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Abstract: It is generally accepted that material inhomogeneity causes stress concentrations at the
interface and thus reduces the overall strength of a composite. To overcome this reduction in strength,
some groups experimented on coating the nanoinclusions with a layer of rubbery material, aiming for
higher energy absorption. However, representative volume element (RVE) nanocomposite models,
established with randomly distributed core–shell nanoparticles and single nanoparticle cells, show
that the enhancement in strength observed in some experiments remains elusive computationally.
By including a pre-existing crack in the matrix of the RVE, the stress concentration at the crack
tip is reduced for cases where the nanoparticle and precrack are aligned away from the loading
direction. This suggests that stress concentrations around inherent defects in materials can sometimes
be reduced by adding nanoparticles to improve material strength. The effect is reversed if the crack
and nanoparticle are aligned towards the loading direction. Parametric studies were also carried out
in terms of the relative stiffness of the nanoparticle to the matrix and crack length. Validation tests
were performed on 3D RVEs with an elliptical crack as the initial defect, and the results match with
the 2D findings.
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1. Introduction

Polymer nanocomposites have been an emerging field over the past three decades, ever
since the first successful synthesis and characterization of a polymer/clay nanocomposite
(PCN) with a nanoclay hybrid inside a nylon 6 matrix by the Toyota research group [1,2].
Shortly afterwards, clay-reinforced nanocomposites with epoxy as the matrix material were
also successfully synthesized and characterized by Lan and Messersmith [3,4]. Polymer
nanocomposites where nanofillers are dispersed inside a polymer matrix exhibit improved
mechanical and thermal properties as compared to those of a neat matrix due to the addition
of the nanofillers [5–7]. Compared with conventional fiber-reinforced composites where
a relatively large filler amount is required, nanocomposites are able to achieve superior
properties at a much lower content of nanofillers (usually a < 5% weight fraction) [5–7].

In most studies involving nanocomposites, tensile strength is compromised, while it
enhances other mechanical properties such as Young’s modulus, regardless of the material
systems involved [8–13]. To overcome this drawback, efforts were focused on simulta-
neously improving the stiffness and the strength of the nanocomposites [14–19]. When
heterogeneity is introduced into a matrix, be it a harder or softer inclusion, it acts as a stress
raiser and amplifies the stress experienced by the region near the inclusion and/or the
interphase [20]. This was observed experimentally [8,11,21–24], proven theoretically [25,26],
and simulated computationally [9,27]. In the extreme, if an inclusion has zero mass or
stiffness, i.e., a void, an amplification effect of the maximal stress is found and experienced
at the void boundary [25,26,28,29]. However, there exist some exceptions. He et al. [16]
manufactured several nanocomposite specimens and found that, compared with pure ma-
trix, nanocomposites with embedded nanosilica display higher values of tensile strength.
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Thitsartarn et al. [15], and Xia et al. [19] also incorporated rigid nanoparticles into the
epoxy matrix to form a nanocomposite, and reported that the strength of the nanocom-
posite showed improvement over that of the pure epoxy specimen. Nevertheless, if the
incorporated inclusion is of a more compliant and ductile material, such as rubber, there is
feasibility to enhance the overall toughness and thus increase the energy absorption of the
composite material [30,31].

Since most of the results show that the addition of the nanoscale inclusions is detrimen-
tal to the overall tensile strength of a nanocomposite, researchers have thought of the idea
of coating the hard inclusion with a layer of rubber, and incorporated this core–shell particle
into the composite. Some experimental work was performed on this topic [14–17,32–34]. A
specific example is Liu et al. [14], who coated nanosilica particles with a copolymer layer of
polylactic acid (PLA) and polycaprolactone (PCL) manufactured by the same group [35].
They were able to achieve concurrent improvements in the overall stiffness, tensile strength,
and elongation to failure. The strength improvement was particularly promising in that,
with only 0.5% and 1% of nanoparticles added, the nanocomposites were able to achieve 6%
and 16% increases in strength, respectively. Nevertheless, not all work showed such desired
outcomes. Quan et al. [36], and Wang et al. [13] fabricated polymer nanocomposites with
core–shell nanoparticles as the inclusions and found that the addition of the nanoparticles
reduced the tensile strength of the composite. Sun et al. [32,33] fabricated various types of
core–shell nanocomposites. The tensile strengths improved for some cases and reduced
for the rest. Moreover, Mao et al. [37] fabricated core–shell nanocomposites with differ-
ent inclusion contents. Their results showed that, though the tensile strength increased
when core–shell nanoparticles were first added (at 1%), it began to drop as the content
increased, and eventually dropped below the strength of a pure matrix specimen where no
nanoparticle is present.

