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Vaxign is the first web-based vaccine design system that predicts vaccine targets based on genome sequences using the strategy of
reverse vaccinology. Predicted features in the Vaxign pipeline include protein subcellular location, transmembrane helices, adhesin
probability, conservation to human and/or mouse proteins, sequence exclusion from genome(s) of nonpathogenic strain(s), and
epitope binding to MHC class I and class II. The precomputed Vaxign database contains prediction of vaccine targets for > 70
genomes. Vaxign also performs dynamic vaccine target prediction based on input sequences. To demonstrate the utility of this
program, the vaccine candidates against uropathogenic Escherichia coli (UPEC) were predicted using Vaxign and compared with
various experimental studies. Our results indicate that Vaxign is an accurate and efficient vaccine design program.

1. Introduction

Reverse vaccinology is an emerging vaccine development
approach that starts with the prediction of vaccine targets by
bioinformatics analysis of microbial genome sequences [1].
Predicted proteins are selected based on desirable attributes.
Normal wet laboratory experiments are conducted in a later
stage to test all or selected vaccine targets. Rino Rappuoli,
the pioneer of reverse vaccinology [1, 2], first applied this
approach to the development of a vaccine against serogroup
B Neisseria meningitidis (MenB), the major cause of sepsis
and meningitis in children and young adults [2]. In this
study, bioinformatic methods were first used to screen
the complete genome of a MenB strain MC58 for genes
encoding putative surface-exposed or secreted proteins.
These proteins were predicted to be antigenic and therefore
may represent the most suitable vaccine candidates. In total,
350 novel vaccine candidates were predicted and expressed in
Escherichia coli; 28 were found to elicit protective immunity.
It took less than 18 months to identify more vaccine
candidates in MenB than had been discovered during the
past 40 years by conventional methods [2]. Since then, the

concept of reverse vaccinology has also successfully been
applied to other pathogens, including Bacillus anthracis [3],
Porphyromonas gingivalis [4], Chlamydia pneumoniae [5],
Streptococcus pneumoniae [6], Helicobacter pylori [7], and
Mycobacterium tuberculosis [8]. Compared to a conventional
vaccine development approach that starts from the wet
laboratory, reverse vaccinology begins with bioinformatics
analysis, which dramatically quickens the process of vaccine
development.

Since reverse vaccinology was conceived and applied in
a test case ten years ago, this technology has progressed
dramatically. Subcellular location is still considered as one
main criterion for vaccine target prediction. However, more
criteria have been added. For example, since it was found that
outer membrane proteins containing more than one trans-
membrane helix were, in general, difficult to clone and purify
[2], the number of transmembrane domains for a vaccine
target is often considered in bioinformatics filtering. More
and more genomes are now available for each pathogenic
species. It is now required to examine all completed genomes
and predict vaccine targets that are conserved in all genomes.
If genomes from non-pathogenic strains of the species are
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also available, ideal vaccine targets are those that exist in
genomes of virulent pathogen strains but are absent from
the avirulent strains. To induce strong immunity and avoid
autoimmunity, predicted vaccine targets are required not to
have sequence similarity to proteins of hosts (e.g., human).
Epitope-based vaccines have been demonstrated to induce
protection against many infectious diseases [9]. To optimize
epitope vaccines, it has become an essential task to predict
immune epitopes from protective antigens.

While reverse vaccinology has been used for a decade,
this approach is often not accessible to the general laboratory,
due to the lack of software programs that are easy to use and
implement. Although many individual software programs
are available to aid in vaccine target prediction [10–17],
they are individually developed for different purposes and
contain disparate data formats and programming settings.
This makes tool and data integration difficult. Successful
use of these tools often requires local installation, command
line execution, and substantial computational power. Many
tools are not optimized for high throughput data processing.
NERVE, for example, is a new enhanced reverse vaccinology
environment that includes several steps of programs for
reverse vaccinology [18]. NERVE aims to help save time and
money in vaccine design. However, it also requires software
download and database setup. In addition, NERVE does
not include precomputed data of vaccine target prediction,
which makes the prediction time extensive. In addition,
NERVE does not perform MHC class I and II epitope
predictions.

Many immunoinformatics epitope mapping tools have
been developed during the last three decades [19]. For exam-
ple, DeLisi and Berzofsky developed the earliest computer-
driven algorithm for epitope mapping based on empirical
observations of amino acid residue periodicity in T-cell
epitopes [20]. The anchor-based MHC binding motifs were
used for T-cell epitope identification by many researchers,
such as Sette et al. in 1989 [21] and Rotzschke et al. in 1991
[22]. Matrix-based approached for T-cell epitope mapping
have been developed by a number of research teams such
as Sette et al. [23], Davenport et al. [24], De Groot et al.
[25], and Reche et al. [15]. Many databases of MHC-binding
peptides, starting from MHCPEP developed by Brusic et al.
in 1994 [26] to the currently frequently used IEDB [27], have
been developed for use with matrices and neural network-
based epitope prediction tools.

Uropathogenic Escherichia coli (UPEC) is the most
common cause of community-acquired urinary tract infec-
tion (UTI). Over half (53%) of all women (and 14%
of men) experience at least one urinary tract infection
(UTI), leading to an estimated 6.8 million annual physician
visits in the United States alone, 1.3 million emergency
room visits, and 246,000 hospitalizations of women with
an annual cost of more than $2.4 billion [28]. Although
many groups have attempted to develop vaccines against
UPEC [29–33], no preparations are yet in general use
in the United States. Complete and annotated genomic
sequences have now been determined for four strains of
extraintestinal pathogenic E. coli including CFT073, UTI89,
536, and F11; these UPEC strains were isolated from

human cases of cystitis, pyelonephritis, and/or bacteremia.
These provide a basis for predicting UPEC vaccine targets
using these genome sequences based on reverse vaccinology.
Recently, we have also performed several high throughput
proteomic and genomic studies including in vivo microarray
[34], proteomics of urine-grown bacteria [35], and in vivo
induced antigen technology (IVIAT) [36]. We hypothesized
that vaccine targets predicted based on genome analysis
largely correlate with the results obtained from these high
throughput data analyses.

