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Abstract

Objectives: Individual anatomical biomarkers have limited power for the classifi-

cation of autism. The present study introduces a multivariate classification approach

using structural magnetic resonance imaging data from individuals with and without

autism.

Methods: The classifier utilizes z‐normalization, parameter weighting, and interin-

dividual comparison on brain segmentation data, for estimation of an individual

summed total index (TI). The TI indicates whether the gross morphological pattern

of each individual's brain is in the direction of cases or controls.

Results: Morphometric analysis found significant differences within subcortical gray

matter structures and limbic areas. There was no significant difference in total brain

volume. A case‐control pilot‐study of TIs in normally intelligent individuals with

autism (24) and without (21) yielded a maximal accuracy of 78.9% following cross‐
validation. It showed a high accuracy compared with machine learning methods

when tested on the same dataset. The TI correlated well with the autism quotient

(R ¼ 0.51) across groups.

Conclusion: These results are on par with studies on autism using machine learning.

The main contributions are its transparency and simplicity. The possibility of

including additional neuroimaging data further increases the potential of the clas-

sifier as a diagnostic aid for neuropsychiatric disorders, as well as a research tool for

neuroscientific investigations.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is characterized by difficulties in so-

cial communication, as well as repetitive and restricted behaviors and

interests (American Psychiatric Association, 2013). Recent research

on the neurobiology of ASD has targeted biomarker discovery that can

aid in diagnostics. Having a biomarker as a compliment to the clinical

interview could lower diagnostic costs, decrease the time until the

individual receives a diagnosis, and potentially increase diagnostic

accuracy. It could also help to define endophenotypes that can guide

genetic research and evaluation of pharmacotherapy. The search for

biomarkers in ASD casts a wide net. Proposed neuroanatomical bio-

markers (Donovan & Basson, 2017; Ecker, 2017) include enlarged

amygdalae (Sparks et al., 2002), increased cerebellar with decreased

vermal size (Hardan, Minshew, Harenski, & Keshavan, 2001; Kauf-

mann et al., 2003), larger caudate nuclei (Hollander et al., 2005),

atypical gyrification (Levitt et al., 2003; Piven et al., 1990), as well as

changes in hippocampal volume and shape (Nicolson et al., 2006;

Schumann et al., 2004). Functional neurophysiological biomarkers

(Luckhardt, Jarczok, & Bender, 2014) include an increased excitation/

inhibition ratio (Rubenstein & Merzenich, 2003), impairments in the

mirror neuron system (Williams, Whiten, Suddendorf, & Perrett,

2001), local hyperconnectivity and global hypoconnectivity in coher-

ence analyses (Belmonte et al., 2004; Catarino et al., 2013), and

various changes in amplitude and timing of event‐related potentials

(Dawson, Webb, Carver, Panagiotides, & McPartland, 2004).

One reason for the many conflicting results in the neuroimaging

of ASD is the heterogeneity of underlying causes and thus the

phenotypic expression of the disorder, which necessitates identifi-

cation of biologically relevant endophenotypes for deconstructing

ASD (Bernhardt, Di Martino, Valk, & Wallace, 2017). Furthermore,

neuroradiological studies have traditionally been hampered by

manual segmentation and volumetry, which are not only time

consuming (Collier et al., 2003) but also have high intra‐ and inter-

operator variability (Despotovic, Goossens, & Philips, 2015). The

advent of automated segmentation of the brain, using programs such

as FreeSurfer (Fischl, 2012), has allowed researchers to segment and

compare brains on a larger scale than previously possible with

manual volumetry. This has allowed for the recent transition from

single area volumetry to whole brain segmentation.

Attempts to reconcile the general principle of combining data

from multiple biomarkers with the development of automated seg-

mentation via factor analysis and machine learning have yielded

varying amounts of success. Within the field of psychiatric neurora-

diology, several machine learning paradigms have been utilized on

combinations of data from magnetic resonance imaging, diffusion

tensor imaging, and functional magnetic resonance imaging for clas-

sification (Orru, Pettersson‐Yeo, Marquand, Sartori, & Mechelli, 2012).

These include support vector machines (Ecker et al., 2010; Ecker et al.,

2010; Ingalhalikar, Parker, Bloy, Roberts, & Verma, 2011; Libero,

DeRamus, Lahti, Deshpande, & Kana, 2015; Uddin et al., 2011),

generalized linear classifiers (Nielsen et al., 2013), logistic model trees

(Jiao et al., 2010), and random forests (Zhou, Yu, & Duong, 2014).

The major strength of employing machine learning for classifica-

tion is that one can analyze vast amounts of data both within and

between modalities, thereby increasing the diagnostic yield of gath-

ered data from participants. Despite this, many studies have utilized

only one modality. It is likely, however, that not only the macroscopic

gray matter structure, but also white matter tract thickness and con-

nectivity pattern, as well as microscopic cytoarchitecture, functional

neurophysiological aspects, and so on affect the expressed behavioral

phenotype. Any complete functional model of the brain must therefore

incorporate all such parameters. Recent studies utilize several mo-

dalities at once; one can expect that a greater proportion of future

studies will follow this trend. For example, Libero et al. (2015) reported

on a support vector machine implemented on combined magnetic

resonance imaging, diffusion tensor imaging, and neurochemistry data

that resulted in an accuracy of 91.9%, compared to Uddin et al.

(2011)'s 88% and Ingalhalikar et al. (2011)'s 79% that were limited to

one modality (magnetic resonance imaging and diffusion tensor im-

aging, respectively). Similarly, Zhou et al. (2014) implemented a

random forest on structural and functional magnetic resonance im-

aging data with an accuracy of 70%, compared to Sabuncu et al's

(2015) 59% using only structural magnetic resonance imaging.

