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Although blood DNA methylation (DNAm) profiles are reported to be

associated with breast cancer incidence, they have not been widely used in

breast cancer risk assessment. Among a breast cancer case–cohort of 2774
women (1551 cases) in the Sister Study, we used candidate CpGs and

DNAm estimators of physiologic characteristics to derive a methylation-

based breast cancer risk score, mBCRS. Overall, 19 CpGs and five DNAm

estimators were selected using elastic net regularization to comprise

mBCRS. In a test set, higher mBCRS was positively associated with breast

cancer incidence, showing similar strength to the polygenic risk score

(PRS) based on 313 single nucleotide polymorphisms (313 SNPs). Area

under the curve for breast cancer prediction was 0.60 for self-reported risk

factors (RFs), 0.63 for PRS, and 0.63 for mBCRS. Adding mBCRS to

PRS and RFs improved breast cancer prediction from 0.66 to 0.71.

mBCRS findings were replicated in a nested case–control study within the

EPIC-Italy cohort. These results suggest that mBCRS, a risk score derived

using blood DNAm, can be used to enhance breast cancer prediction.

1. Introduction

Breast cancer risk is assessed using established risk fac-

tors to estimate a woman’s probability of developing

the disease [1–3]. Many breast cancer risk models,

including the widely used Breast Cancer Risk Assess-

ment Tool, estimate a woman’s risk using information

she provides, such as her age, reproductive history,

personal history of benign breast disease, and family

history of breast cancer [1]. Genetic models, or poly-

genic risk scores (PRS), use sets of single nucleotide

polymorphisms (SNPs) that are associated with breast

cancer to estimate a woman’s germline risk of the

disease [3]. Although both questionnaire-based and

genetic breast cancer risk assessment tools appear to

be clinically useful [4,5], incorporating information

from the blood epigenome may provide a novel path

toward improving breast cancer prediction [6,7].

Genome-wide DNA methylation (DNAm) profiles

are epigenomic indicators of transcriptional activity,

cell function, and identity [8]. DNAm at cytosine–
phosphate–guanine (CpG) dinucleotides is associated

with breast cancer risk factors, including age, repro-

ductive history, and lifestyle factors [9–11]. Although

DNAm at individual CpG sites is associated with

breast cancer risk, such site-specific associations have
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been inconsistent across studies [12–18]. Methylation

levels at combinations of many, sometimes hundreds,

of CpGs have been shown to be useful in estimating

biological age and a variety of other physiologic char-

acteristics [19–27]. These DNAm estimators are

reported to be associated with cancer risk factors [28–
30] and health outcomes, including breast cancer [31–
33], and we hypothesized they could be useful in the

development of a methylation-based risk score for

breast cancer.

Using blood samples collected from cancer-free

women, we previously showed that blood DNAm, at

individual CpGs and CpG set-based DNAm estima-

tors, is associated with incidence of breast cancer

[17,18,31–33]. Here, after accounting for established

questionnaire-based and genetic risk factors, we exam-

ine whether blood DNAm profiles can improve breast

cancer prediction. We use a training sample and elastic

net regularization [34] to identify a set of individual

CpGs and DNAm estimators associated with breast

cancer to construct a methylation-based breast cancer

risk score, mBCRS. We validate mBCRS by examining

age-independent associations with breast cancer in a

separate testing sample of women from the Sister

Study and also in an independent sample of women

enrolled in the European Prospective Investigation into

Cancer and Nutrition (EPIC) cohort. Finally, we

assess the predictive utility of mBCRS alone and in

conjunction with questionnaire-based and genetic risk

information.

2. Methods

2.1. Training and testing set source population,

The Sister Study

The Sister Study is a nationwide, ongoing, prospective

cohort of 50 884 women residing in the United States

and Puerto Rico who were enrolled between 2003 and

2009 [35]. To be eligible, women could not have been

diagnosed with breast cancer themselves but must have

had a biological sister (full or half) with a previous

breast cancer diagnosis. Enrolled women are recon-

tacted annually and are asked to complete short ques-

tionnaires about any recent diagnoses, including breast

cancer. The annual response rate has consistently been

greater than 90%. Women who report an incident

breast cancer are contacted six months after diagnosis

for permission to retrieve medical records. Written

informed consent was obtained at a home visit and the

Institutional Review Board of the National Institute of

Environmental Health Sciences, National Institutes of

Health, approved and oversees the study. The study

methodologies conform to the standards set by the

Declaration of Helsinki. Data from the Sister Study

can be requested via https://sisterstudy.niehs.nih.gov/

English/coll-data.htm.