Vaxign (http://www.violinet.org/vaxign/), the first web-
based, publically available vaccine design system, was first
introduced in the second Vaccine Congress meeting in
December 2008 in Boston, MA, USA. Vaxign was demon-
strated to successfully predict vaccine targets against different
pathogens [37]. Since then, Vaxign has significantly been
improved in terms of performance and speed. In this report,
we systematically introduce the updated Vaxign prediction
system, and describe how Vaxign was used to predict
vaccine targets against uropathogenic E. coli (UPEC). Many
predicted results, based on genome sequence analyses, were
also confirmed by wet-lab testing and other studies based on
RNA, protein, and antibody analyses.

2. Methods

2.1. Vaxign Software Components for Vaccine Target Pre-
diction. Vaxign integrates open source tools and internally
developed programs with user-friendly web interfaces. Input
data for Vaxign execution are amino acid sequences from one
protein or whole genomes. This Vaxign pipeline includes the
following components (Figure 1).

(1) Prediction of subcellular localization. Vaxign predicts
different subcellular locations using optimized PSORTb 2.0
that has a measured overall precision of 96% [10].

(2) Transmembrane domain prediction. The transmem-
brane helix topology analysis is performed using optimized
HMMTOP based on a general hidden Markov model
(HMM) decoding algorithm [11]. A profile-based hid-
den Markov model implemented in PROFtmb is used in
Vaxign for the prediction and discrimination of bacterial
transmembrane beta barrels [38]. The resulting PROFtmb
method reaches an overall four-state (up-, down-strand,
periplasmic-,and outer-loop) accuracy as high as 86% [38].
Since the execution of PROTtmb is very time consuming,
not all proteins in all genomes in the Vaxign database were
preanalyzed for transmembrane beta barrel analysis.

(3) Calculation of adhesin probability. Adhesin probabil-
ity is predicted using optimized SPAAN [12]. The SPAAN
prediction has a sensitivity of 89% and specificity of 100%
based on a defined test set [12]. The probability of being an
adhesin has a default cut-off of 0.51.

(4) Protein conservation among different genomes. This
program identifies conserved sequences among more than
one genome. OrthoMCL is applied to calculate the homology
between different sequences [13]. The E-value of 10−5 is set
as the default value. An internally developed reciprocal best
fit method, based on BLAST, was also developed for result
comparison.
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Figure 1: The Vaxign algorithm pipeline.

(5) Exclusion of sequences present in nonpathogenic
strains. OrthoMCL is used to calculate the homology
between predicted sequences and all proteins in a specified
non-pathogenic strain genome(s) [13].

(6) Comparison of sequence similarity between pre-
dicted proteins and host (human and/or mouse) proteome.
OrthoMCL is customized for this purpose.

(7) Prediction of MHC class I- and class II-binding epi-
topes. Vaxign uses an internally developed program Vaxitope
to predict MHC class I and class II binding epitopes. Vaxitope
is developed based on PSSM (Position Specific Scoring
Matrix) motif prediction. The PSSMs for the prediction of
peptide binders to MHC class I or II are calculated based
on a position-based weighting method using the BLK2PSSM
utility included in the BLIMPS package [14]. Data for
generating the PSSMs came from known epitope data from
the IEDB immune epitope database [27]. The P value for
the predicted epitope binding to PSSMs is calculated by the
MAST sequence homology search algorithm [39]. A receiver
operating characteristic (ROC) curve and the values of the
area under the ROC Curve (AUC) were used to calculate
the accuracy of the Vaxitope prediction [40]. For the AUC
analysis, the epitope data from the IEDB immune epitope
database [27] were used. A leave-one-out approach was
applied to test if a known epitope can be predicted on the
condition that this epitope is excluded in initial generation
of PSSMs.

(8) Protein functional analysis: Predicted proteins can
be selected and automatically exported to the DAVID
bioinformatics resources [41] for functional protein analysis.

2.2. Vaxign Server and Web Implementation. Vaxign is
implemented using a three-tier architecture built on two
Dell Poweredge 2580 servers which run the Redhat Linux
operating system (Redhat Enterprise Linux ES 5). Users can
submit database or analysis queries through the web. These
queries are then processed using PHP/HTML/SQL (middle-
tier, application server based on Apache) against a MySQL
(version 5.0) relational database (back-end, database server),
or executed in runtime based on the Vaxign algorithm
pipeline. The result of each query is then presented to the

user in the web browser (Figure 1). Two servers are scheduled
to regularly backup each others’ data.

2.3. Application of Vaxign in Prediction of UPEC Vaccine
Targets. To predict vaccine targets against uropathogenic E.
coli (UPEC) using Vaxign, four UPEC strains with fully
sequenced genomes were used: strains CFT073 (RefSeq ID:
NC 004431), 536 (NC 008253), UTI89 (NC 007946), and
F11 (NZ AAJU00000000). Microbial genomes and protein
sequences were downloaded from NCBI RefSeq genome
database [42]. To determine whether predicted antigens exist
in UPEC strains but not in non-pathogenic E. coli, the
non-pathogenic E. coli K-12 strain MG1655 (RefSeq ID:
NC 000913) [43] was used as a control genome.

2.4. Comparison of Different Methods in UPEC Vaccine Target
Prediction. The results of UPEC vaccine targets predicted
by Vaxign were manually compared with results from our
previous studies using microarray [34], proteomics [35],
immunoproteomic analysis [36].

2.5. Verification of UPEC Vaccine Targets Predicted by Vaxign.
To experimentally verify the predicted data, UPEC proteins
were prepared using recombinant cloning technology. For
active immunization, CBA/J mice (N = 10 for each group)
were intranasally immunized with individual proteins com-
bined with cholera toxin. As negative control, cholera toxin
alone was also used to vaccinate mice. The vaccinated group
were boosted at 7 and 14 days. One week after the final
boost, control (naı̈ve: Ctx-treated) and vaccinated mice were
transurethrally challenged with 5× 108 CFU E. coli CFT073.
After a one-week, the efficacy of protection by individual
subunit vaccines was evaluated by measuring the CFU/ml
urine and CFU/g bladder or kidney tissue. The vaccine
challenge experiments were reported in a recent publication
[33].