Despite these advances, limitations in the existing literature

include small sample sizes and lack of replication. Furthermore,

several pitfalls specifically regarding the practical application of ma-

chine learning have also been noted (Bone et al., 2016; Kassraian‐
Fard, Matthis, Balsters, Maathuis, & Wenderoth, 2016). One of the

most significant limitations to more widespread clinical use of ma-

chine learning is the need for a deep understanding of the theoretical

underpinnings of machine learning, familiarity with the software, and

rigorous testing of results in order to identify and correct errors such

as overfitting. Such expertize is rarely available outside the computer

science community. A transparent and easy‐to‐use statistical method

for multivariate classification would therefore be more accessible to

researchers outside the field of machine learning and, perhaps more

importantly, to clinicians.

The aims of the present study were to develop a user‐friendly

multivariate statistical method for classification that does not rely on

machine learning and apply it to brain magnetic resonance imaging

segmentations in an attempt to classify a clinical case‐control cohort.

Herein, we present such a method and its implementation for clas-

sification of autism.

2 | METHOD

2.1 | Population

The sample consisted of 45 adult males (see Table 1): 24 autistic and

21 typically developed (TD) subjects, group matched for age and IQ.

Exclusion criteria were IQ < 80 for both groups, the presence of any

registered psychiatric diagnosis for the TD group, and comorbid

Attention Deficit Hyperactivity Disorder (ADHD) for the ASD group.

Informed consent forms were provided by all participants. The study
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was ethically approved by the regional ethical board in Gothenburg

(DNR: 552‐14).

TD cases were recruited from the website at the Gillberg

Neuropsychiatry Centre (GNC; www.gnc.gu.se) and through flyers.

All but one of the 24 ASD cases were recruited from two ongoing

longitudinal studies at the GNC that have been described elsewhere

(Davidsson et al., 2017; Helles, Gillberg, Gillberg, & Billstedt, 2015).

Briefly, this is a well‐characterized sample that has been longitudi-

nally assessed, having been assigned a diagnosis of autism on at least

two occasions, separated by at least 5 years, using the Diagnostic and

Statistical Manual of Mental Disorder‐4 (DSM; American Psychiatric

Association, 1994) and the International Classification of Diseases‐
10 (World Health Organization, 1992). One patient was recruited via

advertisement, and his medical records were obtained and scruti-

nized by an experienced senior child and adolescent psychiatrist to

verify that diagnosis and exclusion criteria were met. All individuals

in both groups were seen by a medical doctor and a psychologist. The

TD subjects were screened for neurological and psychiatric disorders

using a brief neurological examination and a medical/psychiatric

checklist.

The participants also underwent intelligence testing (Wechsler

Abbreviated Scale of Intelligence [Wechsler, 1999] or the Wechsler

Adult Intelligence Scale‐IV [Wechsler, 2008]) and completed the

autism quotient (AQ; Baron‐Cohen, Wheelwright, Skinner, Martin, &

Clubley, 2001). IQ‐test results were missing for two ASD cases and

one TD case.

2.2 | Data acquisition

The participants' heads were scanned using 3‐Tesla magnetic reso-

nance imaging systems at three institutions using the recommended

sequences for Freesurfer segmentation MPRAGE for Siemens, the

MPRAGE equivalents FSPGR‐BRAVO for GE, and TFE‐SENSE for

Philips. T1‐weighted 3D‐encoded images, consisting of 176 sagittal 1

mm slices, were used for the subsequent segmentation. The specific

acquisition parameters are listed in Table 2.

All scans were reviewed locally by a neuroradiologist for image

quality and possible pathologic findings that, if present, were

communicated to the participant and referred to the corresponding

hospital for follow‐up.

2.3 | Data processing

This study utilizes data generated by FreeSurfer (http://surfer.nmr.

mgh.harvard.edu/) segmentations from the T1‐weighted structural

brain magnetic resonance imaging scans. FreeSurfer segmentation

provides data about the volumes, areas (Ar), and thicknesses (Th) of

cortical regions of interest (ROIs), as well as the volumes of subcortical

gray matter (SCV) and white matter (WM) structures. The FreeSurfer

recon‐all pipeline with default settings was used to segment the

brains. All FreeSurfer segmentations were visually inspected to ensure

accurate cortical parcellations and subcortical segmentations. See

Figures 1–3 for the parcellation (cortical ROIs) and segmentation

TAB L E 1 Subject demographics,
neuropsychological data, and
macroscopic brain segmentation results

ASD (mean ± SD) TD (mean ± SD) Student's t‐test (p)

N 24 21 ‐

Age (years) 30.6 � 7.1 28.2 � 6.4 0.24

Full‐scale IQ 109.8 � 15.1 115.1 � 11.2 0.21

AQ 23.0 � 9.3 12.2 � 7.0 0.00009*

White matter total (cm3) 492.3 � 55 459.6 � 63 0.08

Gray matter total (cm3) 696.6 � 57 662.1 � 57 0.06

Subcortical gray total (cm3) 64.1 � 5 58.2 � 6 0.0009**

Brain total (cm3) 1248.0 � 115 1181.5 � 114 0.06

Total intracranial volume (cm3) 1687.3 � 180 1576.0 � 146 0.03*

Note: Data expressed as mean � SD. Unpaired, two‐tailed Student's t‐test.

Abbreviations: AQ, autism quotient; ASD, autism spectrum disorder; IQ, intelligence quotient;

TD, typically developing.

*p < 0.05; **significance level after Bonferroni correction within the family of macroscopic

segmentations ¼ 0.05/5 ¼ 0.01.

TAB L E 2 Acquisition parameters for magnetic resonance

imaging scans

SUH ÖH LUH

N 22 16 7

Sequence TFE‐SENSE FSPGR‐BRAVO MPRAGE

Relaxation time (ms) 7600 2530 2530

Inversion time (ms) 600 1100 1100

Echo time (ms) 3.7 3.5 1.64/3.5/7.22

Flip angle 7° 10° 7°

Field‐of‐view (mm) 256 256 256

Abbreviations: LUH, Lausanne University Hospital; ÖH, Östra Hospital;

SUH, Sahlgrenska University Hospital.
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(subcortical ROIs) of a representative individual. The same FreeSurfer

version (v5.3.0) and computer (MacOS 10.11.6) were used for all

segmentations. All cortical parcellations were used. Specific segmen-

tations were excluded as they were deemed irrelevant: WM and non‐
WM hypointensities, left and right vessel, optic chiasm, fifth ventricle,

and left and right choroid plexus (see appendices for complete list of

included data). The technical details have been explained in previous

publications (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale,

1999). The accuracy of FreeSurfer segmentations has been validated

by both manual segmentation (Kuperberg et al., 2003) and histo-

pathological specimens (Cardinale et al., 2014; Rosas et al., 2002).