This paper provides insight into why the results on nanocomposite strength are
different among various research groups. For single-phase inclusion, though most reports
agree that it acts as a stress raiser and thus lowers the composite strength, exceptions
in experiments occur. Regarding a nanocomposite with core–shell nanoparticles, some
results are very promising and others are not. This work proposes the idea of including an
initially or naturally existing defect into the nanocomposite. Since initial defects are almost
impossible to control in experiments, this work is carried out computationally. The initial
defect was placed at various locations of a model, such that the effects of including this
defect could be studied systematically.

2. Nanocomposite RVE Model with Core–Shell Nanoparticles

In order to have a clearer understanding of the reasons why there is no mutual
consensus on the affected strength of nanocomposites, a numerical finite element (FE)
model was built on the basis of the above-mentioned experimental work. For FE analyses,
a representative volume element (RVE) is normally created to study the macroscopic
properties of nanocomposites, since an RVE is able to explicitly represent the microscopic
heterogeneous features such as the size, shape, and orientation of fillers. Mechanical
properties such as Young’s modulus, tensile strength, and fracture toughness are normally
the properties determined through RVE modeling. The computational setup is mainly
based on the experimental works in [14,15] performed by the same research group. The
diameter of the nanoparticle core was 12 nm, and the shell thickness was 3.4 nm. The
nanoparticles were randomly distributed within the RVE, and the weight percentage of
the nanoparticles was kept at 2%. The randomness of the nanoparticle distribution and
size was created using an inhouse C++ program that utilizes a random number generator
function. The randomly generated numbers were taken as the coordinates of the center of
the nanoparticles. The coordinates were generated for one particle at a time. Each new set of
coordinates had to be separated from all existing particle coordinates by a specified minimal
distance. If not, the new coordinates were discarded, and another set of coordinates were
generated. The particle size was referenced from the above experimental paper and is
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within the range of various experimental works. Other input parameters such as material
properties are specified in Table 1. The model was established, and all simulations were
performed through commercial finite element software Abaqus. The simulations were
carried out on a PC with Intel Xeon(R) CPU E5-2697 v4 @ 2.30GHz, 128 GB RAM. The
simulation run time was mostly within 30 min. For 3D simulations that ran until failure,
each simulation took about half a day. Figure 1 is an example of the RVE geometry of the
model with randomly distributed core–shell nanoparticles.

Table 1. Properties of various parts of the RVE.

Young’s Modulus (GPa) Poisson Ratio Failure

Matrix 2.4 [14] 0.3 Fracture energy = 0.001 N/m
Core (nanosilica) 75 [38] 0.17 -

Shell 2.6 [35] 0.3 -
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Figure 1. An example of (a) a nanocomposite RVE and (b) core–shell nanoparticles.

In the RVE model, there were 30 randomly distributed core–shell nanoparticles to
maintain a weight fraction of 2% with an RVE length of 186 nm. The periodicity of the
model was ensured by generating the same particle constellation on the opposite surfaces
of the RVE. Due to the complexity of the geometry, the matrix and core–shell nanoparticles
were meshed with first-order tetrahedral elements (C3D4). Static analyses were carried
out with Abaqus/Standard. Different material phases were modeled separately, and the
nodes were tied together. There was a total of 527,919 elements in the entire model. For
each nanoparticle, the spherical core had 177 elements, and the shell had 455 elements.
The brittle failure criterion was applied to the matrix. When the criterion was satisfied,
the corresponding elements were deleted as it could no longer take any load. The epoxy
matrix was assumed to behave as an isotropic linear elastic solid. The Rankine criterion
was applied to detect damage initiation. Damage initiates when the maximal principal
stress in the RVE exceeds the tensile strength specified in the modeling.

