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Abstract Short-term fluctuations in arterial pressures aris-
ing from normal physiological function are buffered by a
negative feedback system known as the arterial baroreflex.
Initiated by altered biomechanical stretch in the vessel wall,
the baroreflex coordinates a systemic response that alters
heart rate, cardiac contractility and peripheral vessel vaso-
constriction. In this work, a coupled 3D—0D formulation for
the short-term pressure regulation of the systemic circulation
is presented. Including the baroreflex feedback mechanisms,
a patient-specific model of the large arteries is subjected to
a simulated head up tilt test. Comparative simulations with
and without baroreflex control highlight the critical role that
the baroreflex has in regulating variations in pressures within
the systemic circulation.

Keywords Baroreflex - Blood flow - Transitional -
Multi-scale - Predictive

1 Introduction

As part of the circulatory system, the systemic circula-
tion functions to transport oxygenated blood throughout the
human body via a network of branching and tapering elas-
tic vessels. Driven by the pulsatile contraction of the heart,
pressure and flow in this network vary from highly transient,
large amplitude waveforms in the large vessels close to the
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heart, to relatively constant, small amplitude waveforms in
the small vessels far from the heart. By transforming the
nature of these waveforms, the systemic circulation provides
a relatively constant supply of blood throughout the body.
To maintain this supply of blood under a range of differ-
ent physiological conditions, such as changes in posture,
digestion, stress, trauma or exercise, the circulatory system
is equipped with several regulatory feedback mechanisms.
Affecting local and global properties such as individual ves-
sel tone and heart rate, these feedback mechanisms enable
the regulation of pressure and flow throughout the body.

One such key regulatory mechanism is the arterial
baroreflex—a negative feedback system that responds to
short-term variations in pressure by altering the state of
the systemic circulation in order to maintain pressure
homoeostasis. The baroreflex can be broadly divided into
three components: (1) the baroreceptors cells, (2) the vaso-
motor control center and (3) the sympathetic and parasym-
pathetic nervous systems (see Fig. 1).

The baroreceptors are stretch-sensitive nerve cells located
at the aortic arch and the carotid bifurcation. These cells
detect changes in pressure by using the wall stretch as a direct
surrogate. Connected to the vasomotor center of the brain via
the afferent pathways, the baroreceptor cells modulate their
nervous firing rate when the magnitude of stretch deviates
from prior baseline values. Equipped with a memory of 1-
2 days, these cells are specialized for the role of short-term
pressure regulation (Guyton 1992).

The vasomotor center of the brain subconsciously inter-
prets the afferent nervous activity of the baroreceptors.
Altered afferent activity arising from variations in pressure
generates efferent activity within the vasomotor center that
is transmitted to different anatomical regions of the systemic
circulation. This efferent activity travels through two differ-
ent pathways, known as the sympathetic response and the
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Fig. 1 Schematic of the main
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parasympathetic response, which aim to restore blood pres-
sure to baseline values.

The sympathetic and parasympathetic nervous systems
innervate the heart and the peripheral vessels, thereby allow-
ing control of heart rate, cardiac contractility and vessel vaso-
constriction. Increased sympathetic activity results in vaso-
constriction of the peripheral vessels, increased heart rate
and increased cardiac contractility—factors which all have a
restorative effect on blood pressure. Conversely, increased
parasympathetic activity decreases heart rate and cardiac
contractility, thereby reducing systemic blood pressure (Guy-
ton 1992). Changes in sympathetic and parasympathetic
activities occur simultaneously, e.g., an increase in sympa-
thetic activity and a decrease in parasympathetic activity are
effected when an increase in blood pressure is desired. Via
the coordinated response of these activities, the baroreflex
rapidly alters the hemodynamics throughout the systemic cir-
culation, exerting global control of the pressure on a beat-by-
beat basis. The ability to transiently alter pressure is clinically
measured using an index referred to as the baroreflex sensi-
tivity (La Rovere et al. 2008). Defined as the change in peak
systolic pressure over successive beats, this sensitivity is a
direct measure of the strength of the baroreflex response and
has been shown to be an indicator of mortality in diseased
states (La Rovere et al. 2001).

Clinical assessment of the baroreflex can be performed
pharmacologically through hypotensive or hypertensive drug
infusion, mechanically through compression via a neck collar
apparatus or through controlled changes in posture—such as
in the tilt test. Of the approaches listed, the tilt test is the least
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invasive, consisting of a controlled change in posture of the
conscious patient from a supine (horizontal) to a upright (ver-
tical) position (La Rovere et al. 2001). This change in posture
induces a change in the pressure sensed by the baroreceptors
located at the carotid bifurcation and the aortic arch that ulti-
mately initiates the baroreflex response.

In this paper, we are interested in modeling the behavior
of the baroreflex system using computational methods. In
particular, we aim to reproduce the transient hemodynamics
arising due to the short-term baroreflex regulation of blood
pressure triggered by a virtual tilt test experiment.

Several mathematical models of the baroreflex have been
proposed thus far, with each examining different aspects
of this coupled system. So far these approaches have been
mostly implemented using OD (e.g. lumped parameter net-
work) models, with one notable 3D contribution. To the best
of the authors knowledge, there are currently no 1D models
of the baroreflex in the literature.