Blood samples were collected at enrollment (2003–
2009) when none of the women had been diagnosed

with breast cancer [35]. A case–cohort subsample [36]

of non-Hispanic White women had been selected in

July 2014 for whole blood genome-wide DNAm analy-

sis. As our case set, we identified 1540 participants

diagnosed with ductal carcinoma in situ (DCIS) or

invasive breast cancer during the time between enroll-

ment and the end of February 2014. Approximately

3% (n = 1336) of the eligible women from the larger

cohort who were cancer-free at enrollment were ran-

domly selected (the ‘random subcohort’). Of the

women selected into the random subcohort, 72 devel-

oped incident breast cancer by the end of the study

follow-up period (February 28, 2014).

2.2. Genomic DNA methylation data in the Sister

Study

Procedures for DNA extraction, processing of Infi-

nium HumanMethylation450 BeadChips, and quality

control of DNAm data from Sister Study whole blood

samples have been previously described [18]. Of the

2876 women selected for DNAm analysis, 102 samples

(61 cases and 41 noncases) were excluded because they

did not meet quality control measures. Of these sam-

ples, 91 had mean bisulfate intensity less than 4000 or

had greater than 5% of probes with low-quality

methylation values (detection P > 0.000001, < 3 beads,

or values outside three times the interquartile range),

four were outliers for their methylation beta value dis-

tributions, one had missing phenotype data, and six

were from women whose date of diagnosis preceded

blood collection [18,31].

2.3. Genomic DNA methylation data in the EPIC-

Italy cohort

DNA methylation raw .idat files (GSE51057) from the

EPIC-Italy nested case–control methylation study [37]

were downloaded from the National Center for

Biotechnology Information Gene Expression Omnibus

website (https://www.ncbi.nlm.nih.gov/geo/). EPIC-

Italy is a prospective cohort with blood samples col-

lected at recruitment; at the time of data deposition,

the nested case–control sample included 177 women

who had been diagnosed with breast cancer and 152

who were cancer-free.
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2.4. DNAm estimator calculation and candidate

CpG selection

We used ENmix to preprocess methylation data from

both studies [38–40] and applied two approaches to

calculate 36 previously established DNAm estimators

of biological age and physiologic characteristics

(Table S1). We used an online calculator (https://

dnamage.genetics.ucla.edu/home) to generate DNAm

estimators for eight metrics of epigenetic age accelera-

tion (‘AgeAccel’) [19–22,24,25], telomere length [26],

ten measures of white blood cell components [19,23],

and seven plasma proteins (adrenomedullin, b2-
microglobulin, cystatin C, growth differentiation factor-

15, leptin, plasminogen activation inhibitor-1, and tissue

inhibitor metalloproteinase-1) [25]. We used previously

published CpGs and weights to calculate an additional

four DNAm estimators for plasma proteins (total

cholesterol, high-density lipoprotein, low-density

lipoprotein, and the total : high-density lipoprotein

ratio) and six complex traits (body mass index, waist-to-

hip ratio, body fat percent, alcohol consumption, educa-

tion, and smoking status) [27].

As input to derive the risk score, we also included a

set of 100 candidate CpGs previously identified in the

Sister Study (Table S2) [18] that were part of the

group evaluated in the ESTER cohort study [6] and

are available on both the HumanMethylation450 and

MethylationEPIC BeadChips.

