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Abstract

The rapid spread of COVID-19 in Ethiopia was attributed to joint effects of multiple factors such

as low adherence to face mask-wearing, failure to comply with social distancing measures,

many people attending religious worship activities and holiday events, extensive protests,

country election rallies during the pandemic, and the war between the federal government and

Tigray Region. This study built a system dynamics model to capture COVID-19 characteristics,

major social events, stringencies of containment measures, and vaccination dynamics. This

system dynamics model served as a framework for understanding the issues and gaps in the

containment measures against COVID-19 in the past period (16 scenarios) and the spread

dynamics of the infectious disease over the next year under a combination of different interven-

tions (264 scenarios). In the counterfactual analysis, we found that keeping high mask-wearing

adherence since the outbreak of COVID-19 in Ethiopia could have significantly reduced the

infection under the condition of low vaccination level or unavailability of the vaccine supply.

Reducing or canceling major social events could achieve a better outcome than imposing con-

straints on people’s routine life activities. The trend analysis found that increasing mask-wear-

ing adherence and enforcing more stringent social distancing were two major measures that

can significantly reduce possible infections. Higher mask-wearing adherence had more signifi-

cant impacts than enforcing social distancing measures in our settings. As the vaccination rate

increases, reduced efficacy could cause more infections than shortened immunological peri-

ods. Offsetting effects of multiple interventions (strengthening one or more interventions while

loosening others) could be applied when the levels or stringencies of one or more interventions

need to be adjusted for catering to particular needs (e.g., less stringent social distancing mea-

sures to reboot the economy or cushion insufficient resources in some areas).
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1 Introduction and background

Since the emergence of the first case of COVID-19 on 13 March 2020 in Ethiopia, as of 6 Janu-

ary 2022, this country had reported 436,586 confirmed cases and 6,988 deaths [1]. Further-

more, during the same period, due to the global COVID-19 vaccine inequity [2, 3], there were

only 1.4% and 6.6% of the total population being fully vaccinated and partially vaccinated,

respectively [4, 5].

As one of the ancient countries with strong religious people, in Ethiopia, 43.5% of the popu-

lation are Orthodox Christians, 33.9% of the population are Muslims, and the rest are protes-

tants and traditional religious followers [6]. Ethiopian Orthodox Churches encourage the

communities to pray more in groups together by reinforcing a feeling of unity in its people. In

Orthodox Church, people made greetings to each other by shaking hands and having cheek-

to-cheek kisses, and face masks were not used in the church because the church is deemed a

sacred place [6]. Muslim communities also have similar greeting etiquettes. Such experiences

were critical contributing factors to the increased risk of COVID-19 transmission. Moreover,

Ethiopia is the second-most populous country in Africa next to Nigeria, and it is prevalent for

people to live together with their extended families under one roof, eat together from one plate

daily, and move in groups on the very narrow paved road since this country has solid social

solidarity [7]. Therefore, the practices mentioned above of religion, cultural, and social interac-

tions in Ethiopia posed significant challenges in effectively containing and controlling

COVID-19.

In the meantime, Ethiopia is one of the poorest countries in the world, with a per capita

GDP of $936.34 in 2020 [8]. As of 2021, nearly 23% of the population lives in extreme poverty

[9]. A study confirmed that hospital preparedness in the selected state was tremendously insuf-

ficient as per World Health Organization measurement, with one out of eight hospitals admit-

ting COVID-19 patients [10]. What is more serious is that, according to statistics from the

World Bank, the standard hospital beds per thousand people ratio of 0.33 in 2016 in Ethiopia

was far from the WHO minimum standard (3 beds per 1000) [11], which rendered the unad-

mitted COVID-19 patients helpless and forced them to become the source of infection.

With the advent of COVID-19, scientists in public health worldwide have been trying to

investigate the gaps and challenges in the containment measures and, consequently, evaluate a

particular country’s preparedness for the new emerging disease [12–15]. As non-pharmaceuti-

cal interventions (NPIs) such as social distancing, hand washing, and face mask-wearing have

been proved effective in providing necessary help, scholars have examined the knowledge, atti-

tude, and practices of face mask utilization affecting them in Ethiopia [16–21]. Ayele Tadesse

Awoke et al.’s survey in the Amhara region of Ethiopia revealed that, at the early stage of the

COVID-19 pandemic, levels of adherence regarding hand hygiene, physical distancing, and

mask utilization were 12.0%, 13.00%, and 26%, respectively, which demonstrated regional vari-

ation. They suggested that community-based education would increase the practices men-

tioned above [22]. The surveys conducted by Endriyas et al. and Haftom & Petrucka showed

that the levels of mask utilization were more than 50% [23, 24]. Ayele Wondimu et al. evalu-

ated the spread dynamics of COVID-19 in Ethiopia under the assumptions of face mask utili-

zation of 20%, 40%, and 60%. They also assessed the combined effects of enforcing social

distancing and increasing the adherence to mask-wearing and found significant reductions in

infections [25]. Studies from Tucho and Kumsa, and Zewude et al. indicated the challenges of

keeping certain compliance levels of mask-wearing [26, 27]. Ejigu et al.’s research predicted

the infections under the assumptions of implementing different NPIs including social distanc-

ing, mask-wearing, and sanitary measures [28].
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Bushira used geospatial techniques and the CHIME model to evaluate the impacts of 25%,

75%, and 95% social distancing interventions on flattening and delaying the curve [29].