3. Results

3.1. The Vaxign Algorithm for Vaccine Target Prediction. The
workflow of the Vaxign pipeline is shown in Figure 1. The
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Table 1: Pathogens currently analyzed by Vaxign.

species # of Genomes # of proteins

Bacterial species:

(1) Bacillus anthracis 3 16182

(2) Brucella 9 28559

(3) Campylobacter 10 17443

(4) Clostridium 10 35130

(5) Corynebacterium diphtheriae 1 2272

(6) Coxiella burnetii 5 9686

(7) Escherichia coli 7 34592

(8) Francisella 9 14771

(9) Haemophilus influenzae 4 6735

(10) Helicobacter pylori 6 9261

(11) Mycobacterium tuberculosis 2 8178

(12) Neisseria meningitidis 4 7909

Virus strains:

(13) HIV 2 33

(14) Measles virus 1 7

(15) Vaccinia virus 1 223

(16) Variola virus 1 197

(17) Yellow fever virus 1 14

Total # 76 191192

predicted features in Vaxign include protein subcellular loca-
tion, transmembrane helices, adhesin probability, sequence
conservation among pathogen genomes, and sequence sim-
ilarity to host (human and mouse) proteomes. For those
pathogens against which a strong B cell response (for anti-
body production) is critical, surface-exposed proteins such
as secreted proteins and outer membrane proteins (especially
adhesins) are ideal targets for vaccine development. For these
pathogens, nonsurface proteins such as cytoplasmic or inner
membrane proteins, however, may not represent good targets
for vaccine development due to lack of close contact with
the host cells [1, 2]. However, for the vaccine development
against those pathogens where T cell response is critical,
subcellular localization is not an issue since a T cell response
could be directed to any protein target. It has been reported
that 250 out of 600 vaccine candidates from N. meningitidis
B failed to be cloned and expressed due to the presence
of more than one transmembrane spanning region [2].
Therefore, it might also be prudent to ignore those proteins
with multiple transmembrane spanning regions in the first
place. The adherence of microbial pathogens to host cells
is mediated by adhesins. Adhesins are essential for bacterial
colonization and survival and represent possible targets for
vaccine development. The conserved vaccine targets among
different strains in one pathogen offer protection against
these different strains. A vaccine candidate with similar
sequence to the host (e.g., human or mouse) is likely to be
a poor immunogen due to epitope mimicry, or if an immune
response is triggered, cause autoimmunity in the host [44–
46]. These aspects are considered in the Vaxign prediction
pipeline (Figure 1).

During the past decades, many algorithms and soft-
ware programs have been developed to address individual
processes in the Vaxign vaccine design pipeline. Many
software programs have been widely tested and validated.
To avoid reinventing the wheel, we have incorporated many
existing software programs into Vaxign as described in the
Section 2. All open source programs (e.g., BLAST) have
been customized. The Vaxitope (vaccine epitope prediction)
is a new program that is internally developed and will be
described later in this paper in more detail. One focus
of the Vaxign development was to seamlessly incorporate
different programs with different development styles and
even program languages into a comprehensive analysis
system. To achieve this goal, MySQL relational database was
used to replace plain text input files typically used in original
programs. In a typical scenario, output data of one program
is stored in MySQL, and SQL query scripts are used to
retrieve and process the data as input for another program.
Each component program except Vaxitope in the Vaxign
pipeline has individually been tested and validated in the
literature [10–13]. The testing of Vaxitope is described below.

The Vaxign database contains precomputed prediction
results using 76 genomes from 13 pathogens (Table 1). In
total, 191,192 proteins have been precomputed. These data
can be queried using the Vaxign web interface. A user can
also input protein sequence data for dynamic computation
and result output.

3.2. Vaxitope: Prediction of MHC Class I and Class II
Binding Epitopes. Vaxign predicts both MHC class I and
class II binding epitopes using an internally developed tool
Vaxitope. Vaxitope is based on Position Specific Scoring
Matrix (PSSM), a type of scoring matrix used in protein
similarity searches in which amino acid substitution scores
are given separately for each position in a protein multiple
sequence alignment. In PSSM, a Tyr-Trp substitution at
position A of an alignment may receive a very different
score than the same substitution at position B. In contrast,
in position-independent matrices such as the PAM and
BLOSUM matrices, the Tyr-Trp substitution receives the
same score no matter at what position it occurs. The general
strategy of using PSSMs for prediction of MHC Class I and
II binding has proven effective in RANKPEP [15].

To evaluate the performance of Vaxitope, a receiver
operating characteristic (ROC) curve analysis was generated
for prediction of epitopes against 40 MHC class I or II
alleles (Table 2). The ROC analysis detects the ability of
predictions to classify each predicted epitope peptide into
MHC class I or II binding based on its comparison with
existing epitope database [40]. Plotting the rates of true-
positive predictions (sensitivity) as a function of the rate of
false-positive predictions (1-specificity) gives an ROC curve.
For example, a ROC curve based on Vaxign analysis was
generated using HLA A∗0201 specific PSSM (Figure 2).
HLA A∗0201 is one of the most studied HLA MHC Class
I allele. According to the IEDB immune epitope database
[27], 3216 epitopes are known to positively bind to this allele
(as positive testing dataset), and 4826 epitopes cannot bind
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Figure 2: ROC curve analysis of epitopes binding HLA A ∗0201.

to this allele (as negative testing dataset). The positive HLA
A ∗0201 alleles were used to calculate the True Positive Rate
(Sensitivity). The negative alleles were used to calculate the
False Positive Rate (1-Specificity) (Figure 2). The areas under
the ROC curve (AUC) provide a way to measure prediction
quality. An AUC of 0.5 represents random predictions, and
an AUC of 1.0 indicates perfect predictions [16]. The value of
the Area Under the ROC Curve (AUC) for the HLA A∗0201
analysis using Vaxitope is 0.929. Our analysis of 30 alleles
indicates that Vaxitope is a very specific and sensitive method
for MHC Class I and II binding epitope prediction (Table 2).