2.5. Statistical analysis

Among women in the Sister Study case-cohort sample,

we randomly selected 70% to comprise a training set;

the remaining 30% were used as the testing set for

internal validation. Because age is a risk factor for

breast cancer, cases were systematically older than

noncases at the time of their blood draw. We corrected

for this by calculating inverse probability of selection

weights. Using the weighted training set, elastic net

Cox regression with 10-fold cross-validation was

applied (using the ‘glmnet’ R package) to identify a

subset of DNAm estimators and individual CpGs that

predict breast cancer incidence (DCIS and invasive

combined). The elastic net alpha parameter was set to

0.5 to balance L1 (lasso regression) and L2 (ridge

regression) regularization; the lambda penalization

parameter was identified using a pathwise coordinate

descent algorithm (using the ‘cv.glmnet’ R package)

[34]. To generate mBCRS, we created a linear combi-

nation of the selected DNAm estimators and CpGs

using as weights the coefficients produced by the elas-

tic net Cox regression model.

mBCRS and PRS associations with breast cancer

incidence were examined using covariate-adjusted stan-

dardized residuals in the testing set by estimating haz-

ard ratios (HRs) and 95% confidence intervals (CI)

and calculating 2-sided P-values from Cox regression

models for case-cohort designs with Barlow weights,

robust standard errors, and age as the timescale

[41,42]. Because age was treated as the timescale, all

resulting HRs are fully adjusted for age. Standardized

residuals for mBCRS and PRS were calculated by

using the data from the random subcohort and

regressing each factor separately on a set of estab-

lished, questionnaire-based risk factors (i.e., age at

blood draw, menopause status, body mass index, phys-

ical activity, alcohol consumption, age at first birth

[among parous], total number of births, age at menar-

che, menopause age [among postmenopausal], smoking

pack-years, previous number of breast biopsies, num-

ber of breast cancer affected first-degree family mem-

bers, youngest age of proband sister’s diagnosis,

educational attainment, durations of postmenopausal

hormone use, and breastfeeding), and standardizing

the residual by dividing it by the standard deviation of

the residuals. For our main analysis, our case defini-

tion included both DCIS and invasive breast cancers.

To explore the possible influence of clinically occult

breast cancer, associations were also examined after

excluding the first 2 years of follow-up. In all analyses

using the testing set, we excluded women if they were

missing information on self-reported breast cancer

risk factors (n = 12) or PRS (n = 27). Although

questionnaire-based and genetic risk information was

not available for the EPIC-Italy nested case–control
study, we calculated standardized residuals for

mBCRS adjusted only for age and examined breast

cancer associations using odds ratios (ORs) estimated

by unconditional logistic regression models.

After accounting for the previously mentioned

questionnaire-based risk factors, we examined risk gra-

dients for mBCRS, PRS, and age, alone and in combi-

nation. A risk gradient is defined as the ability to

differentiate cases from controls on a population basis

and is estimated as odds ratio per adjusted standard

deviation (OPERA) using a logistic regression model

[43]. In both the Sister Study testing set and the EPIC-

Italy sample, we further examined mBCRS predictive

utility using receiver operating characteristic analysis

to calculate area under the curve (AUC). To examine

whether mBCRS provides additional information for

breast cancer prediction, in the Sister Study testing set,

we compare AUCs using a sequential combination of

the set of previously mentioned questionnaire-based

risk factors, 313 SNP PRS, and mBCRS [44].
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3. Results

There were 1551 incident breast cancer diagnoses

among the 2774 women selected into the methylation

case-cohort sample (Table 1). Overall, the average age

at blood draw was 57 years [standard deviation

(SD) = 9; range: 35–74). Fewer than 40% of women

reported having been tested for BRCA1 and BRCA2

and among these women, the self-reported mutation

prevalence was 5% and 6%, respectively. The training

set had more invasive cancers (80%) and fewer DCIS

(20%) than the testing set (74% invasive, 26% DCIS).

After age-based inverse probability of selection weight-

ing of the training set, there was no difference between

cases and noncases by age at blood draw; however,

cases had higher weighted mean PRS values, lower

levels of physical activity, higher alcohol consumption,

older ages at first birth, more affected family members,

and a greater proportion with a history of breast

biopsy (Table S3).

