactivity of Fe3O4. The Fe3O4 nanoparticles-modified
electrode showed a lower redox peak current than the bare-SPCE on the DA probe, due
to the quick assembling of nanoparticles that conduct to larger particles of Fe3O4, which
may crucially reduce the electrochemical properties of the electrode and, thus, be electro-
inactive [45,46]. Parameters determined in cyclic voltammetric detection of DA on bare
and modified electrodes are shown in Table 2.
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Table 2. Summary of parameters obtained using cyclic voltammetry on bare and modified electrodes in 0.1 mM DA.

Dopamine Ipa (µA) Ipc (µA) Ipa/Ipc Epa (V) Epc (V) E1/2 (V) ∆Ep (V)

Bare-SPCE 19.78 −1.12 −17.66 0.19 0.02 0.11 0.17
SPCE-Fe3O4NPs 12.56 0.51 24.63 0.66 0.09 0.37 0.57

SPCE-SPEEK 42.00 −25.33 −1.66 0.48 −0.04 0.22 0.52
SPCE-Fe3O4/SPEEK 20.94 −14.13 −1.48 0.34 0.06 0.20 0.28
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2.2.4. Scan Rate Study on Dopamine

In Figure 10a, the electrochemical impact of varying scan rates in the range from
25–400 mV/s on the anodic peak currents of the nanocomposite-modified SPCE-Fe3O4/
SPEEK toward 0.1 mM DA oxidation was investigated using cyclic voltammetry. An
increase in the scan rate resulted in shifts of peak potentials to the more positive, and an
increase of peak currents, suggesting a diffusion-controlled process. Figure 10b shows the
linear plot of peak currents against the square root of scan rate (v1/2) with 0.98 regression
values for both anodic and cathodic lines (Ipa and Ipc), confirming a diffusion-controlled
process for DA oxidation.
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Figure 10. Scan rate cyclic voltammograms at SPCE-Fe3O4/SPEEK for (a) DA and (b) linear plots of peak currents (µA)
versus square of scan rate in 0.1 M PBS (pH 7.4) containing 0.1 mM DA.

Figure 11 represents the linear plot of peak potentials (Epa/Epc) against the logarithm
of scan rate (v). The Tafel slope value was found to be 0.693 V/dec for DA from the slope
value of Figure 11 by applying Equation (5). Obtained values were higher than the expected
theoretical value of 0.118 V/dec, suggesting adsorption of the reactant on the electrode
surface.
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2.3. Electro-Analysis of DA
Concentration Study of DA

The impact of different concentrations on the DA current response was studied using
square wave voltammetry as shown in Figure 12a under the optimal parameters of 0.01 V
potential step, 0.001 V amplitude, deposition time of 10 s, and frequency of 25 Hz. The result
obtained shows the dependence of reduction peak currents of dopamine on increasing DA
concentrations (5 to 50 µM). The poorly defined reduction peak current could be due to the
nature of the electrode modifiers. The linear relationship between peak currents and DA
concentrations (Figure 12b) yielded a linear regression equation of Ipc = 0.005087 [DA] +
4.320144, and regression value of 0.98. The detection limit was calculated to be 7.2 µM by
applying Equation (6). The LoD competes well with previous works investigated in the
literature (Table 3):

LoD =
3.3 × SD

Slope
(6)

SD stands for the standard deviation of the peak current, over the slope of the cali-
brated plot.
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Table 3. Comparison of the designed sensor with previously studied sensors for DA determination.

Modified Electrode Methods Linear Range
(µM) Analyte LoD (µM) R2 Ref.

Ppy/Ferro-cyanide/carbon
paste electrode

LSV 100–1200 DA 38.6 0.9984 [47]
DPV 200–950 DA 15 0.9998

Au/Ppy/Ag/GCE Amperometry 100–5000 DA 50 [48]
p-Sulphonatocalix

[6]arene/polypyrrole 75–1000 DA 20 [49]

PoPD/E-RGO/GCE 10–400 DA 7.5 [50]
SPCE-Fe3O4/SPEEK SWV 5–50 DA 7.1 0.9831 This work

Abbreviations: Ppy = Polypyrrole; Au = Gold; Ag = Silver; E-RGO = Electrochemically-reduced graphene oxide; GCE = Glass carbon
electrode, PoPD = poly(o-phenylenediamine).