FreeSurfer is relatively insensitive to acquisition across platforms and

magnetic resonance imaging manufacturers. Results are similar to

within‐scanner results (Han et al., 2006; Jovicich et al., 2009), with

some brain areas showing lower variability (hippocampi and thalami)

than others (amygdalae and accumbens areas; Morey et al., 2010).

2.4 | Statistical method used for analyzing
segmented magnetic resonance imaging data

We employ the sign function (defined by Equation (1)) to determine

which group average is larger for each given parameter (segmented

ROI). We empirically use it to return þ1 for those parameters for

which the ASD group has a larger average size than the TD group and

� 1 for those for which it is smaller.

sgnðΔgpÞ ¼
µpASD � µpC�
� µpASD � µpC

�
�

ð1Þ

where Δgp is the group difference for parameter p, and µpASD and µpC
are the averages for the ASD and TD groups respectively.

We define a weight for each parameter according to the square

of its effect size (d2) so that those parameters that have the greatest

predictive value contribute the most to the total index (TI). The sign

function is employed in order to maintain group directionality (i.e.,

positive for ASD and negative for TD) following the squaring of the

effect size, which otherwise yields an absolute value. For a dataset

with many parameters, one can manipulate the exponent of the ef-

fect size to increase diagnostic accuracy. By increasing the exponent,

from the square to the cube for example, the weighting on the pa-

rameters that are more informative for the grouping increases. In

other words, by increasing the exponent, the number of parameters

that affect the TI decreases as it diminishes the importance of those

parameters that are not significant in separating the groups relative

to those that do. Not only integers, but also functions, such as the

logarithm, can be used for effect size weighting.

d2
¼ sgnðΔgpÞ �

�
�
�
�
µpASD � µpC

SDp
µ

�
�
�
�

2

ð2Þ

The value of each parameter and participant is subtracted from

the mean value of the groups for that parameter and Z‐normalized

F I GUR E 1 The FreeSurfer parcellation for a representative
participant showing the lateral cortical regions of interest

F I GUR E 3 A coronal section of the T1‐weighted sequence for a
representative participant showing the labeling of subcortical
regions of interest (mapped with different colors) following the

FreeSurfer segmentation as well as the boundaries for the gray (red
outline) and white matter (blue outline)

F I GUR E 2 The FreeSurfer parcellation for a representative
participant showing the medial cortical regions of interest
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(first right‐hand side term in Equation (3)). This enables all parame-

ters to be of the same magnitude and thus directly comparable. We

weight the parameters with the square of their respective effect size

(Equation (2), last right‐hand side term in Equation (3)) while main-

taining their sign (Equation (1), middle right‐hand side term in

Equation (3)). As such, the sign determines the direction of each

parameter (positive for ASD and negative for TD) and the magnitude

is a measure of how group specific that parameter is for the partic-

ipant; a large positive value for a parameter indicates that the size of

the participant's ROI is in the direction of ASD and that the ROI has a

distinct size difference between the groups. We calculate this for

each parameter and subject:

Xp
n ¼

xpn � µpµ
SDp

µ
� sgnðΔgpÞ � d2

ð3Þ

where Xp
n is the resulting normalized and weighted index value for

parameter p and subject n compared to the mean of both groups. Xp
n

is the weighted value of parameter p (there are q of these; for the

case of all structural data, q ¼ 230) for participant n (there are m of

these; for the whole group analysis in this study, m ¼ 45; when we

run leave‐one‐out cross‐validation [LOOCV], m ¼ 44). µpµ is the

average value between the group averages for the parameter in

question (µp, or the average of parameter p across all subjects, is used

if group sizes are equal). µpASD and µpC are the group averages for ASD

and TD groups for each parameter p.

The sum of the index values for each parameter is calculated by

TIn ¼ ∑
q

p¼1

�
Xp
n

�
ð4Þ

to generate the total index, TIn, for subject n.

In general, TI is a singular measure of an individual's position in a

spectrum of multidimensional parameter spaces collapsed onto one

axis. Those parameters that best separate the groups add the most to

the TI while those that do not separate the groups have little, if any,

contribution to it. The TIs for our dataset summarize the pattern of

brain volumes and thicknesses for each participant in relation to the

sample as a whole. The midpoint between the group averages, TI ¼ 0,

represents a standard cutoff value for classification. The TIs for this

dataset—based only on magnetic resonance imaging segmentation

measures—are a quantification of how “autism‐like” each brain is, with

positive values representing an autistic‐like pattern. Thus, employing a

diagnostic cutoff of TI > 0 increases specificity and decreases

sensitivity. An example spreadsheet with the statistical method

and information regarding it are found in the Supplementary materials

1 and 2.

2.5 | LOOCV and performance metric

The exhaustive form of leave‐p‐out cross‐validation, LOOCV, was

used for the determination of diagnostic accuracy of the method. It

entails calculation of parameter averages, standard deviations, and

effect sizes of the case and control groups, as presented in Section

2.4, with one participant excluded. The method is then applied to that

participant to yield the TI of the “unknown” participant. In other

words, the testing set is separated from the training set. This process

was iterated for each of the 45 participants in the study, and for each

of the datasets and all datasets together.

We use the unweighted average recall (UAR), which is the

arithmetic mean of the values for specificity and sensitivity, as a

performance metric. For unequally sized groups, this metric is pref-

erable over accuracy, since it places equal weight on both specificity

and sensitivity.

Linear regression was performed on the TI and AQ data and the

Pearson's R, coefficient of determination (R2), and statistical signifi-

cance are presented.