Among the weighted training set, elastic net regular-

ization selected 5 DNAm estimators and 19 individual

CpGs to comprise mBCRS (Table S4). These included

two estimators of epigenetic age acceleration (PhenoA-

geAccel, Raj AgeAccel) and three white blood cell sub-

type proportions (CD8+ T cells, monocytes, and

CD8+CD28-CD45RA-). Of the 19 individual CpGs

selected, 12 mapped to genes, including the following:

BTNL9, GLTSCR2, CYTSB, COQ10B, LHFP,

NUMB, WWTR1, PSMA1, SLAIN1, XRCC2,

SPTY2D1, and KCTD18. The components of mBCRS

were generally not correlated with each other

(Fig. S1). Women diagnosed with breast cancer over

follow-up had higher mBCRS scores based on its orig-

inal scale (mean difference = 0.13; Fig. S2) or based

on the standardized residuals (mean difference = 0.66;

Fig. S3).

3.1. mBCRS associations with genetic and

questionnaire-based breast cancer risk factors

Among women in the random subcohort who were

selected into the Sister Study testing set, mBCRS was

not correlated with either the 313 SNP PRS (r = 0.03,

Table 1. Sister Study methylation case-cohort sample characteristics at study enrollment overall and by training/testing set assignment.

Overall Training set Testing set P-diff

Total participants, N 2774 1941 833

Incident breast cancers, N (%) 1551 (100) 1090 (100) 461 (100)

Invasive 1218 (79) 877 (80) 341 (74) 0.01

DCIS 333 (21) 213 (20) 120 (26)

Age, mean years (SD) 57.0 (9) 57.3 (9) 56.5 (9) 0.03

Body mass index, mean kg/m2 (SD) 27.6 (6) 27.6 (6) 27.7 (6) 0.53

Physical activity, mean METs/week (SD) 50.8 (31) 50.6 (31) 51.3 (32) 0.60

Alcohol consumption, mean drinks/week (SD) 3.1 (5) 3.1 (5) 3.2 (5) 0.60

Age at menarche, mean years (SD) 12.6 (1) 12.6 (1) 12.6 (2) 0.58

Live births, mean total (SD) 1.9 (1) 2.0 (1) 1.9 (1) 0.13

Age at first birth, mean years (SD) 24.9 (5) 24.9 (5) 24.9 (5) 0.86

Breastfeed duration, mean weeks (SD) 35.2 (56) 35.4 (54) 34.6 (61) 0.73

Postmenopausal hormone usea, mean years (SD) 5.9 (7) 5.9 (7) 5.6 (7) 0.98

Number of affected sisters, count (SD) 1.1 (0.4) 1.1 (0.4) 1.1 (0.4) 0.51

Youngest proband sister age at diagnosis, mean years (SD) 48.9 (10) 49.0 (10) 48.6 (10) 0.27

Polygenic risk score, mean (SD) �0.17 (0.6) �0.16 (0.7) �0.19 (0.6) 0.18

Educational attainment, N (%)

Less than HS/HS degree 430 (16) 311 (16) 119 (14) 0.40

Attended college/college degree 1641 (59) 1134 (58) 507 (61)

Advanced degree 703 (25) 496 (26) 207 (25)

Menopause status, N (%)

Premenopausal 826 (30) 574 (30) 252 (30) 0.73

Postmenopausal 1947 (70) 1366 (70) 581 (70)

Previous number of breast biopsies, N (%)

Zero 1875 (68) 1312 (68) 563 (68) 0.25

One 448 (17) 330 (17) 158 (19)

Two or more 411 (15) 299 (15) 112 (13)

METs, metabolic equivalent tasks. Missing covariates: body mass index, 2; sister age at diagnosis, 3; polygenic risk score, 102; menopause

status, 1; postmenopausal hormone use, 6. P-diff calculated using the t-tests for continuous variables and v2 tests for categorical variables.
a

Among postmenopausal women (n = 1947).
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P = 0.51) or age at blood draw (r = 0.09, P = 0.07)