Early OD models of the baroreflex include those devel-
oped by Ottesen (1997) and Ursino (1998); these two mod-
els explored the long-term stability of the negative feedback
mechanism and the effectiveness of the baroreflex in cases
of blood loss (trauma), respectively. Other 0D models have
examined the baroreflex under controlled scenarios, such as
the tilt test in Heldt et al. (2002) where orientation depen-
dent pressures were imposed in different anatomical regions.
However, as 0D models lack a geometric component, the
pressure gradient used to represent the effect of gravity was
arbitrarily applied. More recently, Beard et al. (2013) exam-
ined the role of the baroreflex in combination with other reg-
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ulatory pressure mechanisms, such as the renin-angiotensis
system, to explore the effects of chronic baroreflex stimula-
tion.

Although 0D models are numerically efficient and provide
a simple framework in which the baroreflex response can be
investigated, these models are unable to simulate features
such as pulse wave propagation, complex local hemodynam-
ics in stenoses and aneurysms, and most importantly for our
purposes, gravity-induced gradients resulting in spatial vari-
ations in pressure. A combined 3D-0D modeling approach is
required to properly represent these features. This approach
captures complex hemodynamics in the 3D domain while
modeling the baroreflex regulation in the 0D domain. This 0D
domain is typically divided up into an upstream component
(e.g., heart) and a downstream component (e.g., peripheral
circulation).

A previous multi-domain 3D-0D model of the baroreflex
was developed by Kim et al. (2010). There, a closed-loop
model of the circulation was employed where a baroreflex
response based on the model reported by Ottesen et al. (2004)
was initiated by imposing arbitrary changes in the peripheral
resistance of the systemic circulation. The controlled quanti-
ties were heart rate, cardiac contractility and peripheral arte-
rial compliance.

In this work, we have used a 3D-0D approach whereby a
less intrusive baroreflex trigger, given by the change in pos-
ture during the tilt test, was utilized. This approach enables
the explicit control of the peripheral systemic resistance, one
of the key factors effected by the baroreflex system. Further-
more, the tilt test naturally provides clinical data on heart
rate, pressure and flow that can be used to inform and vali-
date the computational model. Along with this improvement
in the baroreflex triggering mechanism, we introduce the fol-
lowing novelties in our modeling framework:

— Improved design of the closed-loop lumped parameter
model of the circulation: Here, the systemic peripheral
vasculature is modeled using a multi-compartment net-
work that represents the small arteries, arterioles, venules
and veins. Furthermore, the flow entering the 0D domain
from each outflow branch of the 3D domain is numer-
ically handled to ensure global conservation of flow
throughout the system.

— Improved ventriculo-arterial coupling: Coupling of the
0D left ventricle to the 3D domain includes a nonlinear
left ventricular resistance to account for the flow rate
dependent pressure losses that have been experimentally
observed by Shroff et al. (1985).

— Improved baroreflex control: In this study, the model
of the baroreflex regulates heart, cardiac contractil-
ity, arterial resistances, venous compliance and venous
unstressed volume. The parameters defining the steady-

state response of these hemodynamic variables have been
fitted to physiological values reported in the literature.

The structure of this paper is as follows: Firstly, a detailed
description of the multi-domain 3D-0D closed-loop model
used to represent the systemic circulation is given in Sect. 2.1.
This is followed by a characterization of the baroreflex
response in Sect. 2.2. The implementation of the physi-
cal trigger used to stimulate the baroreflex is described in
Sect. 2.3. The results of different numerical experiments,
with and without baroreflex regulation, are presented in
Sect. 3. Finally, the limitations of this study and future work
are described in Sect. 4.

2 Methods
2.1 Closed-loop model of the systemic circulation

The model of the systemic circulation forms a closed loop that
begins at the left ventricle and ends at the left atrium. Here, the
pulmonary circulation has been neglected as the baroreflex
predominantly alters the physiology of the systemic circula-
tion. A circuit was constructed by coupling together the fol-
lowing 0D and 3D compartments: left ventricle (OD), large
arteries (3D), small arteries (OD), arterioles (OD), venules
(0OD), veins (OD) and left atrium (0D). Hemodynamics in this
closed-loop circuit were described using the coupled multi-
domain approach originally presented in Vignon-Clementel
et al. (2006). In the following sections, the 3D and OD com-
ponents of this circuit are described in further detail.

2.1.1 3D model of the large arteries

A patient-specific CAD model of the large arteries of the
chest and neck was derived from a previous study (Coogan et
al. 2013). This model contains the following vessels: ascend-
ing and descending aorta, left and right subclavians, left and
right internal carotids, and left and right external carotids
(see Fig. 2). The extent of the model is therefore sufficient
to capture the location of the two sets of baroreceptor cells
at the aortic arch and the carotid bifurcations. The CAD
model was discretized using a combination of global mesh
size (h = 0.1 cm) and curvature-based refinement. This pro-
duced a 1,795,001 tetrahedral element mesh. A pulsatile sim-
ulation in pre-tilt conditions was then run, followed by a
field-based anisotropic mesh refinement as described in
Sahni et al. (2006). This procedure generated a 973,882 tetra-
hedral element mesh, with identical results for flow and pres-
sure waveforms as the initial mesh. The field-adapted mesh
was then used in the tilt test simulations.