2.6 | Comparison with machine learning methods

Four different machine learning algorithms were applied on the

segmentation data (all datasets: parcellations and segmentations

using FreeSurfer [see appendices for complete list]) to compare

classification accuracies with the presented method: decision tree

classifier, support vector machine, logistic regression, and neural

network. They were implemented using the Python‐based Scikit‐
learn module (Pedregosa et al., 2011). Although a neural network is

not expected to work well for segmented, preprocessed data and

small sample sizes, it was included for completion. LOOCV was used

to predict the diagnostic status of the left‐out individual, and the

percentage of correct classifications for each method was calculated

following 5000 iterations of training and testing (a 44/1 split for

training/testing with split randomization and no random seed for

training).

3 | RESULTS

3.1 | Behavioral phenotype

The average AQs for the ASDs and TDs were similar to previous

reports in the literature (Lugnegard, Hallerback, & Gillberg, 2015;

Ruzich et al., 2015) with 23.0 � 9.3 and 12.2 � 7.0, respectively

(p ¼ 0.00009, d ¼ 1.31). Table 3 shows the linear regression results

between AQ and cross‐validated TIs for each of the data sets. Figure

4 illustrates the correlation using SCV data, including the regression

line.

3.2 | Brain segmentation results

Following Bonferroni correction within the family of macroscopic

segmentations (total intracranial volume, brain volume, cortical gray

matter volume, WM, and SCV; p < 0.01), only SCV achieved

significance (p ¼ 0.0009). The results of the macroscopic segmenta-

tions are listed in Table 1. Segmentation results with group averages
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and significance values can be found for SCV, Th, Ar, and WM

in Appendices A–D, respectively. For these segmentations, group

differences were apparent after Bonferroni correction for

several ROIs.

Within the family of SCV, the ASD group had enlarged hippo-

campi bilaterally, right thalamus, and left nucleus pallidus. From the

cortical ROIs, significant differences in thickness were found for the

left caudal anterior, and rostral anterior cingulate gyrus, right fusi-

form gyrus, bilateral entorhinal gyri, right parahippocampal gyrus,

right inferior and superior temporal gyri, as well as the pericalcarine

gyri bilaterally. For Ar, only the inferior temporal gyri bilaterally and

the left banks of the superior temporal sulcus achieved significance.

No WM segmentations were significantly different following

Bonferroni correction.

3.3 | Overall classifier performance

The method was applied both on individual FreeSurfer segmenta-

tions (SCV, Th, Ar, and WM) and all the datasets together. The

resulting TI values were statistically compared and the results are

presented in Table 4. Figure 5 shows the receiver operator char-

acteristic (ROC) curve, including area under the ROC (AUC), for

each dataset. Figure 6 shows the TIs of the individuals using all

structural data, together with group averages (ASD: 30.5 � 32.7,

C: � 30.5 � 41.4) and 95% confidence intervals (ASD: 15.0,

C: 21.0).

The greatest diagnostic accuracies were obtained using individ-

ual structural datasets (SCV, Ar, and WM), while the greatest effect

sizes and significance levels were obtained from SCV and all datasets

combined. The AUC was highest for SCV and all datasets showing

that they confer the greatest diagnostic accuracy across the spec-

trum of TIs.

Compared with the machine learning methods (see Table 5), the

present method was minimally outperformed only by the decision

tree classifier (accuracy 67.5% compared with 66.1%). However,

when optimizing the cutoff value, it outperformed all the algorithms

(73.2%). The optimization of the cutoff value (selection of a threshold

for the TI that produces the highest accuracy) was performed with

one individual excluded (using the TIs for n� 1 subjects), so one

cannot expect a “learning” effect.

4 | DISCUSSION

Individuals in our study were classifiable as having autism or not with

high accuracy using only the pattern of gray matter sizes from

structural brain magnetic resonance imaging. It is our belief that the

potential of this method is considerable, and that this study acts as a

proof‐of‐concept that one could classify psychiatric disorders neu-

roradiologically, even when dealing with such a heterogeneous dis-

order as ASD. ASD is a neurodevelopmental disorder with subtle

diffuse neuroanatomical differences, and for such disorders, one

cannot expect individual ROIs or neurophysiological biomarkers to

have particularly good predictive values at the individual level, which

is why multivariate models outperform univariate models in terms of

prediction (Sabuncu et al., 2015).

The performance of the current method could be further

improved by incorporating data about white matter and functional

neurophysiology, somatic biomarkers, and behavioral questionnaires;

any quantitative measure that reliably differentiates between ASDs

and TDs can be implemented to increase its diagnostic accuracy.

Our present morphometric results are mostly in line with pre-

vious research. A review by Amaral, Schumann, and Nordahl (2008)

showed that although children tend to have larger total brain, gray

and white matter volumes, these tend to normalize toward adult-

hood. Our results for these measures were insignificant following

Bonferroni correction. Also, we did not find the corpus callosum to be

smaller in ASDs, as in previous studies (Bellani, Calderoni, Muratori,

& Brambilla, 2013). Moreover, specific cortical ROIs that we found to

have altered thicknesses and areas (see Appendices A–C, respec-

tively) correspond well both to those in other neuroanatomical

studies, as well as to the ROIs that have been implicated in neuro-

physiological and histopathological studies. The relevant differences

identified in this study clustered around the cingulate gyrus, temporal

cortex (including the fusiform and entorhinal gyri), and the para-

hippocampal gyrus, all of which are parts of the limbic cortex. The

limbic system and temporal cortex have consistently been shown to

be impacted in ASD.

A comment regarding the discrepancy in the classification results

using all or individual datasets is warranted. Using SCV, Ar, and WM

data alone in the classification yielded higher diagnostic accuracy

compared to when used in conjunction with all datasets, perhaps due

to the particularly poor discrimination by Th data where the group

TIs overlap (see Figure 5). This could indicate the presence of

different anatomical endophenotypes in our sample; we did not,

however, have enough power to perform subgroup analyses. It could

also represent an idiosyncrasy due to the small sample size, which is

another reason to include a larger sample in a replication study.

Given that the SCV dataset had the highest correlation to the AQ, it

is possible that this represents a behavioral endophenotype.