(Fig. 1, top row). The distribution of mBCRS on the

original scale ranged from 44.28 to 45.96, with a mean

of 45.20 (SD = 0.19); women who remained cancer-

free had a mean of 45.14 (SD = 0.17), while those who

developed breast cancer had a mean of 45.24

(SD = 0.20) (Fig. 1, bottom row left). The standard-

ized residuals for mBCRS ranged from �5.30 to 5.20,

with a mean of 0.30 (SD = 1.19); women who

remained cancer-free had a mean of �0.03

(SD = 0.99), while those who developed breast cancer

had a mean of 0.56 (SD = 1.27) (Fig. 1, bottom row

right). Eighteen of the 24 components selected into the

mBCRS were uncorrelated with age (P > 0.05); the

strongest positive correlation was observed for the

CD8+CD28-CD45RA- cell type (r = 0.29, P < 0.001),

and the strongest negative correlation was observed

for cg02456218 (r = �0.19, P < 0.001) (Fig. S4). In the

EPIC-Italy sample, among the controls, mBCRS was

positively correlated with age (r = 0.20, P = 0.01). In

the random subcohort members of the Sister Study

testing set, the PRS and age were not correlated

(r = 0.01, P = 0.88; Fig. S5). mBCRS was not corre-

lated with reproductive factors including the following:

age at menarche, age at first live birth, number of

births, age at menopause, duration of postmenopausal

hormone use, or breastfeeding (all P > 0.05; Fig. S6).

mBCRS was also not correlated with previous number

of breast biopsies, number of affected family members,

proband sister age at diagnosis, smoking history, phys-

ical activity, alcohol use, or educational attainment (all

P > 0.05), but was positively correlated with body

mass index (r = 0.11, P = 0.03; Fig. S7).

3.2. mBCRS and breast cancer incidence

In the testing set of the Sister Study, higher mBCRS

was associated with elevated breast cancer risk (per

covariate-adjusted SD, HR: 1.78, 95% CI: 1.51, 2.11,

P = 2.1 9 10�11), showing similar strength to the 313

Fig. 1. mBCRS correlations with 313 SNP PRS and age and mBCRS distributions in the Sister Study testing set. Among women sampled

as part of the random subcohort and selected into the testing set (n = 375), scatterplot and fit line between mBCRS values and the 313

SNP PRS (Pearson’s correlation: 0.03, top left panel); and scatterplot and fit line between mBCRS and age at blood draw (Pearson’s

correlation: 0.09, top right panel). The distribution of mBCRS on the original scale ranged from 44.28 to 45.96, with a mean of 45.20

(SD = 0.19); women who remained cancer-free had a mean of 45.14 (SD = 0.17), those who developed breast cancer had a mean of 45.24

(SD = 0.20) (bottom left panel). The standardized residuals for mBCRS ranged from �5.30 to 5.20, with a mean of 0.30 (SD = 1.19); women

who remained cancer-free had a mean of �0.03 (SD = 0.99), and those who developed breast cancer had a mean of 0.56 (SD = 1.27)

(bottom right panel).
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SNP PRS (per covariate-adjusted SD, HR: 1.57, 95%

CI: 1.35, 1.83, P = 5.1 9 10�9; Table 2). In a multi-

variable model that included standardized residuals for

both mBCRS and PRS, associations were unchanged

(Table 2). Similar associations between mBCRS and

breast cancer risk were observed in the EPIC-Italy

external validation set (per age-adjusted SD increase,

OR: 2.11, 95% CI: 1.62, 2.76, P = 4.5 9 10�8). In

tertile-based analyses, Sister Study participants with

mBCRS scores in the highest third had over a twofold

increase in breast cancer risk (Tertile 3 vs Tertile 1,

HR: 2.54, 95% CI: 1.78, 3.63, P = 2.9 9 10�7; P-

trend = 3.6 9 10�7); in the EPIC-Italy sample, partici-

pants with mBCRS scores in the highest third had an

over fourfold increase in risk (Tertile 3 vs Tertile 1,

OR: 4.18, 95% CI: 2.33, 7.49, P = 1.7 9 10�6; P-

trend = 1.8 9 10�6) (Table S5). In the Sister Study

testing set, a LOWESS plot of mBCRS standardized

residuals by case status showed some evidence of non-

linearity (Fig. S8). To examine the possibility that the

association between mBCRS and breast cancer was

secondary to the presence of clinically occult tumors,

we excluded the first 2 years of follow-up: mBCRS

again showed positive associations with breast cancer

incidence (per covariate-adjusted SD, HR: 1.83, 95%

CI: 1.52, 2.19, P = 1.1 9 10�10; PRS HR: 1.62, 95%

CI: 1.37, 1.92, P = 1.3 9 10�8); again, associations

were similar in a multivariable model (Table 2).