Deressa examined the practices of social distancing of government employees in Addis Ababa

and the results exhibited a 96% adherence level to mask-wearing [30]. Fikrie et al.’s study iden-

tified that knowledge and attitude were contributing factors causing poor practices of social

distancing in the West Guji Zone of Ethiopia [31]. Hailu et al. investigated the barriers and

driving factors for influencing the compliance level of social distancing measures [17]. In Tolu

et al.’s study, the calculated ReadyScore was 52% indicating that more measures needed to be

implemented, where they recommended social distancing measures, increasing case tracing,

sanitary measures, etc [15].

Apart from assessing the impacts of NPIs on the spread dynamics in Ethiopia, Suthar et al.

evaluated the vaccination (i.e., pharmaceutical interventions-PIs) on the transmission dynam-

ics of COVID-19 [32]. Deressa and Duress used the mathematical epidemiological model to

evaluate and identify the optimal combination of multiple measures-i.e., public health educa-

tion, personal protective measures, and hospitalization of the infected [33].

Researchers have used different models to predict the spread trend of COVID-19 over time.

Abebe used an exponential smoothing model for the new COVID-19 infections [34]. Eticha

employed a case-based autoregressive integrated moving average model to predict the new

cases of COVID-19 [35]. In a study done by Gebretensae and Asmelash, the researchers used

Box–Jenkins modeling framework, i.e., ARIMA (p, d, q), to forecast the trend of COVID-19

spread in Ethiopia [36]. Gebremeskel et al. applied a compartmental epidemic model to predict

the transmission dynamics of COVID-19 in Ethiopia [37]. Habenom et al. adopted a model

with fractional differential equations to analyze the transmission dynamics of COVID-19 in

Ethiopia [38].

Given the capability of system dynamics (SD) models to capture nonlinearity between

cause and effect and integrate time delays and feedback loops prevalent in disease progression

and population health, SD models have been widely used in multiple areas of health-related

research since the 1970s [39]. Its broad applications have been seen in studying the dynamics

of both infectious diseases [40, 41] and non-communicable chronic diseases [42–52]. SD’s

applications in health-related fields were also often witnessed in evaluating the impacts of poli-

cies and interventions [53–61]. SD models were also widely used in studies related to health

service improvement (e.g., hospital management) [62–64]. SD models were well recognized

and practiced in research in developing and evaluating national health policy [54, 65–69] and

investigating complexity and uncertainties in healthcare and health-related socioeconomic sys-

tems [55, 62, 70–75]. In the past two years, scholars have extensively used SD models to under-

stand the transmission dynamics, impacts of containment measures, and prediction of

COVID-19 spread [76–87].

Majorities of previous research have focused on the evaluations of limited interventions

and their combinations without simultaneously capturing the impacts of NPIs and PIs. For

example, a typical SEIR model was used by Ayele Wondimu et al. to assess the impacts of social

distancing measures and different compliance levels of face mask-wearing [25]. The SEIR

models employed by Ejigu et al. and Taye et al. evaluated the impacts of interventions such as

social-distancing measures, mask-wearing, and handwashing [28, 88]. Our extended SEIR fur-

ther considered the impacts of a lot more factors including hospitalized patients, un-hospital-

ized patients, patients with mild and severe symptoms, asymptomatic patients, vaccine

administration levels, hospital/quarantine hospital capacity, and different levels of compliance

in face mask-wearing.

To gain a better understanding of issues that existed in the containment measures against

COVID-19 disease at the previous stage and gain insights into the pandemic trend under
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different intervention scenarios, this study mainly focuses on the application of the SD model to

conduct counterfactual analysis (16 scenarios) to identify issues and gaps in the past containment.

It also aims to control measures and capture the possible future transmission dynamics of

COVID-19 under various combinations of interventions, including NPIs and PIs (264 scenarios).

In the NPI, we evaluated the stringency of social distancing measures (three levels of stringency

for social events and routine activities represented by average contact rates-see Table 2 and

Appendix C in S1 Appendix [25]), the adherence level of face mask-wearing (three levels with

48% [18, 19] in baseline, 60%, and 70% in the proposed assumptions), and hospital beds (20000

beds in baseline [89, 90]-including temporary beds in isolation centers, 12000–60%, 16000–80%,

40000–200% in the proposed assumptions). Regarding PIs, we considered the capacity of vaccine

supply and administration rate (30%- and 20% of the total population being administered the 1st

& 2nd dose, 20% and 10% of the total population being administered the 1st & 2nd dose in the pro-

posed assumptions), vaccine efficacy (68.4% for the first dose and 80% for the second dose [91,

92], 40% for the first dose and 60% for the second dose in the proposed assumptions), and immu-

nological period (240 months in the baseline [93–96], proposed assumption of 180 months).

This paper is structured as follows. Section 1 presents the background and literature review

for this study. In Section 2, methodology and formations are provided. Section 3 shows the

three types of simulation results, including calibration and parameter estimation, counterfac-

tual analysis, and trend analysis under different containment strategies. Section 4 concludes

this study with a discussion of the results. A statement on the limitations and opportunities for

future research is also discussed.