Figure 13a,b show the SW voltammogram of DA and UA accordingly with peak
potential observed at 0.23 and 0.36 V for the respective analyte. Figure 13c represents the
simultaneous detection of DA and UA of the same concentration with potentials noticed
at 0.16 V (DA) and 0.31 V (UA). The shifts in the peak potentials and the peak separation
(0.15 V) between DA and UA indicate non-interference of the UA signal with that of DA,
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successful detection of DA in the presence of UA at the designed electrode, and selectivity
of the electrode.
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2.4. Analytical Application of the Proposed Sensor for Determination of DA in
Pharmaceutical Sample

The practical applicability of the designed sensor for DA determination was investi-
gated using a diluted DA hydrochloride injection (dopamine HCl-Fresenius 200 mg/5 mL)
sample, spiked with different concentrations of DA standards in accordance with well-
established standard addition procedure. The results recorded from the SWV measure-
ments under optimum conditions (0.01 potential step, 0.001 amplitude, deposition time
10 s, and frequency of 25 Hz) are summarized in Table 4. Satisfactory recoveries in the range
from 99.9% to 100% were obtained with good relative standard deviations (RSDs), illustrat-
ing the promising application of the SPCE-Fe3O4/SPEEK electrode for the determination
of DA in real samples.

Table 4. Results of the recovery tests obtained from the DA determination using dopamine HCl-
Fresenius 200 mg/5 mL injection.

Sample Added
(µM)

Detected
(µM)

Recovery
(%) RSD

Dopamine HCl-Fresenius
200 mg/5 mL injection

40 39.97 99.9 3.90
80 80.01 100 0.05
120 119.4 99.9 0.12
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2.5. Repeatability and Stability Study for Fe3O4/SPEEK

The repeatability study of the SPCE-Fe3O4/SPEEK modified electrode was conducted
using cyclic voltammetry at a 25 mVs−1 scan rate, for 10 repetitive scans in 0.1 mM DA
(Figure 14). Relative standard deviations of 0.75 and 2.45% were obtained for oxidation
peak potential and peak current, accordingly, suggesting acceptable repeatability, stability,
and reproducibility of the electrochemical sensor. Peak current was monitored for 28 days
at an interval of 5 days, and the electrode was stored in the refrigerator when not in use. A
45% increase of the initial peak current was observed which could be attributed to increased
assimilation of the nanocomposite (SPCE-Fe3O4/SPEEK) onto the electrode surface over
time.
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Figure 14. 10 repetitive CV scans in 0.1 mM DA at 25 mVs−1 scan rate.

3. Materials and Methods

The L. serica plant was collected from Kwa-Zulu Natal province. Iron (II) chloride
tetrahydrate (FeSO4·4H2O) and iron (III) chloride hexahydrate (FeCl3·6H2O) are prod-
ucts from BDH and LABCHEM, South Africa. Sodium phosphate salts (Na2HPO4 and
NaH2PO4) products of LABCHEM and GlassWorld, South Africa, were used in the prepa-
ration of 0.1 M phosphate buffer solution (PBS) of pH 7.4. Potassium ferricyanide (III)
(K3[Fe(CN)6]) and dopamine hydrochloride were purchased from Sigma–Aldrich (St. Louis,
MO, USA). Dimethyl formamide (DMF), sodium hydroxide (NaOH), and distilled water
was produced by Emplura® Merck (The Chemical Center from Maharashtra, India). All
chemicals used were of analytical grade.

3.1. Preparation of Plant Leaf Extract

Approximately 10 g of ground fine powdered leaves of the L. serica plant was weighed
and transferred into a conical flask followed by the addition of 200 mL of distilled water and
heated for several minutes at 60 ◦C until a change in colour (dark green-brown solution)
was observed. Leaf extract was filtered using Whatman No. 1 filter paper and a Buchner
flask [51].