The physics of blood in the 3D domain has been described
by the incompressible Navier—Stokes equations for a New-
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Fig. 2 Left Model geometry with center lines and local radius R;
center lines were calculated using the Vascular Modeling Toolkit
http://www.vmtk.org/. Center Wall thickness, units in cm. Right Elastic
wall modulus, units in MPa. Figure legend: A ascending aorta, B right

tonian fluid coupled to the (linear) elastodynamics equa-
tions for the vessel wall characterized via a thin membrane.
This coupled system has been solved using a 3D stabilized
finite-element approach; details of this approach have been
described elsewhere (Whiting and Jansen 2001; Vignon-
Clementel et al. 2006; Figueroa et al. 2006). Briefly, the weak
form of the coupled system is given by the following varia-
tional equation

/ {w-(pvi+pvVv —I)
2

+ Vw: (—pl+1) —Vq~v}dv+/ {gv-n}da
Fg

+/ {—W~th+qv-n}da+/ {-w-t' +¢v-n}da
Iy I

+ Stabilization Terms = 0, Vx(¢) € £2, Vt € [0, T], (1)

where p and v are the blood pressure and velocity, respec-
tively; £2 is the blood flow domain; g and w are the test
functions for the mass and momentum balance, respec-
tively; p is the blood density; z = w(Vu 4+ (Vu)?) is
the viscous stress tensor for a Newtonian fluid where
is the dynamic viscosity; f is body force per unit volume;
Iy is a Dirichlet boundary where the test function w van-
ishes; I, is the interface where t is the traction defined
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elastic modulus [MPa]

“u‘mmmul HH“M M\\HH meHHH‘Hm

thickness [cm] 0.35

subclavian, C right external carotid, D right internal carotid, E left inter-
nal carotid, F left external carotid , G left subclavian and H descending
aorta

by the 3D-0D coupling; I is the interface with the ves-
sel wall where a traction t’ resulting from the fluid—solid
interaction is defined; and n is the normal vector on each
boundary. The traction t” on I7, is defined by the choice
of reduced-order model for the proximal and distal regions
of the systemic circulation, viz. t" = (-pL+z)-n =
h(v, p, x,t) (Kim et al. 2010). The boundary I}, is subdi-
vided into inflow I3, and outflow Iy surfaces, such that
InUTgy = Iy and Iy N Toye = @. The inflow surface
I, switches between a Neumann boundary during systole
(aortic valve open) and a Dirichlet boundary during dias-
tole (aortic valve closed), see Sect. 2.1.2. Neumann bound-
aries have been previously shown to require numerical sta-
bilization during periods of flow reversal (Moghadam et al.
2011). In this work, the stabilization approach detailed by
Hughes and Wells (2005) was adopted, where the resulting
deficit between the total flux traction and the OD pressure
was corrected following a similar approach to that reported in
Ismail et al. (2013).

On [, an incompressible, linearly elastic membrane
(Figueroa et al. 2006) of thickness ¢, defined as 10% of
the local vessel radius R, was utilized. An isotropic elastic
modulus £ was defined regionally as

3pRc?
T )

E=E*"
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Fig. 3 Model of the systemic circulation with both 3D and 0D components. Here, the pressures compliance chamber and arterioles pressures, P
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where c¢ is the local pulse wave velocity and E* = 2 is
a scaling factor. Here, the local pulse wave velocity ¢ was
calculated using an empirical formula reported by Reymond
et al. (2009),

13.3
2R)03"

The distribution of mechanical properties (thickness and
stiffness) of the 3D anatomical model is illustrated in Fig. 2.

c(R) ~ 3

2.1.2 OD model of the left heart

The left heart model is divided into a series of 0D components
representing the atrial and ventricular compartments and the
valves separating them (Fig. 3). The pulsatile contraction
and relaxation of the left ventricle was modelled using an
elastance function Eyy, defined here as the time-varying ratio
of the ventricular pressure Pry to the difference between
the ventricular volume Viy and the unstressed ventricular
volume V,, 1v,

Py (1)
Viv(t) — Vaiv

Experimental studies under differing heart rates and con-
tractile states, in both normal and diseased hearts, have shown
that the elastance function can be reduced to a universal non-
dimensional curve (Suga and Sagawa 1974). Normalized by
its maximal value Epax and the corresponding time to this

Ery(t) = 4

maximum Ty, this non-dimensional function represents the
pulsatile behavior of the ventricle under a range of different
conditions. Here, we have adopted the analytical function
reported by Pope et al. (2009) (Fig. 3) to characterize the
normalized elastance function.

The mitral and aortic valves were modeled via diodes that
permit flow only in the forward direction. The opening of
these valves is triggered by a negative pressure gradient in
the direction of flow; once opened, the valve remains open
until retrograde flow is detected—regardless of the pressure
gradient. The closure of the aortic valve disconnects the 3D
domain from the heart model. At this point, a zero velocity
Dirichlet boundary condition is imposed on the surface I3,.
When the aortic valve reopens the boundary, I3, is coupled to
the heart model via a pressure Neumann boundary condition
described by the following set of ODEs

LAVd%;W + RavQav + Ry Qav [Py~ Pav 5

dViv —
v Oav

where Pay and Qav are the average pressure and flow on
I, respectively; Ray is the aortic resistance; Ly is the
aortic inductance; and Ryy is the internal nonlinear ventricu-
lar resistance defined as a function of the current ventricular
pressure and the constant kpy (see Fig. 3)

Ry (t) = kv PLv(1). (6)
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Table 1 Heart model parameters

Left ventricle

Emin Emax Tnax Trelax kry Vu,Lv

4.102 x 10! 3.000 x 10° 4x 107! 2% 107! 5% 1074 0.