Among women who developed breast cancer, mBCRS

was weakly correlated with time to diagnosis

(r = �0.09, P = 0.05) (Fig. S9). mBCRS associations

with breast cancer incidence did not vary by age at

blood draw, body mass index, menopausal status or

sister proband age at diagnosis (Table S6). In a case-

only analysis to investigate etiologic heterogeneity,

mBCRS was more strongly associated with invasive

breast cancer than DCIS (invasive, per covariate-

adjusted SD, HR: 1.90, 95% CI: 1.58, 2.29,

P = 1.5 9 10�11; DCIS, HR: 1.50, 95% CI: 1.20, 1.89,

P = 4.1 9 10�4; etiologic heterogeneity, P = 0.05);

however, no differences were observed when compar-

ing mBCRS and occurrence of estrogen receptor posi-

tive and negative invasive breast cancers (etiologic

heterogeneity, P = 0.47; Table S7).

3.3. Breast cancer risk gradients and predictive

capabilities of mBCRS, PRS and other risk factors

In univariable models that account for questionnaire-

based breast cancer risk factors, the OPERAs for

mBCRS, PRS, and age were 1.58 (95% CI: 1.38, 1.81),

1.58 (95% CI: 1.36, 1.83), and 1.35 (95% CI: 1.16,

1.57), respectively (Table 3). Multivariable models with

different combinations of mBCRS, PRS, and age pro-

duced OPERA estimates similar to those of univariate

models (Table 3). Multivariate OPERA estimates for

the two classes of mBCRS predictors (i.e., the 5 sepa-

rate DNAm estimators and the 19 individual CpGs)

separately and combined show that components from

each of the two classes were independently predictive

of breast cancer incidence (Table S8). In the EPIC-

Italy validation set, the AUC for mBCRS was 0.69

(95% CI: 0.63, 0.75). In the Sister Study testing set,

the AUC was 0.63 (95% CI: 0.59, 0.67) for mBCRS,

Table 2. Test set-based hazard ratios per covariate-adjusted standard deviation (SD) from univariable and multivariable analyses of mBCRS

and polygenic risk score (n = 794).

Full follow-upa Excluding first 2 years

HR (95% CI)b Z-score P-value HR (95% CI)b Z-score P-value

Univariate modelsc

mBCRS 1.78 (1.51, 2.11) 6.70 2.1 9 10�11 1.83 (1.52, 2.19) 6.45 1.1 9 10�10

PRS 1.57 (1.35, 1.83) 5.84 5.1 9 10�9 1.62 (1.37, 1.92) 5.69 1.3 9 10�8

Multivariable modeld

mBCRS 1.74 (1.46, 2.06) 6.23 4.6 9 10�10 1.76 (1.47, 2.12) 6.03 1.6 9 10�9

PRS 1.55 (1.31, 1.83) 5.14 2.8 9 10�7 1.59 (1.33, 1.92) 4.98 6.3 9 10�7

Sample sizes: full follow-up, n = 794 with 443 events; excluding first 2 years, n = 673 with 326 events.
a

Full follow-up length: mean = 5.2 years, SD = 2.6.
b

Per covariate-adjusted standard deviation increase in mBCRS score (or PRS), accounting for: age at blood draw, menopause status, body

mass index, interaction term for BMI and menopause, physical activity, alcohol consumption, age at first birth (among parous), total number

of births, age at menarche, menopause age (among postmenopausal), smoking pack-years, previous number of breast biopsies, family his-

tory of breast cancer (number of affected sisters, youngest age of sister’s diagnosis), educational attainment, and durations of post-

menopausal hormone use and breastfeeding, and standardized to the distribution of the noncases.
c

Results displayed are from two separate models including either mBCRS or PRS.
d

Results displayed are for both mBCRS and PRS that were included as covariates in a single model.
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0.63 (95% CI: 0.59, 0.67) for PRS, and 0.60 (95% CI:

0.56, 0.64) for the set of questionnaire-based risk

factors listed in the methods. Combining PRS and

questionnaire-based risk information produced an

AUC of 0.66 (95% CI: 0.62, 0.70); when mBCRS was

added to that model, the AUC rose to 0.71 (95% CI:

0.67, 0.74, P-diff = 1.7 9 10�4) (Fig. 2).