3.2. Synthesis of Iron Oxide Nanoparticles

The green meditation of Fe3O4NPs derived from L. serica leaf extract following the
prescribed method with a few minor changes [52,53]. 2:1 M volume ratio of iron (II) chloride
tetrahydrate and iron (III) chloride tetrahydrate solution was added to the L. serica extract
with a resultant black-coloured precipitate, indicating the formation of precipitates (iron
oxide nanoparticle). The pH of the mixture was adjusted to 11 by the addition (drop-wise)
of 1.0 M of NaOH solution under continuous stirring. The solution was thereafter stirred
for 1 h to complete the reaction homogeneity, filtered using vacuum filtered precipitates
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(Fe3O4NPs) washed several times with distilled water, and air-dried in the fume wood
overnight. The dried sample was stored in an airtight container for further characterization.

3.3. Preparation of SPEEK Polymer

Details on SPEEK preparation (sulphonation of polyether ether ketone) have been
reported in our previous work [54].

3.4. Synthesis of Iron Oxide/SPEEK Nanocomposites

20 mg of SPEEK and 40 mg of iron oxide nanoparticles were dissolved in N, N-
dimethylformamide solution, sonicated for 48 h at room temperature, and stored for
further characterization.

3.5. Characterization of Nanomaterials Synthesized

The successful synthesis of the Fe3O4NPs and nanocomposite (SPEEK/Fe3O4) were
confirmed through characterizing techniques by using Carry 300, UV–Vis Spectrophotome-
ter, Agilent Technologies, Waldbronn, Germany, spectroquant Prove300, Merck KGaA,
(Darmstadt, Germany), and UV–Vis Uviline 9400 (Sl Analytics, Hattenbergstr.10, D-55122
Mainz, Germany) in the investigation of the Nanomaterials optical properties of the nano-
material fabricated. FTIR (Opus Alpha-P, Brucker Corporation, Billerica, MA, USA). Quanta
FEG 250 ESEM, (ThermoFisher Scientific, Waltham, MA, USA) operating on an acceleration
voltage of 15.0 kV was employed to describe the surface structure of the nanomaterials
prepared. X-ray diffraction spectroscopy (XRD) from Bruker company, Karlsruhe, Ger-
many, and scanning electron microscopy (SEM) from JEOL company, Dearborn, Peabody,
MA, USA).

3.6. Electrode Modification and Electrochemical Studies

Separate suspensions of Fe3O4NPs (20 mg), SPEEK (20 mg), and Fe3O4/SPEEK (20 mg
each) were dispersed in DMF and ultra-sonicated for 48 h to form a paste prior to electrode
modification. Formed pastes were dropped on SPCE and air-dried to give SPCE-SPEEK,
SPCE-Fe3O4NP, and SPCE-Fe3O4/SPEEK. Electrochemical studies were conducted on the
screen-printed carbon electrode (DropSens 110) of 4 mm in diameter, which consists of
working, reference (A/AgCl), and a counter electrode adapted into a Dropview 200 po-
tentiostat powered by Dropview 200 software obtained from Metrohm. Electrochemical
techniques employed were cyclic voltammetry (CV) and square wave voltammetry (SWV).

3.7. Preparation of Real Sample for Analysis

A dopamine hydrochloride injection (the mL taken) was diluted with distilled water
in a 100 mL flask and 2 mL each of the diluted solution was transferred into six 50 mL
volumetric flasks. Five of the flasks were spiked with different concentrations of DA stock
solution while the sixth flask was held as a control. The flasks were made to the mark using
0.1 M PBS of pH 7.4, and analyzed using SWV in triplicate.

4. Conclusions

In this study, the synthesis of Fe3O4NPs from the L. serica plant and the fabrication of
nanocomposite-modified SPCE (SPCE/SPEEK/Fe3O4) for DA detection is reported. The
amplified SPCE-Fe3O4/SPEEK peak current, in contrast to Fe3O4NPs, could be attributed
to the presence of SPEEK. The plot of peak currents versus the square root of scan rate
gave a 0.98 regression value, suggesting the occurrence of a diffusion-controlled electro-
chemical process. The calculated detection limit competes well with previous studies
investigated. In addition, the proposed sensor was selective to DA in the presence of uric
acid (UA) and yielded good recovery with excellent RSDs in real sample sensing of DA.
The results suggest the potential application of the designed sensor for DA monitoring in
the pharmaceutical sample.
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