Left atrium Mitral valve Aortic valve

Era VuLA Rmy Lyv Ray Lay

1.333 x 10? 0. 1.187 x 107! 6.667 x 107! 1.000 x 107! 1.000 x 107!

The units of Emax, Emin and Ej, are dynes cm™>. The units of kry are scm™>. The units of the valve resistances Ryy and Ray are dynes scm™.

2 =5

The units of the valve inductances Lypy and L sy are dynes s” cm

This internal resistance has been shown to directly affect
the shape of the aortic flow waveform (Shroff et al. 1985).
Included in previous 1D models (Reymond et al. 2009), here
this component has been implemented for the first time in
a 3D setting. Writing the left ventricular pressure Pry as a
function of elastance and ventricular volume, the coupled
ODEs in Eq. 5 can be further simplified. The resulting non-
linear equations are solved numerically using a backward
Euler scheme and a Newton—Raphson method.

The left atrium enables the refilling of the left ventri-
cle during the relaxation phase of the cardiac cycle. Mod-
eled as a passive component with a constant elastance ET A,
the pressure in the left atrium is defined as Ppra(t) =
Era(VLa(t) — VuLa), where Vi and V, 1A represent the
volume and unstressed volume of the atrium, respectively.
The left atrium equations are solved simultaneously with the
equations characterizing the venous and distal arterial com-
ponents of the circuit, see Sect. 2.1.3 below. The values of
all the heart model parameters are detailed in Table 1.

2.1.3 OD model of the peripheral systemic vasculature

At each outlet branch of the 3D domain, the corresponding
surface Iy is coupled to a 3-element Windkessel model
that represents the small arteries immediately downstream
(Fig. 3). The pressure P; and flow Q; relationship on the ith
branch are described by the following equations

P — P Ry, Qi .
chi Pei—=Py |°
Ci _dt, Qi - Ro;

where P.; is the pressure at the compliance chamber; C; is
the compliance; Ry ; and Ry ; are proximal and distal resis-
tances, respectively; and P, is the arteriole pressure (see
Fig. 3). Here, the value of the proximal resistance Rj; is
matched to the characteristic outlet impedance of the vessel
using the equation
pc

Ry = i 3
where A; is the area of the outlet surface. Following the itera-
tive approach described in Xiao et al. (2014), the Windkessel
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Table 2 Resistances and compliances of the small arteries

Vessel Ry C Ry

Descending aorta 1.052 x 10> 9.995 x 10~*  1.650 x 103
Right subclavian 4506 x 10> 3.963 x 107> 4.162 x 10*
Left subclavian 4922 x10°  3.673 x 107 4.491 x 10*
Right internal carotid ~ 7.868 x 103 2.454 x 107> 6.722 x 10*
Left internal carotid ~ 8.481 x 103 2.310 x 1075 7.141 x 10*
Right external carotid ~ 1.898 x 10*  1.161 x 107> 1.421 x 10°
Left external carotid ~ 1.739 x 10*  1.251 x 10> 1.318 x 10°

The units of the resistances R are dynes scm™>. The units of the
inductances L are dynes s2cm ™. The units of the compliance C are
cm® dynes™!. The units of the unstressed volumes V, are cm?

Table 3 Resistances, compliances and unstressed volumes of the arte-
rioles, venules and venous compartments

Compartment R L C Vu

Arterioles 8.893 x 102 1.400 x 1073 4.010 x 102
Venules 2973 x 101 - 9.900 x 10™3  5.960 x 102
Venous 3.560 x 101 6.670 x 1072 5.540 x 1072 1.938 x 103

The units of the resistances R are dynes scm™>. The units of the
inductances L are dynes s> cm™. The units of the compliance C are
cm® dynes™!. The units of the unstressed volumes V, are cm?

parameters were tuned to produce a division of flow propor-
tional to the area of each outlet, and a mean aortic pressure of
120mmHg, with a pulse pressure of 30 mmHg. These para-
meters are listed in Table 2.

The termination of each 3-element Windkessel model is
coupled to a lumped parameter circuit that represents the
arterioles, venules and veins (Fig. 3). The final venous com-
partment connects directly to the left atrium, bypassing the
pulmonary circulation, thus closing the loop formed by this
systemic circuit. In this approach, the flow from each branch
is explicitly gathered and passed on to the arterioles and
venous compartments, thus enforcing the proper continuity
of flow within the system. This circuit is derived from that
originally reported by Ottesen et al. (2004). The parame-
ters for the arterioles, venules and venous compartments are
detailed in Table 3.



Simulation of short-term pressure regulation

The 3-element Windkessels, arterioles, venules, veins and
left atrial compartments result in a system of first-order
ODEs. These equations are all solved together using a back-
ward Euler scheme, resulting in an algebraic system of the
form:

AX"T! = Bx" + Cq"t' + D, )

When the mitral valve is open, these equations are
expanded to also include the left ventricular compartment.
Here, the vector x"1! represents the internal states of the
circuit (pressures, volumes and flows), and q’”‘1 is the vec-
tor of outlet flows in the 3D domain at the discrete time
t = (n + 1)Atr. The matrices A, B, C and D contain the
resistors, inductors, capacitors and source components of the
lumped parameter circuit representing the 0D closed-loop
circuit. This system of equations (Eq. 9) is solved via LU
factorization.