It is interesting to compare Vaxign and RANKPEP
since both methods are based on PSSM. If only AUC
values are taken into account, our prediction results are in
general better than the results predicted by RANKPEP [15].
However, the results may not be comparable, since the data
required to generate PSSMs might be different. Different
from RANKPEP, which uses a percentage or top number as
the cut off as shown in RANKPEP [15], Vaxitope defines
statistical P-values based on a random sequence model that
assumes each position in a random sequence is generated
according to the average letter frequencies of all sequences in
the NCBI peptide non-redundant database [39]. Our studies
indicate that the P value of .05 provides a cutoff with high
and balanced sensitivity and specificity (Table 2). Another
unique feature in Vaxitope is that it integrates with other
vaccine design components in Vaxign. For example, the input
sequence of Vaxitope may come from those peptides that
are part of an outer membrane protein and exposed outside
the bacterial membrane (Figure 3). These protein peptides
are predicted by Vaxign and easily available as input data
for Vaxitope. Vaxitope also allows genome-wide query on
different MHC host species.

Traditional reverse vaccinology does not consider pre-
diction of epitopes. With the P value cut off of .05, 1436
epitopes from E. coli protein Hma for 39 MHC Class I alleles

in 4 hosts and 515 epitopes for 23 MHC Class II alleles
have been found in 4 hosts—human, mouse, macaque, and
chimpanzee. It remains a challenge to rank and optimize
the epitopes for vaccine development. Possible solutions to
address this challenge are described in the Discussion.

3.3. User-Friendly Vaxign Web Interface. To make Vaxign
easy to use, two methods of implementation have been
developed. Users can either directly query precomputed
prediction results from the Vaxign database, or request
Vaxign to dynamically calculate results based on the users’
input sequences. The prediction data from the precomputed
Vaxign database can be easily queried using our Vaxign web
query interface (Figure 3).

A simple web query interface is available for querying
the precomputed Vaxign results from the protein level or
genome level (Figure 3). Users are prompted to set up
preferred query criteria; the output data are then provided.
The query of precomputed Vaxign results is fast. A typical
query involved in four genomes and all the steps as shown
in our UPEC use case (Figure 3) takes approximately 2–5
seconds.

The other form is dynamic Vaxign analysis, which is
similar to the precomputed Vaxign except that a user is
prompted to provide information for up to 300 proteins at
one time. The protein information may be protein sequences
using FASTA format, NCBI protein GI, or RefSeq accession
number. Vaxign predicts vaccine targets based on runtime
execution. It typically takes 30–60 seconds to execute all the
steps in run time for one single protein. Therefore, it would
take 150–300 minutes to finish analysis of 300 proteins. Once
all steps are finished, the web link of the predicted results will
be sent to a registered user through email.

3.4. Vaxign Predicts 22 Outer Membrane Proteins as UPEC
Vaccine Targets. The genomes of all four UPEC strains
(CFT073, 536, UT189, and F11) for which complete
sequence data are available were analyzed by Vaxign (Fig-
ure 4). These four genomes contain 4704–5379 genes. Only
outer membrane proteins (OMP) are predicted and ana-
lyzed. From the total 5379 proteins in UPEC strain CFT073,
Vaxign detects 107 outer membrane proteins. Among the 107
proteins, three proteins contain more than one transmem-
brane helix. Vaxign further predicts 70 proteins from the
107 OMPs in strain CFT073 as possible adhesins or adhesin-
like proteins [34]. These predicted adhesins are likely critical
for colonization, a major challenge facing UPEC in the
urinary tract. While some of these proteins, such as PapC
[47], are adhesins, many of these 70 proteins (e.g., Hma,
FepA) predicted to be adhesins are not typically considered as
adhesins. The roles of these adhesin-like proteins in adhering
to host cells require further investigation. None of these 70
proteins shows sequence similarity to any human or mouse
proteins. Similar strategy was applied to obtain vaccine
targets for the other three UPEC strains (Figure 4).

Ortholog analysis was then applied to obtain conserved
vaccine targets from four UPEC strains. In total, 85 OMPs
were found to be conserved across all four pathogenic UPEC
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Table 2: Epitope prediction performance by Vaxitope as measured by AUC values.

# MHC allele Length AUC Sensitivity
(P = .01)

Specificity
(P = .01)

Sensitivity
(P = .05)

Specificity
(P = .05)

Sensitivity
(P = .1)

Specificity
(P = .1)