2 Materials and methodology

2.1 Context and design for the study

This study intends to investigate the COVID-19 spread dynamics from the emergence of the first

case till Nov 5, 2021 (by doing counterfactual analysis) and to predict the transmission trend of

the disease till Nov 5, 2022, under different possible containment and control measures in Ethio-

pia. We built a model in this research attempting to capture factors including COVID-19 charac-

teristics (infectivity, incubation period, fractions of symptomatic and asymptomatic infections,

rate of severe case), major social events (religious events, war in Tigray, election campaign), the

stringency of containment measures (social distancing measures, adherence level of face mask-

wearing), and vaccine (efficacy, supply, and administration capacity, immunological period). The

model considers the 114.9 million total population of Ethiopia.

2.2 Model structure and formulations

In this study, we built a system dynamics model with the first graph (Fig 1) demonstrating a

causal loop diagram that illustrates the feedback loops and causal process tracing of variables

and the second graph showing main stock flow variables (Fig 2). Fig B1 in Appendix B (S1

Appendix) also provides a detailed view of the model structure. Built on previous literature,

this SD model is an extended SEIR compartmental model which includes state variables as S

(t)-susceptible population, E(t)-exposed population, SYC(t)-symptomatic patients, AYC(t)-

asymptomatic patients, CM(t)-confirmed mild cases, SC(t)-severe cases, D(t)-deaths, and R

(t)-recovered cases. The model also captures structures related to untreated cases and vaccina-

tion, which has UCM(t)-untreated mild cases, USC(t)-severe untreated cases, UR(t)-untreated

recovered cases, UD(t)-untreated deaths, SV1(t)-population administered 1st dose vaccine,

SV2(t)-population administered 2nd dose vaccine, TA1(t)-total available 1st dose vaccine

reserve, and TA2(t) -total available 2nd dose vaccine reserve.
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2.3 Data collection and quality

The COVID-19-related infections, recovery, deaths, and vaccination data were obtained from

online published reports of the World Health Organization and Ministry of Health-Ethiopia

[1, 4] (https://covid19.who.int/region/afro/country/et; https://www.trade.gov/country-

commercial-guides/ethiopia-healthcare; https://covid19.healthdata.org/ethiopia?view=

resource-use&tab=trend&resource=all_resources). Data and parameters relate to average con-

tact rate [25], the infectivity of both symptomatic and asymptomatic cases [97, 98], the ratio of

symptomatic cases [99, 100], incubation period [101, 102], and time from severe symptomatic

to recovery (treatment) [99, 103] were all retrieved from literature and confirmed in calibra-

tion. As for the setting and calibrations for other parameters, please refer to Table 1 for details.

3 Results

3.1 Model calibration

The model was calibrated against official data obtained from WHO and the Ministry of

Health-Ethiopia by covering the period from March 13th, 2020, to November 5th, 2021, which

Fig 1. Causal loop diagram for the system dynamics model.

https://doi.org/10.1371/journal.pone.0271231.g001
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is a total of 603 days (refer to Fig 3) [1]. The estimated parameters listed in Table 1 were

aligned with references and expert inputs.

Based on the calibrated model, simulation scenarios in the following section were designed

by assuming different values in relevant parameters-i.e., medical resources (mainly consider-

ing beds), level of mask-wearing adherence, vaccine supply, doses of vaccine administered,

efficacies of 1st and 2nd dose of vaccine, immunological period, average contact rates under the

circumstance of having social events and imposition of social distancing measures (SDMs).

The level of mask-wearing adherence was also used to calculate weighted symptomatic and

asymptomatic infectivity (refer to Table 2). Counterfactual analysis and future transmission

trend analysis were then conducted to gain a better understanding of the impacts of different

interventions to inform policy development and decision-making.

3.2 Counterfactual analysis

The counterfactual analysis covered the period from March 13th, 2020, to November 5th, 2021.

In Fig 4, for all four scenarios 1, 4, 9, and 12, the most significant impacts were from the mea-

sure of imposing social distancing on routine activities, which could have reduced the cumula-

tive infections from more than 360,000 to less than 240,000. Under the same circumstance, the

Fig 2. Simplified stock flow diagram for the Ethiopia SEIR model.

https://doi.org/10.1371/journal.pone.0271231.g002
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Table 1. Model calibration results.

Variable Variable name Initial value Data sources Units

S(t) Susceptible population 1.14964e+008 Empirical data Person

E(t) Exposed population 0 Empirical data Person

SYC(t) symptomatic case 1 Empirical data Person

AYC(t) asymptomatic case 0 Empirical data Person

CM(t) confirmed mild case 0 Empirical data Person

SC(t) severe case 0 Empirical data Person

D(t) Death 0 Empirical data Person

R(t) recovered population 0 Empirical data Person

UCM(t) Untreated confirmed mild case 0 Empirical data Person

USC(t) Untreated severe case 0 Empirical data Person

UD(t) Untreated death population 0 Empirical data Person

UR(t) Untreated recovered population 0 Empirical data Person

SV1(t) Successfully Vaccinated population with 1st Dose 0 Empirical data Person

SV2(t) Additional successfully vaccinated population with 2nd dose 0 Empirical data Person