2.2 Baroreflex response

The baroreceptor cells modify their firing rate (i.e., affer-
ent activity) in response to deviations in pressure. Here, this
activity was modeled using the index § proposed in Ottesen
(1997) which is defined as the ratio of the current cardiac
cycle average pressure p to some predefined (i.e., preferred)
Pressure Prarget, Viz.

P

8= .
Ptarget

(10)

The value of preer Was defined for each carotid vessel as
the pre-tilt value of p. Increases or decreases in blood pres-
sure result in larger or smaller values of the index §. Given
the three spatial locations of the baroreceptor cells (left and
right carotid bifurcation and aortic arch), there are poten-
tially different deviations in baroreceptor afferent activity.
In this work, the pressure p was calculated on each of the
internal and external carotid outflow surfaces (faces C, D,
E, F in Fig. 2). For the sake of simplicity, it was assumed
that the largest deviation § drives the overall response of the
baroreflex system.

Based on the experimental reports of Korner (1971), Otte-
sen and colleagues proposed the following sigmoidal rela-
tionships for the efferent responses:

1

ns(8) = Trar (11)
1

8 = —, 12

mp®) = 15 (12)

where ng is the normalized sympathetic activity, np is

the normalized parasympathetic activity, and v = 5 is a

steepness parameter. These functional relationships describe
the observed efferent response whereby increases in pres-
sure simultaneously increase and decrease sympathetic and

921
Table 4 Control ODE parameters
i Symbol T a; Bi Vi
1 H 3 1.75 —0.25 0.00
2 EMax 3 0.40 0.00 0.80
3 R 3 0.80 0.00 0.60
4 Cy 30 —0.20 0.00 1.10
5 Vu 30 —0.42 0.00 1.21

Variables: H heart rate, E 7, maximum elastance, R arterial resistance,
Cy venous compliance and Vyy venous unstressed volume. Units of ©
are s~! and , 8 and y are dimensionless

parasympathetic activity, respectively; conversely decreases
in pressure cause a decrease in sympathetic activity and an
increase in parasympathetic activity. With further increases
(or decreases) in pressure, the nervous activity of each sys-
tem continues increasing or decreasing until it saturates at
either 1 or 0.

The nervous activity of the sympathetic and parasympa-
thetic systems controls the properties of the systemic cir-
culation, namely the heart period 7, maximum ventricular
elastance Epax, peripheral arterial resistance Ry ; and R,,
venous compliance Cy; and Cy», and venous unstressed vol-
ume V, y1 and V, y2. Ottesen et al. (2004) modeled the change
in each of these variables using the following ODE

dxi

Ty T = aing(8) — inp(8) + vi, (13)

where the subscript i represents the i th normalized controlled
property x;, T; is its characteristic time constant, and «;, B;
and y; are the corresponding control gain parameters defining
the steady-state response. Table 4 lists the numerical values
of 7;, o, B;i and y; that reproduce the steady-state response
of the various controlled properties. As illustrated in Fig. 4, a
decrease in pressure results in an increase in heart rate, max-
imum elastance and arterial resistance, with a simultaneous
decrease in venous compliance and unstressed volume. Con-
versely, an increase in pressure results in response in which
heart rate, maximum elastance and arterial resistance all
decrease, while venous compliance and unstressed volume
increase. Of note, while the sympathetic activity n; affects
all controlled properties (i.e., o; # 0 Vi), the parasympa-
thetic activity was assumed to affect only the heart rate (i.e.,
Bi=0,i=2,3,4,5).

2.3 Tilt test stimulation of the baroreflex response

The tilt test is a medical procedure used to diagnose malfunc-
tions in the autonomic nervous system. In this procedure, the
patient lies flat on a special table and heart rate activity and
blood pressure are monitored. The orientation of the table
is then altered from a horizontal to a vertical configuration
over the course of a few seconds, such that a gravity-induced

@ Springer
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Fig. 4 Normalized control response for the control variables. Labels: §—afferent activity, H—heart rate, E;,,—maximum elastance, R—arterial

resistance, Cy—venous compliance, Vy—unstressed volume

change in pressure triggers the baroreflex response. Tilt test
hemodynamics have been previously studied in a 0D set-
ting (Heldt et al. 2002). In this work, we present the first
3D investigation of hemodynamical changes during the tilt
test. Rather than physically rotating the 3D computational
domain, the change in posture was simulated by altering the
orientation of gravity in the domain via a time-varying body
force per unit volume f = p g(r). Here, the initial gravity
vector gop = [0 0 — g]T is oriented such that the patient
begins in a supine (horizontal) position, with the x-coordinate
running from the feet to the head and the z-coordinate run-
ning from the back to the chest of the patient. Then, a rota-
tion 6(¢) around the y-axis is imposed over the course of
5s. The magnitude of the gravity vector has been taken as
g = 9.810 x 10? cms~2. Considering this, the time-varying
gravity vector is defined as:

cos(0(z)) 0 —sin(8(r)) 0
g(1) = 0 1 0 0 . (14)
sin(@(r)) 0 cos(8(t)) -8

3 Results

To better understand the hemodynamic alterations introduced
by our baroreflex model in response to changes in posture,
two different simulations were performed—with and without
the baroreflex response activated, herein referred to as the
control and no-control cases. Each simulation consists of a
total of 25 s of physical time, subdivided into three stages:
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(1) 10s in a supine (horizontal) position, (2) 5s of rotation
from the supine to an upright position and (3) 10s in a fixed
upright position.