TAB L E 3 Linear regression results for total index using
different data sets and the autism quotient

Data set R R2 p F‐test

SCV 0.51 0.26 <0.0005 F(1,43) ¼ 15.140

Th 0.16 0.03 0.28 F(1,43) ¼ 1.192

Ar 0.37 0.14 0.01 F(1,43) ¼ 6.869

WM 0.35 0.12 0.02 F(1,43) ¼ 6.096

All data 0.44 0.19 0.003 F(1,43) ¼ 10.089

Note: Pearson's R, R2, and significance level are presented for the linear

correlation between the total index for different data sets and the

autism quotient.

Abbreviations: Ar, cortical area; SCV, subcortical volume; Th, cortical

thickness; WM, white matter volume.
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4.1 | Limitations of the study

Our sample was not population based, which could inflate diagnostic

accuracy due to lower than normal variation. The TD group had

similar AQs as other TD groups in previous research. However, the

AQs for our ASD cases was similar to, or lower than those of previous

studies, which might reflect a milder phenotype and thus underesti-

mate the results. As with previous studies, ours has a rather small

sample, and replications of the present method should aim to include

larger samples for more robust baselines with which to compare

potential patients; this would also improve sampling issues.

Furthermore, the classification was only used on a sample with

autism. As such, conclusions about its specificity for autism cannot be

drawn definitively. Further work should include a sample with other

neurodevelopmental disorders on which our method can be applied

in order to ensure that it does not classify neurodevelopmental dis-

orders in general, rather than ASD specifically. Since we did not

include individuals with IQ < 80, generalization of these results to

that group is precluded. Due to differences in neuroanatomy be-

tween the sexes (Lenroot & Giedd, 2010), females were not included.

Moreover, the sample only included adult participants. The contin-

uous brain development throughout childhood leads to higher

interindividual variation. Given that autism is often diagnosed at an

early age, it would be interesting to investigate how the method

would perform on a very young sample. However, less stable di-

agnoses and differing neurodevelopmental trajectories require larger

sample sizes than doing the same for adults. Finally, despite studies

showing the reliability of FreeSurfer segmentation results across

pipelines, a potential issue is that several imaging centers were used

in this study. It would have been preferable to use one imaging center

F I GUR E 4 The total index (TI), based on subcortical volume data (SCV), and the autism quotient (AQ) showed a moderate statistically
significant correlation (F(1,42) ¼ 15.140, p < 0.0005), with an R2 of 0.26. Removal of the typically developing (TD) outlier (a residual of 3.11
standard deviations from the regression line) slightly improved the regression results (F(1,43) ¼ 19.687, R2 ¼ 0.32, p < 0.0005). ASD, autism

spectrum disorder

TAB L E 4 Statistical results for TI

values obtained following LOOCV
Dataset Student's t‐test (p) Cohen's d AUC UAR (%)a Maximal UAR (cutoff)b

SCV 0.0013 0.98 0.792 72.9 78.9% (� 6)

Th 0.0026 0.88 0.732 66.4 72.6% (� 5)

Ar 0.026 0.60 0.742 75.6 77.7% (� 1)

WM 0.050 0.50 0.714 75.9 75.9% (0)

All data 0.0013 0.95 0.789 66.1 73.2% (12)

Note: Unpaired, one‐tailed Student's t‐test.

Abbreviations: Ar, cortical area; AUR, area under curve; LOOCV, leave‐one‐out cross‐validation;

SCV, subcortical volume; Th, cortical thickness; TI, total index; UAR, unweighted average recall;

WM, white matter volume.
aUAR presented using a standard cutoff value of TI ¼ 0.
bMaximal UAR obtained when optimizing the cutoff value for TI to yield the highest UAR.
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or to regress out site effects. Unfortunately, since these data were

recorded before the development of the method, the groups were

not site matched, which precludes the use of regression analysis, lest

one also regress out the effect of the presence of diagnosis. We

recommend that a replication study should aim to employ a ho-

mogenous data acquisition and analysis pipeline to reduce the

possible influence of random error. On the other hand, positive

findings across centers points to the robustness of the neuroana-

tomical differences between the groups.

4.2 | Use in the study of ASD

A currently unsolved issue complicating research surrounding ASD in

general, and its neuroimaging in particular, is the fact that it lacks

both biological and construct validity (Waterhouse, London, & Gill-

berg, 2017); there is no agreed upon brain‐based model of ASD and

the behavioral symptoms have been found to be highly heteroge-

neous across patients. Until subgroups of ASD have been identified

and defined, this will remain a limiting factor for the field. A further

complicating issue is that inter‐rater reliability of the diagnosis is less

than 100%. Any classification system is intricately dependent on the

validity of the clinical diagnosis, and it would be a logical fallacy to

assume that a classification system can outperform the clinical

interview, given that the classification grouping is based on the

clinical diagnosis.

The heterogeneity in ASD is a complication for multivariate an-

alyses, such as this one, especially with small sample sizes. Defining

subgroups of autism is central to ASD diagnostics in general and also

of importance if brain‐based classification systems are to be accurate

enough at the individual level. Given that subgroups of ASD have

different neuroanatomical patterns, actual case‐control differences

from multivariate analyses will be underestimated. One way to

minimize this effect would be to standardize the clinical diagnostic

procedure; if possible, the same psychiatrist should diagnose all

included cases, as in this sample. Furthermore, a majority of patients

with ASD have neuropsychiatric comorbidities, such as ADHD. Such

patients were excluded in the present study. However, given the

clinical overlap of neuropsychiatric disorders, a replication study with

pairwise comparison of cases with autism, ADHD, and both is

necessary to determine specificity of the method, and hence its

clinical relevance.