TA1(t) Total Available 1st Dose Vaccine Reserve 0 Empirical data dose

TA2(t) Total Available 2nd Dose Vaccine Reserve 0 Empirical data dose

Q national hospital capacity (CoVID-19) 20000 Empirical data bed

F Total population 1.14964e+008 Empirical data Person

α contact rate per day Appendix 1 [25] and calibrated Person/day

β1 Infectivity of symptomatic cases Appendix 1 [97, 98] and calibrated Dmnl

β2 infectivity of asymptomatic cases Appendix 1 [97, 98] and calibrated Dmnl

γ ratio from Exposed to symptomatic 0.95 [99, 100] and calibrated Dmnl

δ incubation period 5.2 [101, 102] day

δ1 time from asymptomatic to symptomatic 14–5.2 = 8.8 [99] day

υ1 diagnosis time 0.321721 calibrated day

υ2 time from symptomatic cases to untreated mild cases 3 calibrated day

ρ1 time from confirmed mild symptomatic to severe symptomatic (treatment) 3 calibrated day

σ1 recovery time from mild to recovery (treatment) 15 calibrated day

τ1 ratio from mild to severe 0.0117848 calibrated Dmnl

φ1 time from severe symptomatic to recovery (treatment) Appendix 1 [99, 103] and calibrated day

ω1 time from severe symptomatic to death (treatment) Appendix 1 calibrated day

θ1 death ratio (treatment) Appendix 1 calibrated Dmnl

ρ2 time from mild symptomatic to severe case (untreated) 7.28445 calibrated day

σ2 the recovery period from untreated mild cases 17 calibrated day

τ2 ratio from untreated mild symptomatic to severe symptomatic 0.0919931 calibrated Dmnl

φ2 The recovery period from untreated severe cases Appendix 1 calibrated day

ω2 The period from untreated severe Symptomatic to death (untreated) Appendix 1 calibrated day

θ2 death ratio without treatment Appendix 1 calibrated Dmnl

λ1 supply of 1st dose vaccine from various sources Table 1 Sheet 1 Empirical data dose

λ2 supply of 2nd dose vaccine from various sources Table 1 Sheet 1 Empirical data dose

ε average immunological memory period 240 Assumption day

κ1 actual administering capacity of 1st dose vaccine per day Table 1 Sheet 2 Empirical data dose

κ2 actual administering capacity of 2nd dose vaccine per day Table 1 Sheet 2 Empirical data dose

η1 effectiveness of 1st dose 0.684 Assumption Dmnl

η2 effectiveness of 2nd dose 0.8 Assumption Dmnl

q Delay time in administering 2nd dose vaccine 14 Assumption day

z Time 1 1 calibrated day

https://doi.org/10.1371/journal.pone.0271231.t001
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reduction in cumulative death (40.7%) was more significant than cumulative infections

(34.75%). Doubling hospital capacity while keeping all other factors constant could slightly

reduce the number of cumulative infections (1.2%, S1 vs. S9). It was because the average num-

ber of infections per day did not exceed the hospital capacity, and not all COVID-19 patients

Table 2. Scenario settings in the counterfactual analysis.

Scenarios Medical

resources

Vaccine supply and administration Interventions

Hospital

beds

Vaccine

administration

Vaccine

supply

✓Vaccine

efficacy

Immuno-

logical

period

(days)

† Social

event-

Average

contact rate

†† Imposing

social

distancing-

Average contact

rate

�Symptomatic

infectivity- weighted

by mask- wearing

adherence

��Asymptomatic

infectivity- weighted by

mask-wearing

adherence

S 1 20000 No change No

change

68.4%,80% 240 Table A1 (S1

Appendix)

14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 2 20000 No change No

change

68.4%,80% 240 22 Table A1 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 3 20000 No change No

change

68.4%,80% 240 22 14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 4 20000 No change No

change

40%, 60% 240 Table A1 (S1

Appendix)

14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 5 20000 No change No

change

40%, 60% 240 22 Table A1 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 6 20000 No change No

change

40%, 60% 240 22 14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 7 20000 No change No

change

68.4%,80% 240 Table A1 (S1

Appendix)

14 55% 55%

S 8 20000 No change No

change

40%, 60% 240 Table A1 (S1

Appendix)

14 55% 55%

S 9 40000 No change No

change

68.4%,80% 240 Table A1 (S1

Appendix)

14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 10 40000 No change No

change

68.4%,80% 240 22 Table A1 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 11 40000 No change No

change

68.4%,80% 240 22 14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 12 40000 No change No

change

40%, 60% 240 Table A1 (S1

Appendix)

14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 13 40000 No change No

change

40%, 60% 240 22 Table A1 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 14 40000 No change No

change

40%, 60% 240 22 14 Table A4 (S1

Appendix)

Table A5 (S1 Appendix)

S 15 40000 No change No

change

68.4%,80% 240 Table A1 (S1

Appendix)

14 55% 55%

S 16 40000 No change No

change

40%, 60% 240 Table A1 (S1

Appendix)

14 55% 55%

Notes

✓ Based on the literature, the assumed efficacies of the first dose and second dose COVID-19 vaccine are 68.4% and 80%, respectively, in the baseline setting. In the

counterfactual analysis, we want to see the impact of low vaccine efficacy on the spread dynamics. Of course, we also combine this factor with other proposed changes in

the analysis.
† and †† Here, we consider the situations by incorporating social events and imposing social distancing containment measures. In the counterfactual analysis, we use the

average contact rates of 22 and 14 for the simulation periods with social events and the average period with enhanced social distancing containment.