1 HLA-A∗0101 9 0.929 .854 .874 .99 .709 1 .621

2 HLA-A∗0201 9 0.871 .298 .956 .531 .876 .792 .783

3 HLA-A∗0201 10 0.913 .471 .957 .789 .874 .901 .773

4 HLA-A∗0202 9 0.869 .309 .953 .658 .875 .792 .774

5 HLA-A∗0202 10 0.863 .333 .949 .737 .808 .891 .684

6 HLA-A∗0203 9 0.874 .304 .956 .659 .865 .828 .769

7 HLA-A∗0203 10 0.867 .317 .963 .691 .827 .834 .712

8 HLA-A∗0206 9 0.900 .387 .961 .73 .867 .881 .781

9 HLA-A∗0206 10 0.916 .403 .957 .775 .878 .922 .782

10 HLA-A∗0301 9 0.887 .445 .921 .855 .803 .959 .69

11 HLA-A∗0301 10 0.868 .505 .9 .915 .706 .988 .554

12 HLA-A∗1101 9 0.863 .337 .946 .672 .833 .859 .71

13 HLA-A∗1101 10 0.879 .461 .924 .9 .742 .989 .627

14 HLA-A∗2402 9 0.984 .727 .985 .97 .879 1 .783

15 HLA-A∗3101 9 0.912 .426 .952 .813 .872 .927 .752

16 HLA-A∗3101 10 0.855 .419 .905 .889 .711 .99 .563

17 HLA-A∗3301 9 0.937 .495 .959 .94 .851 .989 .723

18 HLA-A∗3301 10 0.905 .51 .942 .905 .755 .966 .619

19 HLA-A∗6801 9 0.908 .406 .949 .841 .841 .946 .744

20 HLA-A∗6801 10 0.848 .418 .9 .866 .701 .973 .564

21 HLA-A∗6802 9 0.918 .446 .96 .801 .868 .922 .757

22 HLA-A∗6802 10 0.913 .452 .947 .837 .825 .977 .715

23 HLA-A∗6901 9 0.803 .279 .895 .674 .785 .837 .674

24 HLA-B∗0702 9 0.963 .659 .966 .962 .894 .981 .849

25 HLA-B∗1501 9 0.873 .514 .927 .816 .765 .939 .603

26 HLA-B∗3501 9 0.838 .403 .927 .701 .775 .834 .666

27 HLA-B∗5101 9 0.978 .835 .953 1 .871 1 .824

28 HLA-B∗5301 9 0.989 .84 .981 .991 .896 1 .825

29 HLA-B∗5801 9 0.923 .769 .933 .894 .813 .952 .702

30 H-2-Kb 8 0.936 .753 .922 .935 .744 .987 .623

31 H-2-IAd —∗ 0.928 .582 .992 .705 .959 .82 .926

32 H-2-IEd — 0.977 .903 1 .935 .935 .935 .887

33 H-2-IEg7 — 0.998 .993 .989 .993 .945 1 .893

34 H-2-IEk — 0.940 .775 .95 .875 .9 .9 .813

35 HLA-DPB1∗0401 — 0.950 .717 .978 .826 .924 .913 .87

36 HLA-DPB1∗0901 — 0.978 .739 .989 .891 .913 .913 .859

37 HLA-DR1 — 0.923 .587 .972 .781 .915 .838 .834

38 HLA-DR7 — 0.990 .976 .988 .976 .905 .976 .845

39 HLA-DRB1∗1101 — 0.952 .732 .978 .828 .914 .898 .831

40 HLA-DRB1∗1501 — 0.951 .846 .981 .897 .942 .91 .872

Note: ∗ means flexible length.

strains (Figure 4). Among these 85 OMPs, two proteins
(NP 755264.1, NP 756232.1) are predicted to contain three
transmembrane helixes. Multiple transmembrane helixes
make it difficult to purify recombinant proteins [48]. There-
fore, these two proteins may not be good vaccine targets as
whole protein antigens. When adhesin probability is taken

into account, 58 out of the 83 proteins have an adhesin
probability of ≥ .051.

Functional gene enrichment analysis was performed to
classify the roles of these 58 OMPs using the software DAVID
(Table 3). Only 48 genes have annotation in DAVID and
thus included in the DAVID analysis. Among these 48
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Table 3: Selected function annotations significantly enriched for UPEC vaccine candidates based on DAVID analysis.

Category Term # of Genes % P-value Benjamini P-value

GO MF∗ Transport activity 22 45.8 1.8E−14 2.7 E−11

Interpro TonB-dependent receptor, beta-barrel 10 20.8 1.0 E−13 4.3 E−10

Interpro Porin, Gram-negative type 8 16.7 1.3 E−12 1.8 E−9

GO MF Iron ion transmembrane transporter activity 5 10.4 6.9 E−6 1.4 E−3

Interpro Fimbrial biogenesis outer membrane 5 10.4 9.3 E−5 4.1 E−2
∗: GO MF, the Molecular Function (MF) branch of the Gene Ontology (GO).

UPEC: CTF073 536 TI89 F11 Co-ed∗

Outer membrane proteins

Transmembrane helix(<2)

Adhesin probability(>0.51)

No human protein similarity

No mouse protein similarity

Absence in E.col K-12

5339 4620 5166 4704 3760

107 99 108 104 85

104 96 105 101 83

70 68 70 71 58

70 68 70 71 58

70 68 70 71 58

31 25 30 30 22

Total proteins

Figure 4: Prediction of UPEC vaccine targets conserved in four
sequenced UPEC genomes using Vaxign. Note: ∗ Co-ed represents
the conserved proteins.

genes, significantly enriched function annotations are in
the areas of transport activities, TonB-dependent receptor
(beta-barrel), Gram-negative porin, iron ion transmem-
brane transporter activity, and fimbrial biogenesis in outer
membrane (Table 3).

Of these 58 outer membrane proteins identified by
Vaxign, 36 were further found to be present in the non-
pathogenic E. coli K-12 strain MG1655 [43]. K-12 is used
to remove those proteins that have been exposed to the host
environment (e.g., gut) and may be tolerant by the host [49].
Only 22 proteins have been identified to be unique to the
pathogenic UPEC strains (Figure 4).

A table of genes in different categories were further
generated based on the Figure 4 and Table 3 and manual
curation of literature data (Table 4). Eight E. coli proteins
are predicted to contain iron-binding and iron siderophore
transporter activity. Ten proteins are associated with a TonB
box [50], and thus may play a role in iron acquisition by
the bacterium. Another eight proteins are fimbrial biogenesis
outer membrane usher proteins. Nine proteins are related
to porin and ion transport. Indeed, many proteins in the
list participate in transporter activity. Many lipoproteins
have also been found. All of these targets would be logical
selections. Many hypothetic proteins have been found with
no defined functions or annotations.

3.5. Comparison of Vaxign Prediction Results and other Meth-
ods. The predicted results based on DNA sequence analysis
are compared with data from transcriptomic microarray
data [34], mass spectrometry proteomic studies [35, 51],
and antigenicity analysis [36]. Out of 85 predicted outer
membrane proteins that are conserved among four UPEC
strains, 23 proteins have been found upregulated in vivo
or in urine at the mRNA and/or protein levels (Table 4).
It was found that many proteins with upregulated gene
expression belong to iron ion binding proteins and porin
family. However, only one protein (FimD) from fimbrial
biogenesis outer membrane protein family was shown to be
upregulated in DNA microarray analysis (Table 4) [34].

Five out of 14 iron binding proteins (IroN, FepA, FhuA,
Hma, and ChuA) discovered by Vaxign have been found to be
upregulated in vivo or in urine (Table 4) [34–36, 51]. Since
iron metabolism is critical for UPEC pathogenesis, these
proteins are important vaccine targets. Five proteins from
porin family have also been found upregulated in vivo or
in urine, including NmpC, OmpC, LamB, OmpF, and FadL
(Table 4). Limited study has been performed to investigate
the roles of these porin proteins in induction of protective
immunity against UPEC infection.