The TI from this method is a continuous variable that resembles

the nondichotomous clinical expression of ASD and allows for

correlational studies with regard to clinical data. Ecker et al. (2010)

were the first to show a correlation between the results of a

F I GUR E 5 Receiver operating characteristic (ROC) showing the area under the curve (AUC) for cross‐validated total indices using

different data sets. ALL, all structural data sets; Ar, cortical area; SCV, subcortical gray matter volume; Th, cortical thickness; WM, white
matter volume. The dashed red line represents a chance probability of 50%
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multivariate analysis and the AQ. Using gray matter data, they

found correlations of 0.51 and 0.22 for the left and right hemi-

spheres, respectively. Using SCV, we also found a moderate cor-

relation with AQ (R ¼ 0.51). Other studies have done the same for

other behavioral measures, such as the Autism Diagnostic Interview

and the Autism Diagnostic Observation Schedule, and by making

the comparison between multivariate analyses and questionnaires

one can make them more objective and show their biological

validity.

Macrocephaly in ASD has been associated with regressive

symptoms and low IQ (Amaral et al., 2017). Since this sample had

normal IQ and no significant brain volume difference, normalization

for brain volume was not performed. Even though the macroscopic

segmentations in this study (except SCV) did not reach significance, a

frequent neuroanatomical finding in ASD is an increased intracranial

volume. A replication study using a population‐based sample could

shed light on whether these findings are due to sampling differences.

The question of regressing out intracranial or brain volume for ASD

remains open, since in doing so, one could remove the effect of a

rather stable neuroanatomical biomarker. The loss of information

must be weighed against what is gained, and the decision will ulti-

mately depend on the specific classification method employed and

whether or not it improves its accuracy.

4.3 | Applicability of the method on other
psychiatric conditions

A possible future direction is to use the method as a general diag-

nostic aid. By compiling data from several disorders, one can apply

the method on an individual for each disorder to get a neurological

profile based on disorder‐specific TIs and develop best fits for

different disorders (like a risk profile), as well as for behavioral

measures in the healthy population, such as personality traits. This

would be similar to how the Mini‐International Neuropsychiatric

Interview (Sheehan et al., 1998) and the Structured Clinical Interview

for DSM (First, Williams, Karg, & Spitzer, 2015) are being used

currently during initial psychiatric assessments to guide further

evaluations, but from an objective neurobiological viewpoint rather

than from self‐report questionnaires.

4.4 | Methodological discussion

Rather than just being a binary classifier, the outcome measure (TI) is

a continuous variable. This is beneficial since it gives a probabilistic

estimate of the association with the underlying disorder and allows

for correlational studies to be performed.

Utilization of machine learning methods requires specific

expertize, limiting its practical usability, and rendering it unavailable

to most scientists and clinical practitioners. The presented method

requires only elementary mathematical knowledge and a spread-

sheet, making it widely available. Despite this, the diagnostic accu-

racy of the present method is comparable to studies using machine

learning on neuroimaging data: a maximal cross‐validated classifi-

cation accuracy of 78.9% compared to 59%–88% for studies using

magnetic resonance imaging.

Careful consideration of the underlying neurobiology should be

made regarding the choice of parameter selection. For example, since

F I GUR E 6 Total index values for all participants using all
segmentation data sets. The figure shows the group averages with
error bars representing 95% confidence intervals (CIs). ASD, autism

spectrum disorder; TD, typically developed

TAB L E 5 Classification results, following LOOCV, for machine

learning algorithms when applied on all structural datasets
(parcellations and segmentations from FreeSurfer)

Method Classification accuracy (%)

Presented classification method 66.1 (73.2% maximal UAR)

Decision tree classifier 67.5

Support vector machine 56.8

Logistic regression 58.1

Neural network (multilayer perceptron) 53.6

Abbreviations: LOOCV, leave‐one‐out cross‐validation; UAR,

unweighted average recall.
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the function of white matter tracts more closely relates to tract

thickness and connectivity than to the volume of a particular white

matter segment, utilization of diffusion tensor imaging data may yield

superior results compared with segmentation data. Similarly, some

cortical parcellations (e.g., V1, primary motor cortex, and Broca's

area) rest on logical assumptions about underlying function, and as

such parcellated data may yield higher accuracies than pure voxel‐
based analyses.

Previous studies have shown improvements in classification ac-

curacy for ASD both when using functional data, as well as when

using several modalities at once, lending credence to the potential of

further improvement of this method with the inclusion of functional

neurophysiological data.

While FreeSurfer segmentation data have been shown to be

reliable, any analysis pipeline includes several steps (acquisition,

preprocessing, and segmentation), each of which can induce small

errors. As such, it is advisable that the pipeline within a study be

standardized. In line with this, the previous studies with the lowest

UAR (Nielsen et al., 2013; Sabuncu et al., 2015) were the ones using

data from open databases containing data with different acquisition

pipelines.

4.5 | Recommendations for future multivariate
analyses

Based on the reasoning above, we recommend that future studies

attempting multivariate analysis (1) include larger sample sizes, (2)

focus on well‐defined patient cohorts, preferably diagnosed by the

same physician (at least for heterogeneous disorders such as ASD),

(3) test the method on another clinical sample (e.g., another neuro-

psychiatric disorder if investigating ASD) to assess its specificity, (4)

include clinically relevant behavioral data, with which classification

results can be compared, and that can potentially also be used in the

analysis, (5) employ a standardized data acquisition pipeline that is

up‐to‐date regarding hardware and software versions, (6) utilize

several imaging modalities at once, and (7) base the selection of

parameters on careful consideration of the underlying neurobiolog-

ical processes for each disorder.