� and �� We referred to the mask-wearing data for Ethiopia in the historical data coming from IHME (Institute for Health Metrics and Evaluation) https://covid19.

healthdata.org/ethiopia?view=mask-use&tab=trend.

It was assumed that 48% mask-wearing adherence in the baseline settings and 55% mask-wearing adherence in some scenarios of the counterfactual analysis were used.

https://doi.org/10.1371/journal.pone.0271231.t002
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could be admitted to the hospital given the accessibility issues of hospitals in some regions,

where the impact was a lot smaller than that of the measures of implementing social distancing

(34.7% reduction, S1 vs. historical data). Due to the meager vaccination rate (as of November

6, 2021, with 6.07% partially vaccinated and 1.23% fully vaccinated) [4], the reduced efficacy of

COVID-19 (S1 vs. S4) could only slightly increase the incidence of infections by 0.088%. Dou-

bling hospital capacity could reduce cumulative deaths by 1.8%, slightly larger than the reduc-

tion in accumulative infections.

In Fig 5, lowering the contact rate in different social events (e.g., reducing the scale of those

events by canceling the events, or emphasizing social distancing during social events) while

holding other factors unchanged could achieve a significant reduction in the cumulative infec-

tions (89.01%, S2 vs. Historical data). Due to the significant reduction in cumulative infections,

increasing hospital capacity did not reduce cumulative infections and deaths (S2 vs. S10). Simi-

larly, due to the low vaccination rate, the reduced efficacy of the vaccine increased the number

of infections by 25 (S2 vs. S5).

In Fig 6, this group of scenarios demonstrates the impacts of enforcing social distancing for

main social events and routine life activities. The results showed not much different from

Fig 3. Baseline results by calibrating the model against historical data.

https://doi.org/10.1371/journal.pone.0271231.g003

Fig 4. Impacts of hospital capacity, vaccine efficacy, and social distancing in counterfactual analysis.

https://doi.org/10.1371/journal.pone.0271231.g004
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those of values in Fig 5, which obtained an 89.35% of reduction in cumulative infections (S3

vs. Historical data). Other impacts followed the pattern in Fig 5.

In Fig 7, this group of scenarios assumed that the adherence level to wearing face masks was

55% since the first COVID-19 infections in Ethiopia. The results revealed a considerable

reduction in the cumulative infections, less than 1500. Furthermore, the cumulative deaths

dropped to 20 in this setting.

In Fig 8, this group of scenarios compared the impacts of enforcing social distancing on

either main social events or routine life activities and their combination (S1, S2, S3). Fig 8

shows that enforcing social distancing on major social events can achieve much more impact

in reducing infections than enforcing the same containment measures on routine life activities

(S1: S2: S3 = 34.75%: 89.01%:89.35%).

3.3 COVID-19 transmission dynamics in Ethiopia under different

scenarios

In evaluating the impacts of different possible future scenarios on COVID-19 spread in Ethio-

pia in the coming period, we proposed and simulated 264 scenarios (Refer to Tables C1

Fig 5. Impacts of enforced social distancing for social events in counterfactual analysis.

https://doi.org/10.1371/journal.pone.0271231.g005

Fig 6. Impacts of enforced social distancing for both social events and routine life activities in counterfactual analysis.

https://doi.org/10.1371/journal.pone.0271231.g006
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through C7 in Appendix C (S1 Appendix)). Factors considered in the scenario analysis include

hospital capacity (doubling, 80%, and 60% of current capacity), vaccine administration and

supply (as is-same as what had been administering; 1st dose 20% population, 2nd dose 10%

population; 1st dose 30% population, 2nd dose 20% population), vaccine efficacy (1st dose

68.4%, 2nd dose 80%; 1st dose 40%, 2nd dose 60%), immunological period of vaccine, average

contact rates for social events and everyday activities, and adherence level of mask-wearing

(48%, 60%, and 70%). The prediction simulation periods covered from November 6th, 2022, to

November 5th, 2022. For the sake of increasing visualization effects for comparison among dif-

ferent scenarios, we set the bound minimums of cumulative infections and cumulative deaths

at 360,000 and 6000, respectively, because the calibrated data for corresponding variables (i.e.,

cumulative infections and cumulative deaths) were the same for all scenarios below the chosen

minimums.

3.3.1 Impacts of increasing mask-wearing adherence level. Fig 9 illustrates the impacts

of vaccine efficacy and adherence level of mask-wearing on the COVID-19 spread over the

next year. With different adherence levels for mask-wearing, while keeping other factors fixed,

the cumulative infections at the end of the simulation period (i.e., Nov 5, 2022) could range

from 393,304 (adherence level 70%)(S41) to 661,696 (adherence level 48%). The cumulative

Fig 7. Impacts of increasing face mask-wearing in counterfactual analysis.

https://doi.org/10.1371/journal.pone.0271231.g007

Fig 8. Impacts of imposing social distancing on major social events and routine life activities in counterfactual analysis.

https://doi.org/10.1371/journal.pone.0271231.g008
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deaths were 15,697 in S17 (mask-wearing 48%) and 7867 in S41 (mask-wearing70%), which

led to a reduction of 49.88%. As for the impact of efficacy, the higher the mask-wearing adher-

ence level, the lower the impact of reduced vaccine efficacy on the increase of cumulative infec-

tions was, which ranged from 0.013% to 0.96%.