4. Discussion

We used epigenome-wide DNAm array data from the

Sister Study, a large prospective cohort of women, to

construct a novel DNAm-based risk score for breast

cancer. Using published methods, we calculated a set

of 36 DNAm estimators of biological age and physio-

logic characteristics and also included a candidate set

of 100 individual CpGs previously reported to be asso-

ciated with breast cancer [18]. Elastic net regulariza-

tion was used with a training set of women in the

Sister Study to identify 5 DNAm estimators and 19

CpGs that together jointly predicted breast cancer inci-

dence. In a separate testing set of women from the Sis-

ter Study, the resulting metric, mBCRS, was strongly

associated with breast cancer risk; the association was

also verified in an independent study of women from

the EPIC cohort. OPERA analysis supported the

conclusion that mBCRS, PRS, and age are comple-

mentary and independent predictors of breast cancer

risk. Both OPERA estimates and AUCs calculated by

receiver operating characteristic analysis suggest that

breast cancer prediction based on genetic and

questionnaire-based information can be meaningfully

improved with the addition of mBCRS.

Like the individual CpGs, most of the DNAm esti-

mators selected for mBCRS have been reported as

markers of breast cancer risk. PhenoAgeAccel was

associated with breast cancer incidence in both the Sis-

ter Study and EPIC cohorts [24,33], and DNAm esti-

mators of circulating CD8+ T cells and monocytes

appear to be time-dependent markers of breast cancer

risk [31]. Although not previously reported, our analy-

sis suggested the Raj AgeAccel metric and DNAm esti-

mator for CD8+CD28-CD45RA- immune cells may

also be risk markers for breast cancer.

Established breast cancer risk factors include the

PRS, which is based on 313 SNPs associated with the

disease [3], and questionnaire-based risk factors includ-

ing age, body mass index, alcohol use, reproductive

factors, history of benign breast disease, and family

history of breast cancer [45–49]. In our analysis,

mBCRS was not correlated with PRS, age, or most

other breast cancer risk factors. Unlike some breast

cancer risk factors [50], we did not find evidence that

mBCRS associations varied by degree of family history

or other personal characteristics consistent with the

possibility that the risk associated with mBCRS acts

multiplicatively with other breast cancer risk factors.

We did observe some evidence that the association

between mBCRS and breast cancer risk may be non-

linear, with the strongest associations among women

Table 3. Test set-based OPERA (95% CI) estimated odds ratios per covariate-adjusted standard deviation from univariable and multivariable

analyses of mBCRS, polygenic risk score, and age (n = 794).

Univariable Multivariable

mBCRS only PRS only Age only mBCRS + PRS mBCRS + age PRS + age

All three

combined

mBCRS 1.58 (1.38,

1.81)

– – 1.58 (1.37,

1.81)

1.56 (1.36,

1.79)

– 1.56 (1.35,

1.79)

Polygenic risk score – 1.58 (1.36,

1.83)

– 1.57 (1.35,

1.84)

– 1.61 (1.38,

1.87)

1.60 (1.37,

1.87)

Age at blood drawa – – 1.35 (1.16,

1.57)

– 1.31 (1.12,

1.53)

1.38 (1.19,

1.62)

1.35 (1.15,

1.58)

Log likelihood

(null = �545.0)

�520.1 �525.8 �537.4 �502.4 �514.1 �517.1 �495.5

LR v2 DFb 1 1 1 2 2 2 3

v2 49.9 38.5 15.3 85.3 61.8 55.9 99.0

Breast cancer risk factors include the following: age at blood draw, menopause status, body mass index, interaction term for BMI and

menopause, physical activity, alcohol consumption, age at first birth (among parous), total number of births, age at menarche, menopause

age (among postmenopausal), smoking pack-years, previous number of breast biopsies, family history of breast cancer (number of affected

sisters, youngest age of sister’s diagnosis), educational attainment, and durations of postmenopausal hormone use and breastfeeding.
a

Residuals adjusted for all breast cancer risk factors, except for age at blood draw.
b

LR v2 DF, likelihood ratio v2 statistic degrees of freedom.
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with the highest scores. In order to assess whether

mBCRS improved breast cancer prediction, we used

receiver operating characteristic curves to examine

change in AUC based on different sets of risk factors.