Simulations were performed in our custom parallel blood
flow solver CRIMSON on 128 processors on a SGI Altix UV.
Total wall time for each simulation was 96 h.

3.1 Hemodynamics of tilt test: control and no-control cases

Figure 5a presents the time history of pressure at the right
external carotid for both cases, control and no-control. Dur-
ing the supine stage of the tilt test (+ < 10s), identical peri-
odic pressure waveforms are obtained in both simulations.
At t = 10s, the rotation of the table begins and pressure
decreases rapidly in both cases. In the no-control simulation,
the pressure continues to fall until the end of the rotation,
whereby a new periodic state is achieved. In the control case,
however, the error signal given by the difference between the
(current) cardiac cycle average pressure (dashed line) and
the target average pressure (solid line) triggers the response
of the baroreflex. The ensuing action of the efferent path-
ways causes a rapid increase in pressure, resulting in signifi-
cant differences between the control and no-control cases for
t > 12s. Once the upright position is reached and maintained
(t > 155), a new periodic state pressure is developed, with
an average pressure that is significantly closer to the origi-
nal target value than the pressure observed on the no-control
case.

Figure 5b illustrates the 3D distribution of pressure at peak
systole in the supine and upright positions for both cases. Sig-
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Fig. 5 Effect of the baroreflex upon pressure in the large arteries. a Pressure history of the right external carotid. b Pressure distribution at peak

systole pre-tilt and post-tilt, for both the no-control and control cases

nificant differences are observed between the control and no-
control cases at the end of the upright stage of the test. In the
no-control case, pressures in the carotid and subclavian ves-
sels are significantly lower than in the initial supine position,
however this difference is less prominent in the ascending
and descending aorta. Conversely, in the control case, the
efferent effect of the baroreflex resulted in increased pres-
sures throughout the 3D domain. Pressures in the carotids
exhibit values comparable to those found in the initial supine
position while the aorta now presents with larger values than
in the supine configuration.

In all cases, the effect of the gravity-induced pressure gra-
dient can be clearly observed. The pressure differential across

the model is more apparent in the upright configurations, as
the longer dimension of the anatomy is aligned with the ori-
entation of the gravity vector g.

A summary of the pressure waveforms throughout the
closed-loop circuit is presented in Fig. 6. Pressure in the final
two cycles of the supine position prior to the rotation of the
table is compared with the pressure in the final two cycles
of the simulation for both no-control and control cases. For
the sake of clarity, all pressure waveforms have been aligned
using the same reference point in time given by the start of
the two cardiac cycles in each of the presented cases.

In all upper branch vessels (subclavians and carotids) and
in the arterioles, the pressures in the no-control case are

@ Springer
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Fig. 6 Periodic pressures in the closed-loop model in the initial supine and upright positions in both the no-control and control cases

reduced relative to their initial supine values with typical
reductions on the order of 10 mmHg. This is due to the pres-
sure gradient created by the change in position and the lack
of control. In the control case, however, pressures are all
increased relative to the no-control simulation, with values
close to or greater than the initial supine values.

In the venules and veins, changes in pressure exhibit a dif-
ferent pattern than that observed in the arterial vessels. Here,
pressures remained virtually unaffected in the no-control case

@ Springer

and decreased in the control case. The differences in pressure
are significantly smaller than those observed in the arterial
vessels, with maximum change of <1 mmHg.

Left atrial pressures remained relatively constant between
supine and upright positions for both cases. The situation is
different in the left ventricle, where slight pressure increases
in the no-control case and significant pressure increases in
the control case are observed. This increase in left ventricu-
lar pressure reflects the larger workload that the heart must
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generate to overcome the gravity-induced pressure gradient
when the baroreflex response is turned on.

Figure 7a shows the left ventricular pressure—volume
loops for the supine, upright control and upright no-control
cases. Values of stroke volume (in ml) and stroke work (in
Joules) are provided in each plot. The upright no-control case
exhibits similar values to those observed in the supine case.
The upright control case, however, shows a larger stroke work
(5 % increase) and smaller stroke volume (7 % decrease) rel-
ative to the supine case. This is once again a reflection of
the additional work that the heart performs to overcome the
effect of gravity when the baroreflex is turned on.

Figure 7b shows the aortic flow waveforms for the supine
and upright positions, control and no-control. Numerical val-
ues of cardiac output (in ml/s), maximum flow rate (in ml/s)
and ejection time (in seconds) are provided in each plot.
While the waveforms have similar profiles in all cases, dif-
ferences are observed in maximum flow rates and ejection
times. The control case presents a slightly faster heart rate
and larger cardiac output.

Table 5 summarizes the values of mean flows to each
branch in the 3D model for the supine, upright control and
upright no-control cases.