3.3.2 Impacts of the immunological period under low vaccination conditions. Fig 10

demonstrates the impacts of the immunological period on cumulative infections and cumula-

tive deaths. Similar to the pattern in Fig 9, the higher the mask-wearing adherence level, the

lower the impact of the reduced immunological period on the increase of accumulative infec-

tions was, which ranged from 0.01% to 0.84%.

3.3.3 Impacts of increasing stringencies of social distancing measures. Under the

assumption of a 48% mask-wearing adherence level, this group of scenarios compares the

impacts of different stringency levels of SDMs on the spread dynamics of COVID-19 (refer to

Fig 11). With the most stringent measure in SDMs, the cumulative infections could reach

424,681 at the end of the simulation (S25), which was 31,377 more than what could have been

achieved in the case of 70% mask-wearing adherence level while having laxly implemented

SDMs (S41). The cumulative deaths were 8823 in S25 (the most stringent measure in SDMs),

which had a 43.79% reduction compared with S17.

Fig 9. Impacts of increasing adherence level of mask-wearing in scenario analysis.

https://doi.org/10.1371/journal.pone.0271231.g009

Fig 10. Impacts of the immunological period on cumulative infection and cumulative deaths in scenario analysis (48% mask-wearing).

https://doi.org/10.1371/journal.pone.0271231.g010
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3.3.4 Impacts of hospital capacity. This scenario group shows the impacts of different

hospital capacities on the cumulative infections and cumulative deaths over time. Since the

population size is very large and the results were very sensitive to the change of some condi-

tions in our assumptions, the cumulative infections (S173 & S245) would exceed the number

of total populations (because of repetitive infections) if the hospital capacity were smaller than

60% of the current level. These very large results just provide a reference here, which will not

be used to compare with other variables. Changes in hospital capacity did not cause different

accumulative infections (S17, S53, S137) as long as the hospital capacity was larger than 80% of

the current one since the daily infections do not exceed hospital capacities. Compared to S137,

the reductions in cumulative infections and cumulative deaths in S209 (11.89% and 13.88%)

caused by increasing vaccine supply and vaccination capacity were noticeable.

3.3.5 Impacts of combined NPIs and PIs. Figs 12–14 show the impacts of the immuno-

logical period and vaccine efficacy under different mask-wearing adherence levels and levels of

vaccination across the nation on the spread of COVID-19 in Ethiopia, which were calculated

by taking the difference for the cumulative infections and cumulative deaths between two cor-

responding scenarios (e.g., S68-67). By comparing Figs 12 and 13, we can see that reduced vac-

cine efficacy produced larger effects than the lowered immunological period in causing

Fig 11. Impacts of increasing stringency of social distancing measures in scenario analysis.

https://doi.org/10.1371/journal.pone.0271231.g011

Fig 12. Impacts of the immunological period on COVID-19 considering mask-wearing adherence and increasing vaccination capacity.

https://doi.org/10.1371/journal.pone.0271231.g012
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increased cumulative infections and cumulative deaths. The effect was especially obvious for

the situation of higher vaccination rate (i.e., 30% population vaccinated 1st dose, 20% popula-

tion vaccinated 2nd dose) and low mask-wearing adherence level (48%), which had the ratio of

(S102-S101)/S101:(S103-S101)/S101 = 3.99%:1.61% (21181 vs. 8556 in number). Furthermore,

in the situation mentioned above, the combined effects of both reduced immunological period

and reduced vaccine efficacy could cause 5.6% (29737) more infections (Fig 14). However, the

adverse effects of reduced immunological period and vaccine efficacy were to a large extent

offset by increased mask-wearing adherence level, which is changed to the ratio of

(S126-S125)/S101:(S127-S125)/S101 = 0.09%:0.025% (352 vs. 96 in number) with mask-wear-

ing adherence level of 70%.

In Fig 15, S133 is the scenario having minimum cumulative infections and cumulative

deaths (384094 and 7586) among all scenarios with different assumed interventions, where the

interventions include: 30% and 20% of the total population being administered 1st and 2nd

doses of COVID-19 vaccine, respectively, keeping 70% mask-wearing adherence level, adopt-

ing the most stringent SDMs, and holding vaccine efficacy and immunological period and hos-

pital capacity unchanged. The maximum cumulative infections and cumulative deaths

Fig 13. Impacts of vaccine efficacy on COVID-19 spread considering mask-wearing adherence and increasing vaccination capacity.

https://doi.org/10.1371/journal.pone.0271231.g013

Fig 14. Impacts of immunological period and vaccine efficacy on COVID-19 considering mask-wearing adherence and increasing vaccination capacity.

https://doi.org/10.1371/journal.pone.0271231.g014
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(680231 and 16235) happened in S139 where the interventions contain: reducing hospital

capacity to 80% of the original level, laxly implementing SDMs, assuming vaccine supplying

and administering pace calculated in historical data, keeping 48% mask-wearing adherence

level, and adopting reduced vaccine efficacy (from 68.4% and 80% to 40% and 60% for the 1st

and 2nd doses vaccine, respectively), and shortened immunological period (from 240 to 180

days). The maximum and minimum values differences were 77.10% and 114% of minimum

cumulative infections and cumulative deaths, respectively. Scenarios S21, S141, and S177 rep-

resented the medium level of cumulative infections and cumulative deaths (482358 and 10549,

please refer to C1, C4, and C5 for their corresponding settings.).