σ ≥ σt| σ > 0 , (1)

where σ is the maximal principal stress experienced in the RVE, and σt is the tensile strength
of the material.
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A displacement boundary condition was applied to the nodes on the surfaces of the
RVE. Uniaxial tension was applied in the x direction. The lengths of the RVE model are
denoted as Lx, Ly, and Lz, and the displacement boundary condition can be expressed as:

u(0, y, z) = 0,

v(x, 0, z) = 0,

w(x, y, 0) = 0,

u(Lx, y, z) = δx,

(2)

where δx is the prescribed displacement for loading along the x direction. For this specific
problem, the macroscopic nominal stress and strain can be obtained as follows:

σx = Fx
Ly×Lz

,

εx = δx
Lx

,
(3)

where Fx is the reaction force on the loading surface.
Upon applying uniaxial tension to the RVE, the simulated composite strength was at

about the same level as that of the matrix strength, and no strengthening effect was observed.
The damage pattern is shown in Figure 2. The colored contour in Figure 2 represents the
scalar degradation status (SDEG), which is an indicator of the damage variable based on the
maximal stress that a damaged element can sustain. When the SDEG value of any element
reaches unity for cohesive elements, and 0.99 for other type of elements, this element is fully
damaged and is deleted, as it cannot sustain any loading. A cross-sectional damage process
is shown in Figure 2 with the loading applied in the horizontal direction with respect to the
plane. Figure 2a is the undamaged state. Figure 2b shows that the damage (cracks) started
to appear at a few separate locations at the matrix regions around the nanoparticles. As the
damaging process progressed, nearby cracks eventually joined up to form a through crack
and caused catastrophic failure to the nanocomposite, as shown in Figure 2c.
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trophic failure. (Red arrows and line indicate damage sites.)

To simplify the system, a single core–shell nanoparticle placed at the center of the RVE
was considered instead of multiple randomly distributed nanoparticles in the previous
model. The nanoparticle size was kept the same, while the RVE length was modified
such that the weight percentage of the nanoparticle was maintained at 2%. The RVE
length was 60 nm based on the properties and nanoparticle content. The meshing is
shown in Figure 3, and the damage progression is shown in Figure 4. Figure 5a is the
stress–strain responses when uniaxial tension was applied to the model. Pure matrix
refers to the same RVE geometry with the materials of all sections set as the matrix. The
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responses of RVEs with both a single nanoparticle and multiple randomly distributed
nanoparticles embedded are presented in Figure 5a. The similarity in the plots, especially
for loading up to the point of maximal load, indicates that the simplification of multiple
nanoparticles to a single nanoparticle gave a reasonable prediction of the mechanical
response of such nanocomposites.
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Having established that a simplified single-particle model gives a reasonable predic-
tion of the strength and stiffness of the nanocomposites, the model was used to investigate
the effects of different particle concentrations. Figure 5b shows the stress–strain responses
of RVEs with a single nanoparticle of different weight percentages. The difference mainly
lay in the poststrength behavior. The resulting Young’s moduli are listed in Table 2. The
stiffness increased from 2.36 to 2.52 and 2.58 GPa after the addition of 1% and 2% (weight
percentage) nanoparticles, respectively. The improvement matches with the results in [15].
Different from some of the experimental results, the tensile strength of the nanocomposite
barely reached the strength value of the pure matrix.
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Table 2. Stiffness of RVEs with different nanoparticle contents.

Pure Matrix 1% Nanoparticles 2% Nanoparticles 5% Nanoparticles

E (GPa) 2.36 2.52 2.58 2.72

Figure 6 indicates the corresponding cross-sections at various points on the stress–
strain curves. Tensile strength was reached immediately after damage had started to appear,
as shown by Label 1 in Figure 6. As the damage process continued, the stress began to
drop, as the material could not take as much load, as indicated by Labels 2 and 3.
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To further improve the modeling, a very thin layer (1/200 of the nanoparticle diameter)
of the cohesive elements was then inserted into both the core–shell and shell–matrix
interfaces to mimic the debonding between different materials since, in the previous
modeling, perfect bonding was assumed. The density of the cohesive layers was assumed
to be the same as that of the matrix. The damage of cohesive layers, i.e., debonding, is
characterized by a traction-separation law, also known as the cohesive zone model, which is
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often utilized in modeling delamination. In the current model, the maximal stress criterion
is selected for damage initiation. It can be expressed as:

max 〈 tn

σc
n

,
ts

σc
s

,
tt

σc
t
〉 = 1, (4)

where tn is the nominal traction stress component along the normal direction and ts, tt are
the tractions in two shear directions; σc

n, σc
s , σc

t are the cohesive strengths of the interface.
Macaulay brackets 〈 〉 are used to represent the condition that failure only occurs under
positive stress. In this study, the cohesive strengths are assumed to be equal in all directions.
The experimentally measured tensile strength of epoxy is about 50 MPa, as stated in [14,15].
This value serves as a reference for interfacial strengths. Different combinations of core–
shell and shell–matrix interfacial strength values are investigated, and the resulting tensile
strengths are listed in Table 3.