Figure 8 illustrates the time history of the normalized con-
trolled variables in the closed-loop model. Triggered by the

Table 5 Period average flows in the arterial vessels in supine Qg,
upright control Q¢ and upright no-control Oy cases

Vessel Os Oc On

Left subclavian 2.073 1.884 1.764

Right subclavian 2.017 2.047 1.917

Left internal carotid ~ 1.248 9.815 x 107! 8.944 x 107!
Right internal carotid 1.272 1.038 9.453 x 107!
Left external carotid ~ 6.725 x 107! 5261 x 10~!  4.794 x 10!
Right external carotid 5.802 x 107" 4.924 x 10~!  4.492 x 107!
Descending aorta 6.073 x 101 6.419 x 10" 6.157 x 10!

3.1

The units of flows are cm” s

tilt test, the efferent response of the baroreflex model rapidly
increases heart rate, maximum elastance and arterial resis-
tance. These variables achieve their maximal values shortly
after reaching the upright position at ¢ 15 s, eventually
decreasing in value and converging to a new steady state at
the end of the simulation. Conversely, the venous compli-
ance and venous unstressed volume decrease in value during
the rotation stage of the tilt test. Due to the differences in
the dynamic response of these variables, a steady state is not
fully achieved by the end of the simulation.
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Fig. 8 Normalized response of
the heart rate (HR), maximum
elastance (HC), arterial
resistance (AR), venous
compliance (VC) and venous
unstressed volume (VU) in
response to head up tilt. Here,
the rotation portion of the tilt test
occurs from ¢ = 10stot = 155

Normalised control [-]

Normalised control [-]

0.98

10

Time [s]

4 Discussion

The baroreceptors are stretch-sensitive nerve cells located at
the carotid bifurcation and aortic arch. Variations in pressure
result in changes in stretch, and subsequent afferent activ-
ity between the baroreceptor cells and the central nervous
system. In this work, a change in pressure was induced in
the vascular model by virtually altering its orientation with
respect to a given gravity field to simulate a clinical proce-
dure known as the tilt test. As a result of this rotation, the
upper branch vessels (subclavians and carotids) experience
the largest change in elevation and therefore the greatest drop
in pressure, as shown in Figs. 5 and 6.

4.1 Baroreflex effect on the controlled variables

The efferent pathways of the baroreflex alter the heart rate,
maximum elastance, arterial resistance, venous compliance
and venous unstressed volume with the overall goal of regu-
lating pressure in the systemic circulation (Fig. 8).

In the adopted model of the baroreflex (Ottesen et al.
2004), the efferent response is triggered by an error signal
defined by the difference in the current cycle average carotid
pressure relative to a target pressure. Due to differences in
the characteristic time constants t; defining the speed of the
response for the controlled variables (see Table 4), variations
in heart rate, maximum elastance and arterial resistance occur
significantly faster than variations in venous compliance and
unstressed volumes. Peak values for the heart rate, maximum
elastance and arterial resistance are observed att &~ 16s (1s
after the initiation of the tilt test rotation). The strongest effer-
ent response is observed in the heart rate, which has a maxi-
mum increase of ~15 %. Conversely, the maximum variation
in the venous compliance and unstressed venous volume is
obtained at the end of the numerical experiment (¢ = 255).
At this time, these variables have not yet attained a new steady
state. Here, the venous compliance shows the weakest change
during the tilt test, with a maximum decrease of just ~—1 %.
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4.2 Baroreflex effect on the hemodynamics of the systemic
circulation

Figure 5 illustrates the rapid response of the baroreflex on the
right external carotid pressure. At7 & 11 s an increase in sys-
tolic pressure and a decrease in the period length are apparent
in the control case relative to the no-control case. In the con-
trol case, carotid pressures continue to increase on a beat-
by-beat basis, increasing the current cardiac cycle average
pressure until a new steady-state value is reached at# ~ 18s.
Figure 6 shows the recovery of pressure in all of the carotid
vessels, outlet numbers 4—7. This recovery occurs without
exceeding the initial supine values. Of the four carotid ves-
sels, the right external carotid (outlet number 4) recovers
the most pressure, with the left external carotid (outlet num-
ber 7) recovering the least. In the descending aorta and left
and right subclavian arteries, outlet numbers 1-3, the effect
of the baroreflex enables these vessels to surpass their ini-
tial supine values. The effects of the baroreflex on pressure
are also apparent in the distal compartments of the circuit.
By increasing the resistance in the arterioles, the pressure
is increased relative to the initial supine values; conversely,
decreases in venous compliances and unstressed volumes
have the opposing effect, decreasing pressure in the venules
and veins.

The baroreflex also has an effect on the flows in the sys-
temic circulation. Figure 7 illustrates the aortic flow wave-
forms for each of the different situations considered. Ejec-
tion time and maximum flow rate in the upright no-control
case are virtually identical to those in the initial supine case
(2.600 x 1073 s difference and a ~0.3 % drop, respectively).

In the upright control case, the perceived afterload change
due to gravity is further increased by the gain in distal vas-
culature resistance. However, in this case, the increase in
maximum elastance results in a total gain of ~2 % in maxi-
mum flow rate. The heart rate is also increased, and therefore,
the ejection time is reduced by 3.550 x 1072 s relative to the
initial supine case.
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Table 5 summarizes the period averaged flow in each
branch of the 3D domain. It can be seen that in the no-control
case, the tilt test reduces the flow to all the upper branches.
In the control case, flow is increased in all the branches of
the model, despite the increase in peripheral resistance and
gravity-induced increase in afterload.