3.3.6 Offsetting effects among multiple interventions. In Fig 16, the results show that

moderately increasing mask-wearing adherence level in the case of lax implementation of

SDMs can achieve approximately the same effect (S25 vs. S29 and S37 vs. S41) as the situation

of implementing stringent SDMs while having a low adherence level of mask-wearing (or due

to insufficient supply of mask).

Fig 15. The best-medium-worst outcomes among the defined scenarios.

https://doi.org/10.1371/journal.pone.0271231.g015

Fig 16. Offsetting less stringent social distancing measures with increasing mask-wearing adherence level.

https://doi.org/10.1371/journal.pone.0271231.g016
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Figs 12–14 show the impacts of increasing vaccination and implementing SDMs on the

cumulative infections and cumulative deaths under three mask-wearing adherence levels-i.e.,

48%, 60%, and 70%. The impact of increasing vaccination to the extent of administering 1st

dose for 30% population and 2nd dose for 20% of the population cannot achieve the effect that

is achieved by increasing mask-wearing adherence level to 70% (showed in Fig 16). Further-

more, the effect was smaller than that of implementing more stringent SDMs. The impacts of

increasing vaccination were lessened with more stringent SDMs and increasing the adherence

level of mask-wearing because the cumulative infections and cumulative deaths were signifi-

cantly reduced.

Fig 20, Fig 21, Fig 22 show the effect comparisons between implementing stringent SDMs

and the scenarios of combining less stringent SDMs while increasing vaccination levels in the

whole population of Ethiopia under different mask-wearing adherence levels-i.e., 48%, 60%,

and 70%. As in the case of mask-wearing adherence level of 48%, implementing the most strin-

gent SDMs (S25) had cumulative infections of 424,681 and cumulative deaths of 8,823. And

Fig 17. Impacts of changing vaccination levels and implementing social distancing measures with mask-wearing adherence level of 48%.

https://doi.org/10.1371/journal.pone.0271231.g017

Fig 18. Impacts of changing vaccination levels and implementing social distancing measures with mask-wearing adherence level of 60%.

https://doi.org/10.1371/journal.pone.0271231.g018
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the scenario of vaccinating 30% and 20% total population with 1st and 2nd doses, respectively,

and implementing the least stringent SDMs (for both major events and routine activities)

(S101) had cumulative infections of 531083 and cumulative deaths of 12027, which were

25.05% and 36.31% more than of the S25. When considering the factor of reduced vaccine effi-

cacy and immunological period, the differences were enlarged to be 32.13 and 46.07%, respec-

tively. When the vaccination coverage was reduced to administering 1st and 2nd doses for 20%

and 10% of the total population, respectively (S65), the cumulative infections and cumulative

deaths of S65 were 37.29% and 53.21% more than that of S25. When considering the reduc-

tions in vaccine efficacy and immunological period, the differences were enlarged to 44.27%

and 62.54% (S68 vs. S25). Under the assumption of a mask-wearing adherence level of 70%,

implementing the most stringent SDMs (S49) had cumulative infections of 384,644 and cumu-

lative deaths of 7,062. In comparison, the scenario of vaccinating 30% and 20% total popula-

tion with 1st and 2nd doses, respectively, and implementing the least stringent SDMs (S125)

had the cumulative infections of 391,735 and cumulative deaths of 7,819, whereas the latter

(S125) were 1.84% and 2.86% more than of the former (S49). As for the vaccination cover of

20% and 10% of the total population having 1st and 2nd doses, respectively (S89), the

Fig 19. Impacts of changing vaccination levels and implementing social distancing measures with mask-wearing adherence level of 70%.

https://doi.org/10.1371/journal.pone.0271231.g019

Fig 20. Implementing stringent SDMs versus less stringent SDMs and increased vaccination levels under the mask-wearing adherence level of 48%.

https://doi.org/10.1371/journal.pone.0271231.g020
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cumulative infections and cumulative deaths of S89 were 2.04% and 3.17% more than that of

S49. Our study did not propose a higher vaccination level given that the issues in vaccine

acquisition in Ethiopia cannot be overcome shortly.

In Fig 23, by comparing scenarios S37, S89, and S125, we found that increasing the vaccina-

tion rate and adherence level of mask-wearing under the circumstance of less stringent SDMs

can achieve similar control results as that of the measure of lower-level vaccination rate and

mask-wearing adherence with more stringent SDMs. Comparing scenarios S25 and S77 can

further approve the observation mentioned above.

4 Discussion and conclusion

This SD model served as a framework for understanding the issues and gaps in the contain-

ment measures against COVID-19 in the past period and the spread dynamics of the infectious

disease over the next year under different interventions and their combinations. This study

simulated the results of 280 scenarios considering the vaccination level, efficacies of both 1st

and 2nd vaccines, the immunological period for both vaccinated people and infected patients,

Fig 21. Implementing stringent SDMs versus less stringent SDMs and increased vaccination levels under the mask-wearing adherence level of 60%.

https://doi.org/10.1371/journal.pone.0271231.g021

Fig 22. Implementing stringent SDMs versus less stringent SDMs and increased vaccination levels under the mask-wearing adherence level of 70%.

https://doi.org/10.1371/journal.pone.0271231.g022
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stringency levels in enforcing social distancing, adherence level of face mask-wearing, and hos-

pital capacity. With evaluations and comparisons for alternative interventions, the results can

inform policy and implementation science regarding the path, scale, duration, and stringency

level of different interventions and their optimal combinations.