Table 3. Values of core–shell and shell–matrix interfacial strength tested.

Core–Shell Strength
(MPa)

Shell–Matrix Strength
(MPa)

Core–Shell
Strength/Shell–Matrix Strength RVE Strength

Combination 1 40 40 1 21 MPa
Combination 2 40 60 0.667 27 MPa
Combination 3 60 40 1.25 21 MPa
Combination 4 60 60 1 28 MPa
Combination 5 60 80 0.75 28 MPa
Combination 6 60 2000 0.03 28 MPa
Combination 7 70 60 1.17 28 MPa
Combination 8 80 60 1.33 28 MPa
Combination 9 90 60 1.5 28 MPa

Combination 10 2000 60 33.3 28 MPa

Table 3 shows the combinations of core–shell and shell–matrix interfacial strength val-
ues that were simulated. All combinations gave much lower strength than the pure matrix
strength of 50 MPa due to the stress concentrations when inhomogeneity is introduced.
For a fixed core–shell interfacial strength value, a lower (than the matrix strength) value of
shell–matrix interfacial strength reduced the overall strength to a greater extent. Once the
shell–matrix strength surpasses the matrix strength, the nanocomposite strength would
not be further affected by the shell–matrix interface. On the other hand, the overall tensile
strength of the composite was not affected by the core–shell interfacial strength as long as
the shell–matrix strength was fixed.

Figure 7 is a cross-section of the stress distribution where the shell–matrix interfacial
strength was 40 MPa, lower than the matrix strength, and the core–shell strength was
60 MPa. Uniaxial tension was applied in the horizontal direction (referring to Figure 7b).
Since the shell–matrix interface was weaker, it started to fail before any other part of the
nanocomposite, resulting in debonding between the inclusion and the matrix as shown
in Figure 7a. Due to the inhomogeneity of the materials, stress concentrations appeared
between the shell and matrix at the top and bottom of the inclusion. As the stress further
increased and reached the strength of the matrix, damage started to appear and propagate
in the matrix, as shown in Figure 7b. Due to this stress concentration, the nanocomposite
was then only able to bear a lower load compared with the pure matrix.

Figure 8 illustrates the case where the core–shell interface was weaker than both the
matrix and shell–matrix interface. Though debonding between core and shell happened
first, catastrophic failure still occurred in the matrix part due to its lower strength, starting
near the shell due to the stress concentrations.
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3. Nanocomposites with Initial Crack

The theoretical strength of most thermoset polymers can be calculated on the basis
of the bonding between polymer chains. The calculated strength value is about 10%
of the Young’s modulus, which falls in the range of 200 to 400 MPa for most thermoset
polymers, including epoxy, silicone, and polyurethane [39,40]. However, the experimentally
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measured strength value was much lower than this range. Considering that defects may
naturally occur or be introduced into a material at various stages, such as synthesizing
and manufacturing, the idea is proposed of stress concentrations at the defects being
reduced with the addition of nanoparticles, with a consequent increase in material strength.
Cracks were selected as the initial defects, as they result in an extremely high stress
concentration/intensity. To have a clearer illustration and better control of parameters,
two-dimensional (2D) models were initially investigated. Since the locations of defects
are random, the defect was placed at various positions within the 2D model in order to
have a holistic view. Some nondestructive testing (NDT) methods for defect detection
have been developed in specific areas such as aeronautics [41], and the technique of defect
detection in other fields is not as widely applied. Therefore, in this work, the initial crack
was placed at designated positions that covered a significant portion of the model, such
that a representative contour figure could be plotted. Parameters such as initial crack length
and matrix-to-particle stiffness ratio were also studied.

As the maximal stress in the matrix is the main concern here, the failure of the core and
shell was not considered. Therefore, the core–shell structured nanoparticle is represented
as a homogenized single-phase particle of the same size with twice the stiffness of the
matrix, and perfect bonding was assumed between particle and matrix. A validation test
was performed on a three-dimensional (3D) RVE to check that this simplification did not
affect the stress distribution in the matrix, especially the maximal stress. Figure 9a shows
cross-sectional stress distribution in the matrix of the RVE with a core–shell nanoparticle; in
Figure 9b, this core–shell inclusion was replaced by a homogenized single-phase nanopar-
ticle with twice the stiffness of the matrix. The nanoparticles were removed from both
figures for a clearer view of stress distributions in the matrix. The stress magnitudes and
distributions did not differ significantly between the two RVEs. In addition, the stiffness
improvement resulted from the homogenization matching with the experimental work
in [15].
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Figure 9. Cross-sectional stress distribution in the matrix of the RVE with (a) one core–shell nanopar-
ticle; and (b) one homogenized single-phase nanoparticle. (The unit for stress is MPa).