3.6. Verification of Vaxign Predicted Results. Iron binding
proteins were chosen for development of UPEC subunit
vaccines. These proteins are typically outer membrane β-
barrel proteins that function as receptors for iron-containing
compounds. This group of proteins were predicted by
Vaxign (Table 4) and significantly enriched based on gene
enrichment analysis (Table 3). The antigen c2482 (renamed
Hma for heme acquisition), a heme-binding protein, was
first cloned and purified, and used for in vivo mouse
testing. It was found that intranasal immunization with Hma
generated an antigen-specific humoral response, antigen-
specific production of IL-17 and IFN-γ, and provided
significant protection against experimental infection with
UPEC strain CFT073 [33].

ChuA was another heme/hemoglobin receptor that was
also present in microarray & proteomics studies (Table 4)
[34, 35]. Our experimental studies found that recombinant
ChuA induced severe sickness in mice. Mice that recovered
from the ChuA vaccination were challenged with strain
CFT073, but were not protected (data not shown).

IroN has been found to be a protective antigen [49].
However, our study did not find significant protection
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Table 4: Conserved UPEC outer membrane proteins predicted by Vaxign.

#
Protein
RefSeq

Symbol Adhesin TMH
Not in
K-12

Micro-
array

Prote-
omics

Protein Name

Iron ion binding and iron/siderophore transporter activity

1 NP 752820.1 ybiL 0.857 1 − −

Catecholate siderophore
receptor fiu precursor
(TonB-dependent receptor
fiu) (Ferric iron uptake
protein)

2 NP 754328.1 c2436 0.473 0 − −
putative pesticin receptor
precursor (tonB-dependent
receptor)

3 NP 754406.1 c2518 0.83 0 X − − TonB dependent receptor

4 NP 752238 c0294 0.83 0 X − − TonB dependent receptor

5 NP 753164.1 iroN 0.672 0 + + Siderophore receptor iron

6 NP 752600.1 fepA 0.792 0 + − ferrienterobactin receptor
(TonB-dependent receptor)

7 NP 752135.1 fhuA 0.746 0 + +
ferrichrome outer
membrane transporter

8 NP 754374.1
Hma

(c2482)
0.772 0 X + +

outer membrane heme
acquisition protein

9 NP 756170 chuA 0.846 0 X + +
Outer membrane
heme/hemoglobin receptor

10 NP 753551.1 prrA 0.589 0 X − − Putative TonB-dependent
outer membrane receptor

11 NP 753179 c1265 0.777 0 X − − Outer membrane heme/
hemoglobin receptor

12 NP 753125 c1206 0.794 0 X − −
Outer membrane
heme/haemoglobin
receptor

13 NP 755646 c3775 0.79 0 X − − putative iron compound
receptor

14 NP 753820.1 yddB 0.765 0 − −
hypothetical protein c1924
(tonB-dependent receptor
family)

Fimbrial biogenesis outer membrane usher protein

15 NP 757244.1 fimD 0.744 1 + − Outer membrane usher
protein fimD precursor

16 NP 757034 papC 2 0.674 1 X − − PapC protein

17 NP 755465 papC 0.666 0 X − − PapC protein

18 NP 754524.1 yehB 0 0 − − Outer membrane usher
protein yehB precursor

19 NP 752120.1 htrE 0.643 0 − − Putative outer membrane
usher protein

20 NP 753830.1 c1934 0.856 1 − − Outer membrane usher
protein fimD precursor

21 NP 754765.1 yfcU 0.563 0 X − − Fimbrial export usher
family protein

22 NP 753156.1 focD 0.854 0 − − F1C fimbrial usher

23 NP 756076.1 ycbS 0.559 1 − − Outer membrane usher
protein ycbS precursor

24 NP 753159 focH 0.917 0 X − − F1C putative fimbrial
adhesin precursor

Porin and ion transport

25 NP 753469.1 nmpC 0.788 1 X − +
Outer membrane porin
protein nmpC precursor
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Table 4: Continued.

#
Protein
RefSeq

Symbol Adhesin TMH
Not in
K-12

Micro-
array

Prote-
omics

Protein Name

Porin and ion transport

26 NP 754644.1 ompC 0.688 0 − +
Outer membrane porin
protein C

27 NP 756858.1 lamB 0.806 0 − + maltoporin

28 NP 752996.1 ompF 0.614 0 − +
Outer membrane protein F
(Porin family)

29 NP 754240.1 c2348 0.759 0 X − − Outer membrane porin
protein nmpC precursor

30 NP 752325.1 phoE 0.729 0 − − Outer membrane
phosphoporin protein E

31 NP 753724.1 ompN 0.751 0 − − Outer membrane protein N
precursor

32 NP 754275.1 c2383 0.597 0 X − − Outer membrane protein N
precursor

33 NP 754771.1 fadL 0.871 0 − +
Long-chain fatty acid outer
membrane transporter

34 NP 756025.1 hofQ 0.186 0 + − Outer membrane porin
HofQ

Other transport proteins

35 NP 756748.1 c4894 0.81 0 X − −
Nucleoside-specific
channel-forming protein
tsx precursor

36 NP 756500.1 c4642 0.694 0 − − Putative outer membrane
Protein yieC

37 NP 753669.1 c1765 0.437 0 − − Partial putative outer
membrane channel protein

38 NP 752455.1 tsx 0.833 0 − +
Nucleoside-specific
channel-forming protein
tsx precursor

Lipoproteins

39 NP 756849.1 yjbH 0.651 0 − − Lipoprotein yjbH precursor

40 NP 755008.1 yfiB 0.564 0 − − Putative outer membrane
lipoprotein

41 NP 756936.1 yjcP 0.185 0 − − Putative outer membrane
efflux protein MdtP

42 NP 752589.1 cusC 0.516 0 − −
Copper/silver efflux system
outer membrane protein
CusC

43 NP 754925.1 yfhM 0.224 0 − − Lipoprotein yfhM
precursor

44 NP 756232.1 yiaD 0.526 3 + − Putative outer membrane
lipoprotein

Other outer membrane proteins

45 NP 752286.1 c0345 0.987 1 X − − ShlA/HecA/FhaA exofamily
protein

46 NP 752352 eaeH 0.904 1 X − − Putative adhesin

47 NP 753126 c1207 0.702 0 X − − Hypothetical protein

48 NP 753493 c1585 0.526 0 X − − Putative tail component of
prophage

49 NP 754912 c3030 0.71 1 X − − SinI-like protein

50 NP 756286 c4424 0.99 0 X − − Putative adhesin

51 NP 752116.1 yadC 0.81 1 − − Putative fimbrial-like
adhesin protein
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Table 4: Continued.