Change in AUC is dependent on the order in which

variables are entered; using a conservative approach of

first including questionnaire-based and genetic infor-

mation, we found that breast cancer prediction was

markedly improved with the subsequent inclusion of

mBCRS, another indication that blood DNA methyla-

tion provides new information related to breast cancer

risk. We also examined this question using OPERA

estimates, which presumes a logit-linear relationship

between the covariate-adjusted standardized residual

and the outcome. Although our data suggest nonlin-

earity, the OPERAs for mBCRS were remarkably con-

sistent across univariable and multivariable analyses.

Perhaps most importantly, in the OPERA analysis the

estimates for mBCRS were similar to those of PRS

and those reported for new mammogram-based mea-

sures [51–53], placing it among the strongest known

risk factors for breast cancer [54].

Our study is not without limitations. All women

enrolled in the Sister Study cohort had a biological sis-

ter previously diagnosed with breast cancer, and they

are therefore at higher risk of breast cancer than the

general population [35]. Although the rapid accrual

rate provided by this design improves the ability to

identify environmental, epigenetic, and genetic risk fac-

tors for breast cancer [55], the study of women at

higher risk of disease may limit the generalizability of

our findings. However, we validated mBCRS in the

independent EPIC-Italy cohort, a study that was not

restricted to women with a family history of breast

cancer. Another potential limitation is that we used

for model input a candidate set of individual CpGs

that were previously reported to be associated with

breast cancer risk in the Sister Study. However, we

applied 10-fold cross-validation to protect against

overfitting, and again the validation in EPIC data is

supportive. Our sample was restricted to non-Hispanic

White women; mBCRS associations with breast cancer

risk in other race/ethnicities have yet to be explored.

Like genotype information used in the PRS,

epigenome-wide DNAm data are more expensive to

obtain than the self-reported risk factor information.

While genotyping costs have decreased rapidly and

genotypes are now available for large numbers of indi-

viduals, the lower availability of methylation array

data in large prospective studies of breast cancer cur-

rently limits wider investigation. Presumably, these

costs will also come down, particularly if blood

DNAm profiles are found to be clinically useful.

Finally, although the inclusion of additional breast

cancer risk factors such as mammographic-based mea-

sures may provide further improvements [51–54], the

Fig. 2. Predictive capability of breast cancer risk markers in Sister Study testing set. Predictive capability of the mBCRS, PRS, and

questionnaire-based breast cancer risk factors (RFs) using receiver operating characteristics analysis; predictive capability reported as AUC.

Questionnaire-based risk factors include the following: age at blood draw, menopause status, body mass index, physical activity, alcohol

consumption, age at first birth (among parous), total number of births, age at menarche, menopause age (among postmenopausal), smoking

pack-years, previous number of breast biopsies, family history of breast cancer (number of affected sisters, youngest proband sister age at

diagnosis), educational attainment, and durations of postmenopausal hormone use and breastfeeding.
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level of risk discrimination may remain modest, as in

our models that combine available questionnaire-based

risk information, PRS and mBCRS.

5. Conclusions

mBCRS, a novel risk score derived using blood

DNAm array data, predicts breast cancer incidence.

mBCRS captures risk that is distinct from both genetic

and questionnaire-based information and is similar in

magnitude to that captured by the 313 SNP PRS. The

addition of a methylation-based risk score for breast

cancer, mBCRS, to existing genetic and questionnaire-

based information resulted in markedly improved

breast cancer prediction.
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geneity in the Sister Study testing set.

Table S8. Multivariate OPERA (95% CI) estimates of

odds ratios per adjusted standard deviation from sepa-

rate and combined analysis of mBCRS component

classes (DNAm estimators & individual CpGs),

adjusted for breast cancer risk factors and standard-

ized.
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