Studies in 2D were first carried out to provide some guidance for 3D computational
analysis, as 2D models are computationally less time-consuming. A pre-existing crack
was inserted into the model. The 2D model may be viewed as a cross-sectional cut from
the midplane of a 3D RVE. Figure 10 is an example of a 2D plate with a homogenized
nanoparticle at the center, and a 5 mm crack located at its top-right quarter. The diameter
of the nanoparticle was 18.8 nm, as stated in [14].
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Figure 10. A 2D RVE with nanoparticle and 5 nm crack.

The stiffness of the homogenized nanoparticle was set to be twice that of the matrix.
The nanoparticle was sited at the center of the RVE together with an initial crack at various
locations. The length of each side is set as 60 nm, same as the 3D RVE length. Uniaxial
tension was applied in the horizontal x direction. Two different crack lengths, 2 and 5 nm,
were investigated. Due to symmetry, the locations of the crack needed only to be varied
within the top-right quarter of the plate. Linear elastic material properties were assumed to
be only the highest stress values at a fixed strain and were compared.

4. Effects of the Positions of the Initial Crack

Two simulations were performed for each fixed crack position, one with an entire
matrix property, and the other with an inserted nanoparticle. The stress experienced at the
bottom end of the crack, which is always where the maximal stress occurs, was considered.
Normalized values, calculated as the ratio of the maximal stress of the nanocomposite RVE
to that of the pure matrix with a similar crack, were used for analysis.

Relative stress =
σRVE

max
σmatrix

max

Figure 11a is the top-right quarter of a 2D plate with a homogenized nanoparticle at
the center. The empty bottom-left squares represent a quarter of the particle. The numbers
denote the relative stress of the bottom crack tip in RVE normalized by that of pure matrix
model (50 MPa). The location of each relative stress value in Figure 11a is also the location
of the bottom tip of the crack. Figure 11b is the contour plot of Figure 11a.
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Figure 11. Plot of RVE with an initial crack (crack length = 5 nm) (a) with normalized maximal stress
values; (b) contour plot. (The highlight is inclined at 45◦ from the horizontal).

The band of highlighted numbers in Figure 11a was inclined at 45◦ from the horizontal.
Above this 45◦ line, the normalized value was mostly below 1, indicating that the presence
of the nanoparticle caused the maximal stress to decrease as compared to that of the pure
matrix model. A decrease in maximal stress in turn allows for the overall structure to
bear greater stress, and thus increases the tensile strength. As the crack moved away from
the nanoparticle, the effect of the nanoparticle was reduced. Below the 45◦ line, on the
other hand, there was an increase in relative stress values. As a result, whether an inserted
nanoparticle strengthens or weakens the overall material is dependent on the location of
the defect relative to the nanoparticle and direction of loading. This could be one of the
possible reasons why some studies showed improvement in tensile strength while the
others did not, as the location of a natural or initial defect is difficult if not impossible
to control.

Figure 12 is also the contour plot of a plate with an initial crack, where the crack length
was 2 nm instead of 5 nm, as in Figure 11. The trend was about the same, except for the
exceptionally high value that was directly to the right of the nanoparticle.

For an inclusion that is stiffer than the matrix, the normalized maximal stress was the
smallest and always less than unity when the crack was situated above the inclusion, i.e.,
when the inclusion and crack were aligned to the direction of unloading. Conversely, the
normalized maximal stress was the greatest and always greater than unity when the relative
positions of the inclusion and crack were perpendicular to the direction of unloading. For
situations where the relative positions of inclusion and crack were 45◦ to the loading
direction, the normalized maximal stress is close to 1. Additionally, when the inclusion and
crack were aligned to the direction of unloading, such as the case shown in Figure 10, the
inclusion behaved like an obstacle that directly blocked the crack from growing. In order to
propagate, the crack needs to change its propagating path by bending around the inclusion.
More energy is required to achieve such bending. As a result, the nanocomposite is then
able to bear with a higher stress to achieve the same amount of crack growth.
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Figure 12. Plot of RVE with an initial crack (crack length = 2 nm) (a) with normalized maximal stress
values; (b) contour plot. (The highlight is inclined at 45◦ from the horizontal).