#
Protein
RefSeq

Symbol Adhesin TMH
Not in
K-12

Micro-
array

Prote-
omics

Protein Name

Other outer membrane proteins

52 NP 752162.1 yaeT 0.637 0 + +
Outer membrane protein
assembly factor YaeT

53 NP 752163.1 hlpA 0.587 0 − − Periplasmic chaperone

54 NP 752339.1 yagX 0.571 0 − − Hypothetical protein c0402

55 NP 752642.1 crcA 0.739 1 − − Palmitoyl transferase for
Lipid A

56 NP 752830.1 ompX 0.818 1 + + Outer membrane protein X

57 NP 753262.1 flgK 0.84 0 − − Flagellar hook-associated
protein FlgK

58 NP 753627.1 ompW 0.848 0 − +
Outer membrane protein
W

59 NP 753695.1 ompG 0.618 0 − − Outer membrane protein G
precursor

60 NP 754014.1 ydiY 0.708 0 − − Hypothetical protein c2120

61 NP 754081.1 yeaF 0.852 0 + +
MltA-interacting protein
precursor

62 NP 754523.1 yehA 0.847 0 − − Hypothetical protein c2635

63 NP 754661.1 yfaL 0.949 0 − − Adhesin

64 NP 755530.1 c3655 0.962 0 − + Antigen 43 precursor

65 NP 756601.1 pldA 0.756 0 − − Phospholipase A

66 NP 754578.1 cirA 0.51 0 − − Colicin I receptor

67 NP 755652.2 tolC 0 0 − +
Outer membrane channel
protein

68 NP 752583.1 ompT 0 0 + + Outer membrane protease

69 NP 756783.1 btuB 0 0 − +
Vitamin B12/cobalamin
outer membrane
transporter

70 NP 754246.1 fliF 0.213 2 − − Flagellar MS-ring protein

71 NP 755960.1 yheF 0.239 0 − − General secretion pathway
protein D precursor

72 NP 752585.1 nfrA 0.298 0 − − Bacteriophage N4 receptor,
outer membrane subunit

73 NP 753902.1 uidC 0.304 1 − − Putative outer membrane
porin protein

74 NP 754656.1 c2770 0.348 0 − − Hypothetical protein c2770

75 NP 757165.1 ytfM 0.4 0 − − Hypothetical protein c5318

76 NP 753730.1 ydbH 0.401 1 − − Hypothetical protein c1828

77 NP 756204.1 yhjL 0.408 0 − − Cellulose synthase subunit
BcsC

78 NP 751977.1 c0021 0.418 1 − − Hypothetical protein c0021

79 NP 757166.1 ytfN 0.426 1 − − Hypothetical protein c5319

80 NP 754559.2 yohG 0.427 0 + − Multidrug resistance outer
membrane protein MdtQ

81 NP 756598.1 c4739 0.43 0 − − Hypothetical protein c4739

82 NP 753585.1 ychP 0.435 0 − − Hypothetical protein c1680

83 NP 754913.1 c3031 0.448 0 − − SinH-like protein

84 NP 752491.1 ybaU 0.464 1 − − Peptidyl-prolyl cis-trans
isomerase (rotamase D)

85 NP 755264.1 c3389 0.282 3 X − − Hypothetical protein

Note: The protein RefSeq numbers are from UPEC strain CFT073. All 85 proteins are conserved across total four UPEC genomes. This table also shows
the adhesin probability, number of transmembrane helixes, and absence in nonpathogenic K-12 MG1655. TMH, transmembrane alpha helix prediction.
Microarray, transcriptomic mRNA results (+ for up-regulation in vivo). Proteomics, protein expression results (+ for up-regulation in urine or in vivo).
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stimulated by IroN [33]. This protein also exists in E. coli K-
12, which may bring a discussion about whether it is needed
to use this cutoff.

Two other proteins, IreA (NP 757022.1, c5174) and
IutA (NP 755498.1), were also tested based on six indepen-
dent screens [33]. Both are putative iron-regulated outer
membrane virulence proteins. Our studies found that IreA
and IutA were able to independently stimulate protective
immunity in mouse bladder against challenge with UPEC
strain CFT073 [33]. These two proteins were not shown in
our final list of vaccine candidates predicted by our Vaxign
analysis pipeline because they were filtered out due to their
absence in the other three UPEC genomes.

4. Discussion

Vaxign is the first web-based vaccine design software pro-
gram freely available for the purpose of facilitating reverse
vaccinology. Vaxign optimizes the conditions and perfor-
mance of many public tools and provides new programs in a
way optimal for analyzing high throughput data. The seam-
less integration makes Vaxign a user-friendly environment
specific for reverse vaccinology. Our analysis indicates that
Vaxign specifically and sensitively predicts known vaccine
targets and also provides new vaccine target candidates
deserving further wet lab confirmation. Vaxign is expected to
become a publically available web-based program for vaccine
researchers to efficiently design vaccine targets and develop
vaccines using a rationale reverse vaccinology strategy.

To test whether Vaxign is capable of predicting those
protective antigens that have been validated based on wet
laboratory experiments, we have curated the literature and
obtain a list of proteins and used Vaxign to analyze those
protective antigens. Vaxign has also been used to predict
vaccine targets using other bacteria such as Brucella spp.,
Neisseria meningitides, and Mycobacterium tuberculosis. Our
studies indicated that Vaxign predicted results are consistent
with existing reports [37].