5 | CONCLUSION

Our method was utilized on magnetic resonance imaging data and

yielded a maximal diagnostic accuracy of 78.9% for ASD when

compared to the clinical interview, which is the gold standard of

clinical diagnosis. The main contribution of this study is the devel-

opment of a novel and simple multivariate classification method that

requires limited specific expertize without sacrificing diagnostic ac-

curacy in comparison with machine learning methods. This study

adds to previous studies indicating it might be an achievable goal to

classify psychiatric disorders—even such a heterogeneous disorder as

ASD—using neuroimaging methods.
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AP P END I X A Subcortical volume (SCV) segmentation results

Region of interest Laterality/part ASD, mean ± SD (cm3) TD, mean ± SD (cm3) p‐value

Brain stem ‐ 22.70 � 2.4 21.28 � 2.5 0.06

Cerebellum cortex Left 55.75 � 6.0 55.49 � 5.8 0.88

Right 57.71 � 6.3 55.23 � 5.7 0.18

Cerebellum white matter Left 15.75 � 2.3 16.32 � 2.5 0.43

Right 15.51 � 2.6 16.11 � 2.4 0.43

Corpus callosum Anterior 0.92 � 0.2 0.87 � 0.2 0.33

Mid‐anterior* 0.51 � 0.1 0.44 � 0.1 0.04

Central* 0.47 � 0.1 0.40 � 0.1 0.01

Mid‐posterior 0.46 � 0.1 0.41 � 0.1 0.05

Posterior 1.00 � 0.2 0.89 � 0.2 0.11

Thalamus Left* 8.43 � 0.8 7.54 � 1.2 0.007

Right** 7.62 � 0.7 6.85 � 0.8 0.002

Caudate nucleus Left* 4.12 � 0.6 3.69 � 0.6 0.03

Right* 4.25 � 0.7 3.83 � 0.6 0.03
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AP P END I X A (Continued)

Region of interest Laterality/part ASD, mean ± SD (cm3) TD, mean ± SD (cm3) p‐value

Nucleus pallidus Left** 1.78 � 0.2 1.44 � 0.3 0.0001

Right* 1.75 � 0.2 1.60 � 0.2 0.04

Amygdala Left* 1.65 � 0.3 1.41 � 0.4 0.02

Right 1.79 � 0.2 1.67 � 0.4 0.22

Hippocampus Left** 4.28 � 0.5 3.69 � 0.6 0.0007

Right** 4.46 � 0.5 3.66 � 0.6 0.00002

Putamen Left 6.30 � 0.9 6.38 � 0.6 0.74

Right 5.97 � 0.8 5.97 � 0.8 0.98

Accumbens area Left 0.67 � 0.1 0.68 � 0.1 0.84

Right 0.66 � 0.1 0.63 � 0.1 0.47

Ventral diencephalon Left 4.23 � 0.4 4.00 � 0.4 0.07

Right* 4.20 � 0.4 3.75 � 0.6 0.004

Abbreviations: ASD, autism spectrum disorder; TD, typically developed.

*p < 0.05, **p < 0.002, **Significance level after Bonferroni correction within the family of SCV ¼ 0.05/26 ¼ 0.0019.

AP P END I X B Cortical thickness (Th) segmentation results

Region of interest Laterality ASD, mean ± SD (mm) TD, mean ± SD (mm) p‐value

Caudal anterior cingulate Left** 2.69 � 0.3 2.25 � 0.3 0.00002

Right 2.40 � 0.3 2.25 � 0.3 0.07

Rostral anterior cingulate Left** 2.91 � 0.3 2.51 � 0.3 0.0001

Right* 2.71 � 0.2 2.44 � 0.3 0.002

Isthmus cingulate Left 2.54 � 0.3 2.39 � 0.3 0.11

Right 2.49 � 0.2 2.38 � 0.2 0.15

Posterior cingulate Left 2.53 � 0.2 2.41 � 0.3 0.07

Right* 2.51 � 0.2 2.30 � 0.3 0.004

Insula Left 3.08 � 0.1 2.98 � 0.2 0.08

Right 3.06 � 0.2 2.98 � 0.3 0.20

Lingual Left* 2.10 � 0.1 2.23 � 0.2 0.05

Right* 2.17 � 0.2 2.24 � 0.1 0.04

Fusiform Left* 2.69 � 0.2 2.56 � 0.2 0.03

Right** 2.79 � 0.2 2.46 � 0.2 0.000004

Entorhinal Left** 3.29 � 0.4 2.81 � 0.4 0.0005

Right** 3.28 � 0.4 2.70 � 0.4 0.0005

Parahippocampal Left* 2.75 � 0.3 2.43 � 0.4 0.008

Right** 2.75 � 0.3 2.31 � 0.4 0.0001

Precuneus Left 2.40 � 0.1 2.43 � 0.2 0.58

Right 2.45 � 0.1 2.43 � 0.1 0.75

Cuneus Left* 1.96 � 0.1 2.11 � 0.2 0.004

Right* 1.98 � 0.2 2.15 � 0.2 0.002

(Continues)
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AP P END I X B (Continued)