Figures 13–15 show the normalized maximal stress contours for nanoparticles of
3 different stiffness ratios relative to the stiffness of the matrix 0.5, 2, and 5. A crack of
5 nm in length was taken as the initial defect. When the nanoparticle was stiffer than the
matrix, there was a reduction in normalized maximal stress when the crack was above the
45◦ band, i.e., perpendicular to the direction of loading. The greatest reduction occurred
when the crack was directly on the top of the nanoparticle. Below this 45◦ line, there
was mostly negative or nonsignificant impact. In addition, if the relative stiffness was
further increased, the general observation was similar, but the extent of improvement or
deterioration increased. However, when the nanoparticle was less stiff than the matrix,
the observed trend was the opposite. Stress reduction was achieved for cracks below the
45◦ line, i.e., towards the loading direction, with the greatest reduction observed when the
crack was directly to the right of the nanoparticle.
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5. Three-Dimensional Validation

A few three-dimensional RVEs were created to verify that the trends observed in 2D
could be observed in 3D as well. For the 3D models, the initial defect is an elliptical crack.
The sharpness of the crack tip can be controlled by adjusting the aspect ratio of the ellipse.
The length of the major axis was the same as the crack length (5 nm) in the 2D case, and the
minor axis was set to be one-quarter of the major axis length.

As observed from 2D simulations, the RVE could be categorized into two regions—one
for crack locations that increased the strength of the nanocomposite, and the other where
the strength was decreased depending on the loading direction. RVEs with the elliptical
crack located at each region were created, and maximal stresses around the crack were
computed. The investigated cases are summarized in Table 4. All the RVEs were loaded
along the x axis following the coordinate system shown in Table 4. In the first RVE, the
crack was placed to the side of the nanoparticle when observing from the x direction, along
an axis perpendicular to loading corresponding to the favorable region in the previous 2D
model. The relative maximal stress, calculated by the maximal stress experienced by the
RVE divided by that experienced by the pure matrix model, also indicated that the presence
of the nanoparticle was beneficial to the strength of the nanocomposite. The elliptical crack
in the other RVE was placed along the loading direction, corresponding to the unfavorable
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region in 2D modeling. A detrimental effect to the strengths of the RVEs was observed.
Results of the 3D RVEs are in line with the 2D models, indicating that the preliminary
studies using simplified 2D models are valid.

Table 4. 3D RVEs with ellipsoid hole as the initial defect.

RVE Relative Maximal Stress
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6. Conclusions

On the basis of the experimental work of adding a layer of rubber coating to the
nanoparticles when fabricating nanocomposites, a three-dimensional computational model
with randomly distributed nanocomposites was created. The strength enhancement that
appeared in some of the experiments could not be repeated in finite element simulations.
The new idea of introducing initial precracks into the system was proposed, considering
that materials are not perfect in nature. The stress at the crack tip of matrices with an
embedded nanoparticle to the stress at the crack tip of matrices without nanoparticles
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was computed for different crack locations. There existed a dividing line along the 45◦

direction. If the relative positions of the inclusion and the crack were away from the
loading direction, i.e., the initial defect was located above the dividing line in this case, the
added nanoparticle positively impacts the maximal stress reduction and thus enhances
the overall tensile strength. On the other hand, if the initial defect was located below this
line (the defect and the inclusion were aligned to the loading direction), the effect was
reversed. Parametric studies showed that the initial crack length did not seem to be a
very critical parameter as the relative stresses for the studied quadrant, showing a similar
distribution regardless of crack length values. The relative stiffness of nanoparticle to
matrix is a more dominant factor. For RVEs where the nanoparticle was stiffer, increasing
the relative stiffness did not alter the distribution, but the degree of strength enhancement
or deterioration was also magnified. On the other hand, if the nanoparticle was less stiff
than the matrix, the trend was the opposite. The region towards the loading direction
(below the 45◦ line) then became favorable for initial crack locations. Validation tests were
performed on 3D RVEs with an elliptical crack as the initial defect. The results from 3D
models matched with the 2D findings, i.e., an elliptical crack placed along the loading or
nonloading directions led to an increase or reduction in maximal stress, respectively.
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writing—original draft preparation, J.W.; writing—review and editing, V.B.C.T.; supervision, V.B.C.T.
All authors have read and agreed to the published version of the manuscript.
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