The fast spread of COVID-19 in Ethiopia can be attributed to joint effects of multiple fac-

tors including but are not limited to: (1) low adherence to face mask-wearing and hand

hygiene practices; (2) failure to comply with social distancing; (3) most religious people attend-

ing more than three days a week in churches to pray together; (4) special religion holidays cele-

bration events were held for more than 7 days across the country by Orthodox Christian; (5)

more than three holidays events by Muslim followers; (6) extensive protests in a different state

in 2020 during a pandemic; (7) massive rally during the country election on 21 June 2021 [6,

8–10]; and (8) the war between the federal government and Tigray Region since November 4,

2020, which not only increased COVID-19 infection risk of fighters and almost two million

displaced migrant but also disrupted the vaccine supply and administration and everyday

operations of many hospitals [11].

In the counterfactual analysis, we found that keeping high mask-wearing adherence since

the outbreak of COVID-19 in Ethiopia could have significantly reduced the infection under

the condition of low vaccination level or unavailability of vaccine (Fig 7). In the trend analysis,

higher mask-wearing adherence still played the dominant role in significantly reducing infec-

tion, and the best outcome was attained with one condition being a 70% adherence level. In

terms of the social distancing measures, reducing or canceling major social events (e.g., reli-

gious gatherings and protests) can achieve a better outcome than imposing the same con-

straints on people’s routine life activities. Moreover, since the daily infections did not exceed

hospital treatment capacity in the early stage of the COVID-19 pandemic, it seemed that

increasing hospital capacity did not play a pivotal role in significantly reducing infections.

However, the significant contributions of hospitalizing the COVID-19 infected patient were to

reduce the death toll caused by severe cases and carry out necessary quarantine functions,

which significantly reduced the sources of further transmission [104, 105]. This can be testified

in Fig 24, where the insufficient capacity for hospitals (including quarantine hospitals) could

lead to a considerable number of accumulative infections.

In the trend analysis, under the conditions of low vaccination rate, reduced vaccine efficacy,

and immunological period had no apparent effects on accumulative infections. Furthermore,

Fig 23. Increasing vaccination levels and mask-wearing adherence as compensation for the less stringent SDMs.

https://doi.org/10.1371/journal.pone.0271231.g023
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increasing mask-wearing adherence and enforcing more stringent social distancing were two

main measures that could significantly reduce possible infections. Higher mask-wearing

adherence had more significant impacts than enforcing social distancing measures in our set-

tings. As the vaccination rate increases, factors such as vaccine efficacy and immunological

period that affect vaccination effectiveness started to take effect, where the reduced efficacy

could cause more infections than that of shortened immunological periods. Offsetting effects

of multiple interventions (strengthening one or more interventions while loosening others)

could be applied when the levels or stringencies of one or more interventions needed to be

adjusted for catering to particular needs (e.g., less stringent SDMs to reboot the economy or

cushion insufficient resources in some areas).

Like all other research, the current study has certain limitations. First of all, since the num-

ber of possible scenarios by combining multiple interventions and their different levels can be

very large, this paper only picked and analyzed minimal representative scenarios. Secondly,

data used in the simulation were at the aggregate level without incorporating regional hetero-

geneity. Moreover, the ever-mutating COVID-19 virus means that current analysis might not

be able to reflect future pandemic dynamics.

Several possible studies can be conducted in the future research: (1) the model can be easily

extended to evaluate impacts of containment measures for emerging infectious diseases; (2) by

adding a demand-supply interaction substructure for personal protection equipment (PPE)

such as face mask, the revised model can be used to evaluate impact of PPE logistics on the

spread dynamics of COVID-19 (considering adherence level and protection ability); (3) this

model can help find the optimal combination of containment measures; (4) the model can be

expanded to inform decision makers of determining optimal lock-down window and period

by jointly considering the supply & demand dynamics of PPE and vaccine, vaccine efficacy

and immunological period, effect of social distancing measures, and characteristics of the

mutants of the disease; (5) a revised model can also help undertake hospital capacity planning

for dealing with public health emergency like COVID-19 pandemic; and (6) the model can

also be used to define the necessary vaccination level and consequently the immune barrier in

a given period by considering vaccine efficacy and immunological period for both vaccinated

and infected people.

In conclusion, SD can be a handy tool for expedited learning for designing and implement-

ing public health emergency policies (or interventions), especially those involving multiple

Fig 24. Impacts of hospital capacity in scenario analysis.

https://doi.org/10.1371/journal.pone.0271231.g024
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interventions that could have thousands of possible implementation paths. It can help pinpoint

issues and gaps in the historical path and investigate and choose the appropriate path for

achieving better containment and control outcomes given limited resources, complicated

socioeconomic systems, and characteristics of the emerging infectious disease. This evaluation

of the NPIs and PIs will help provide constructive inputs to inform policy and decision-mak-

ing regarding COVID-19 and other emerging infectious diseases.
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