We showed in this report that Vaxign can be successfully
used for prediction of UPEC vaccine candidates. While
UPEC FimH was reported to be a protective antigen [52],
it was not included in our list of predicted genes (Table 4).
FimH is predicted by Vaxign as an adhesin with an adhesin
probability of .96. This prediction is consistent with current
knowledge about this protein [52]. Based on an X-ray struc-
ture analysis, FimH is folded into two domains of the all-
beta class connected by a short extended linker [53]. FimH
was not shown in our final predicted list since its subcellular
localization was predicted unknown (Probability = .2). If
only a high adhesin probability is considered, FimH would be
included in our prediction list. This also indicates different
Vaxign options selected by a user would change the results.
However, we identified another protein in that complex
(FimD) (Table 4). Vaxign identified IroN, Hma, and ChuA
(Table 4) which were selected as possible protective antigens
after lengthy experimental assessment [33]. Our study found
that Hma induced protection in mice from transurethral
challenge with UPEC. Another independent study indicated

that subcutaneous immunization with denatured IroN con-
ferred significant protection against renal, but not bladder,
urinary tract infection in a mouse model [54].

While recombinant ChuA induced severe sickness in
mice, the immunized mice did not protect against virulent
UPEC infection. This sickness was probably due to its
Heme-binding activity. The possible release of high levels
of inflammatory cytokines and innate immune response
might lead to mouse death. It is likely that ChuA contains
some immunodominant T cell epitope(s) that activates
effector (inflammatory) T cell immunity [46]. In many cases,
subdominant epitopes that induce subdominant responses
may be important components of an effective immune
defence [19]. Immunization with subdominant but optimal
epitopes can often induce T cell responses that are more
effective than immunodominant epitopes. A more advanced
in silico prediction would be able to predict and optimize
epitopes for vaccine development.

Our study also indicated that microarray and proteomics
gene expression data were complementary to DNA sequence-
based analysis in predicting vaccine targets (Table 4). Future
directions of further Vaxign development may include addi-
tion of other components such as analysis of high throughput
transcriptomic (e.g., DNA microarray and superarray) and
proteomic data for vaccine target prediction. Predicted vac-
cine targets can also be analyzed based on gene annotation
enrichment to further refine vaccine targets using tools
such as DAVID. The gene enrichment results combined
with predictions based on DNA sequence analysis as well
as mRNA and protein gene expression allowed us to focus
on the group of iron binding proteins for experimental
testing.

More than 700 microbial genomes have been sequenced
and analyzed, which provide a foundation for scientists
to develop vaccines using the reverse vaccinology. Reverse
vaccinology shortens the period of vaccine target discovery
and evaluation to 1-2 years [1]. This new strategy also
revolutionizes new vaccine development against pathogens
for which the applications of Pasteur’s principles have
failed.

The use of proteins is a common approach for genetically
engineered vaccine development. However, generating epi-
tope vaccines has many advantages and is currently an active
research area. To give the most simplified example, if only
one epitope of a large protein is protective, using the peptide
epitope would allow the delivery of much higher dose of the
key epitope during vaccination. Therefore, prediction of a
successful epitope would increase efficacy for the vaccine.

Our studies found that Vaxitope is a sensitive and specific
program for predicting immune epitopes that provide good
candidates for epitope vaccine development. We are in the
processing of designing and evaluating epitope-based UPEC
vaccines using Vaxign. We will first target to predict epitopes
from antigens (e.g., Hma) that have proven able to induce
protective immunity.

It often occurs that many epitopes can be predicted
from one specific protein. It is often challenging to rank
predicted epitopes for vaccine testing. The epitope ranking
can also be used to rank proteins. Many programs, such as
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EpiAssembler by EpiVax [55], allow epitope content ranking.
It is known that the best T cell epitopes tend to contain
“clusters” of MHC binding motifs, and the clustering is
highly correlated with the immunogenicity [46]. Therefore,
it is more effective to design a peptide(s) containing clustered
epitopes for induction of better immunogenicity in rational
vaccine development. Promiscuous epitopes are those MHC
ligands or T-cell epitopes that are recognized in the context
of more than one MHC molecule and recognized by more
than one T-cell clone. Many software programs, such as
TEPITOPE [56], enable the computational identification of
promiscuous MHC ligands. The prediction of promiscuous
epitopes is also an important feature for epitope-based
vaccine design.

It is often that a vaccine candidate that is effective in
a mouse model is not effective in human. If the epitopes
are designed for human use, the mice used for testing the
epitope vaccine usually need to be transgenic. Generating
HLA transgenic mice is costly and time consuming. It is
possible, however, to design epitopes that are effective for
both mouse and human. For example, it was reported that
an epitope in human immunodeficiency virus 1 reverse
transcriptase was recognized by both mouse and human
cytotoxic T lymphocytes [57]. Prediction and screening of
such epitopes would simplify our testing of human vaccine
candidates in the mouse model.

The molecular mimicry or the cross-reactivity between
self epitopes and pathogen epitopes has been found a
common reason for many pathogen-induced autoimmune
diseases [46]. Many pathogens, such as Klebsiella pneu-
moniae, Proteus mirabilis, human coronavirus, and Lyme
disease spirochete Borrelia burgdorferi carry antigens which
cross-react with human antigens [44, 46]. For example, the
oligopeptide QTDRED is common to both K. pneumoniae
and HLA-B27 nitrogenase reductase enzyme. This sequence
similarity appears to cause ankylosing spondyltis. Proteus
mirabilis hemolysin contains a molecular mimicry sequence
ESRRAL that has the same shape and charge distribution as
the rheumatoid arthritis susceptibility sequence EQRRAA.
Antibody levels against P. mirabilis hemolysin and a synthetic
peptide ESRRAL were significantly higher in rheumatoid
arthritis patients [44]. To avoid the autoimmunity, it is
important to eliminate the epitopes that are conserved.
Currently Vaxign provides a genome-wide sequence sim-
ilarity analysis at protein levels. Many programs, such
as Conservatrix [19] and IEDB Sequence Mapping tool
(http://tools.immuneepitope.org/esm/esmhelp.jsp?tab=
help), have been developed to map epitope sequences. We
plan to develop such epitope sequence mapping tool in
Vaxign in the future.

Vaxign is part of VIOLIN, a web-based vaccine database
and analysis resource [58]. The predicted vaccine tar-
gets from Vaxign will also integrate with those man-
ually annotated vaccine data available in VIOLIN. An
literature mining program based on the Vaccine Ontol-
ogy (http://www.violinet.org/vaccineontology) is also being
developed to facilitate automated literature data processing
and inference for the purpose of retrieving valuable data for
rational vaccine design.
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