4.3 Limitations and future work

The systemic circulation was approximated as a closed-loop
model containing only the left heart, large arteries, small
arteries, arterioles, venules and veins. The pulmonary cir-
culation can be added to the existing closed-loop model by
including lumped parameter circuits representing the right
heart and pulmonary vasculature. The addition of a more
detailed model of the venous circulation, where the superior
and inferior vena cavae are modeled using dedicated com-
partments, would have enabled a more accurate characteriza-
tion of the circulating venous volume. Moreover, as changes
in the heart rate and maximum elastance also affect the right
heart, and therefore the venous return, the inclusion of the
pulmonary circulation is a key feature which will be added
in future developments of this model.

In this work, the afferent activity of the baroreceptors
was modeled as a sigmoidal function of deviations in pres-
sure. This simple model is able to describe features of the
baroreceptor nervous activity such as saturation and the sig-
moidal response to increasing/decreasing pressure; however,
it is unable to describe other prominent features such as hys-
teresis, adaptation/resetting and post-excitatory depression
of the nervous activity in response to changes in pressure
(Mahdi et al. 2013). Future developments in our model will
be enhanced to reproduce these complex features.

In this model, only the baroreceptors at the carotid bifur-
cation location were assumed to contribute to the baroreflex,
neglecting the input from the baroreceptor cells located at the
aortic arch. Future expansions of this work will include the
inputs from the aortic arch baroreceptor cells, using either the
local pressure or the strain computed from the fluid—structure
interaction deformation field. However, such an addition is
unlikely to yield significant improvements in the model as
experimental studies in humans indicate that both aortic and
carotid baroreceptors operate over a similar range of pres-
sures with no significant differences in the threshold and sat-
uration properties (Smith et al. 2001).

In this work, the change in posture was modeled by rotat-
ing the direction of the body force term in the momen-
tum equation. This approach neglects the inertial effects of
the body rotation, since the position of the body remains
fixed through the simulation. In future work, a moving mesh
approach will be adopted to include this feature, the effect
of which is not known; as to the authors knowledge, no such
simulation is reported in the blood flow literature.

The gravity field was only accounted for in the 3D domain.
Here, the change in posture was not included in the lumped
parameter networks representing the proximal and distal
component of the closed-loop circuit. Neglecting the pres-
sure in the OD part of model results in an over-estimation of
pressure in the upper branches (above the center of gravity
given by the heart) and an under-estimation of pressure in the
descending aorta (below the center of gravity given by the
heart). The effect of gravity during the tilt test was previously
examined in a 0D model by Heldt et al. (2002) who intro-
duced reference pressures in the lumped parameter network
that varied as a function of the orientation. Future work will
include such a feature in the OD components of the circuit.

In this work, the short-term regulation of pressure was
limited to the global effects of the baroreflex. However, in
the human circulation, there are localized feedback mecha-
nisms in certain vascular beds that operate jointly with the
baroreflex to regulate pressure and flow in areas such as the
cerebral, coronary and renal circulations. Local changes in
pressure, wall shear stress and/or metabolite concentrations
trigger vascular smooth muscle activation, affecting the arte-
riolar resistance through changes in vessel diameter. In order
to model such features in future developments of this model,
itis intended to adopt localized autoregulatory functions such
as those described in the 0D models developed by Carlson
et al. (2008). A modeling framework with such global and
local auto-regulatory blood flow mechanisms will be a step-
ping stone toward more ambitious modeling topics such as
the simulations of trauma, surgical interventions and acute
responses to stress.

Lastly, future work will be devoted toward validating this
model against experimental tilt test data. In Fig. 9, our simu-
lated pressure response during the tilt test is compared against
the experimental data reported by Williams et al. (2013). It
can be seen that the simulated response qualitatively follows
the same trend as the data, showing an initial decrease in
pressure followed by a gradual increase in which pre-tilt val-
ues are not fully recovered. There are, however, differences
in heart rate, pressure range and duration of recovery, differ-
ences that clearly suggest that specific values of the gains and
time constants must be identified on a patient-specific basis.

5 Conclusions

In this study, the effects of the baroreflex were assessed in
an image-derived, patient-specific, fluid—solid interaction,
closed-loop model of the systemic circulation. Described
using a coupled 3D-0D approach, the large arteries have been
modeled in 3D, with the left heart and remaining systemic
arteries and veins in OD. Integrated into this model is the arte-
rial baroreflex—a negative feedback system that functions to
maintain global pressures throughout the circulation.
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Fig. 9 Comparison of
experimental and simulated 100
pressure recovery during the

head up tilt test. The 90
experimental data was obtained
by digitizing the data contained
in Williams et al. (2013) using
the software Plot Digitizer
http://plotdigitizer.sourceforge.
net/. The simulated data is taken
from the left internal carotid
vessel in the control case. In
both plots, the start of the tilt 50
test is denoted with the solid
blue line
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Here, the baroreflex was triggered by virtually simulat-
ing a clinical procedure known as the tilt test, in which the
posture of the patient is rapidly altered—therefore triggering
the response of the baroreflex. In this model, the orientation
of the gravity vector is modified over time, inducing a pres-
sure gradient throughout the model. Comparing pressures
and flows throughout this closed-loop model, with and with-
out the baroreflex control, highlights the sensitivity of the
carotids to changes in orientation and the ability of the barore-
flex to restore pressures globally throughout the circulation.
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