Region of interest Laterality ASD, mean ± SD (mm) TD, mean ± SD (mm) p‐value

Superior frontal Left 2.68 � 0.4 2.70 � 0.1 0.78

Right 2.65 � 0.1 2.66 � 0.2 0.79

Rostral middle frontal Left 2.40 � 0.2 2.38 � 0.2 0.59

Right* 2.25 � 0.1 2.36 � 0.2 0.05

Caudal middle frontal Left 2.58 � 0.1 2.56 � 0.1 0.49

Right 2.49 � 0.2 2.52 � 0.1 0.49

Lateral orbitofrontal Left 2.65 � 0.2 2.59 � 0.2 0.29

Right 2.54 � 0.2 2.51 � 0.2 0.61

Medial orbitofrontal Left 2.41 � 0.2 2.32 � 0.1 0.08

Right 2.28 � 0.2 2.25 � 0.2 0.43

Pars triangularis Left 2.48 � 0.1 2.46 � 0.1 0.63

Right 2.38 � 0.1 2.50 � 0.1 0.08

Pars opercularis Left 2.69 � 0.2 2.56 � 0.1 0.31

Right 2.52 � 0.2 2.54 � 0.2 0.86

Pars orbitalis Left 2.78 � 0.2 2.71 � 0.2 0.34

Right 2.58 � 0.3 2.61 � 0.3 0.70

Frontal pole Left 2.60 � 0.3 2.65 � 0.2 0.47

Right 2.64 � 0.3 2.69 � 0.3 0.87

Precentral Left 2.59 � 0.1 2.64 � 0.1 0.54

Right* 2.50 � 0.2 2.60 � 0.1 0.04

Paracentral Left 2.43 � 0.1 2.43 � 0.2 0.97

Right 2.43 � 0.1 2.40 � 0.1 0.43

Postcentral Left 2.14 � 0.1 2.19 � 0.1 0.14

Right 2.12 � 0.1 2.17 � 0.1 0.19

Supramarginal Left 2.51 � 0.2 2.55 � 0.1 0.35

Right 2.54 � 0.4 2.55 � 0.2 0.87

Banks of superior temporal sulcus Left 2.43 � 0.1 2.39 � 0.2 0.44

Right* 2.64 � 0.2 2.50 � 0.2 0.02

Inferior parietal Left* 2.38 � 0.1 2.47 � 0.1 0.02

Right 2.46 � 0.1 2.50 � 0.2 0.34

Superior parietal Left* 2.20 � 0.1 2.26 � 0.1 0.05

Right 2.21 � 0.1 2.28 � 0.1 0.05

Inferior temporal Left* 2.65 � 0.2 2.53 � 0.2 0.04

Right** 2.76 � 0.2 2.43 � 0.3 0.000001

Middle temporal Left* 2.80 � 0.2 2.61 � 0.2 0.003

Right* 2.88 � 0.2 2.65 � 0.2 0.0008

Superior temporal Left* 2.79 � 0.2 2.64 � 0.2 0.009

Right** 2.85 � 0.2 2.65 � 0.2 0.0005

Transverse temporal Left 2.45 � 0.3 2.53 � 0.3 0.36

Right 2.52 � 0.3 2.58 � 0.2 0.40
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AP P END I X B (Continued)

Region of interest Laterality ASD, mean ± SD (mm) TD, mean ± SD (mm) p‐value

Temporal pole Left 3.50 � 0.6 3.21 � 0.4 0.06

Right* 3.68 � 0.5 3.16 � 0.5 0.002

Pericalcarine Left** 1.76 � 0.2 1.97 � 0.1 0.0002

Right** 1.74 � 0.2 2.02 � 0.2 0.000005

Lateral occipital Left* 2.11 � 0.2 2.29 � 0.2 0.0009

Right 2.25 � 0.2 2.35 � 0.1 0.06

Abbreviations: ASD, autism spectrum disorder; TD, typically developed.

*p < 0.05, **p < 0.0007, **Significance level after Bonferroni correction within the family of Th ¼ 0.05/68 ¼ 0.00074.

AP P END I X C Cortical area (Ar) segmentation results

Region of interest Laterality ASD, mean ± SD (cm2) TD, mean ± SD (cm2) p‐value

Caudal anterior cingulate Left 7.11 � 1.4 6.44 � 1.0 0.07

Right 8.85 � 2.4 8.10 � 1.4 0.21

Rostral anterior cingulate Left* 8.99 � 1.6 8.03 � 1.3 0.03

Right* 7.65 � 1.4 6.65 � 1.7 0.03

Isthmus cingulate Left 11.44 � 2.3 11.67 � 2.1 0.73

Right 10.20 � 2.0 10.54 � 1.9 0.56

Posterior cingulate Left 12.83 � 2.5 11.87 � 1.3 0.12

Right 13.15 � 2.4 12.28 � 1.3 0.15

Insula Left 23.21 � 4.1 21.77 � 2.1 0.15

Right* 23.65 � 3.8 21.18 � 3.0 0.02

Lingual Left* 32.27 � 4.7 29.38 � 3.8 0.03

Right* 32.23 � 4.1 29.72 � 3.8 0.04

Fusiform Left 35.75 � 3.3 33.29 � 4.9 0.05

Right 35.43 � 4.8 32.00 � 4.8 0.10

Entorhinal Left 4.56 � 1.2 4.16 � 0.8 0.20

Right* 3.85 � 1.0 3.31 � 0.8 0.05

Parahippocampal Left 7.59 � 1.3 7.11 � 1.1 0.17

Right 7.61 � 1.2 7.01 � 0.9 0.08

Precuneus Left 41.52 � 4.7 39.89 � 4.7 0.25

Right 43.42 � 6.9 42.14 � 5.6 0.50

Cuneus Left 15.48 � 1.7 14.41 � 2.1 0.07

Right 15.68 � 2.1 15.48 � 1.9 0.75

Superior frontal Left 77.92 � 9.1 76.51 � 8.6 0.60

Right 76.08 � 9.2 74.05 � 9.5 0.47

Rostral middle frontal Left 62.72 � 6.5 58.70 � 8.0 0.07

Right* 66.47 � 8.0 59.40 � 9.6 0.01

Caudal middle frontal Left* 26.34 � 4.8 23.50 � 3.5 0.03

Right 22.71 � 4.6 22.17 � 3.8 0.67

Lateral orbitofrontal Left* 28.05 � 4.0 24.36 � 3.0 0.001

Right* 27.99 � 3.3 24.59 � 3.8 0.003

(Continues)
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AP P END I X C (Continued)

Region of interest Laterality ASD, mean ± SD (cm2) TD, mean ± SD (cm2) p‐value

Medial orbitofrontal Left 19.39 � 2.5 18.82 � 2.2 0.42

Right 19.69 � 2.8 18.72 � 2.3 0.21

Pars triangularis Left 13.56 � 2.0 13.46 � 2.1 0.87

Right 15.87 � 2.5 16.17 � 2.6 0.70

Pars opercularis Left 18.94 � 4.0 17.52 � 3.1 0.20

Right 14.85 � 2.4 14.22 � 1.8 0.33

Pars orbitalis Left 6.92 � 0.7 6.56 � 0.9 0.15

Right* 8.68 � 1.0 7.92 � 1.4 0.04

Frontal pole Left 2.39 � 0.3 2.43 � 0.3 0.65

Right 3.15 � 0.3 3.18 � 0.5 0.84

Precentral Left 52.01 � 6.3 50.12 � 4.6 0.27

Right 53.66 � 5.1 51.14 � 4.2 0.08

Paracentral Left 14.64 � 2.4 14.44 � 1.6 0.73

Right 16.46 � 2.8 16.31 � 2.5 0.84

Postcentral Left 46.38 � 5.2 43.56 � 4.2 0.05

Right 43.72 � 5.7 41.64 � 4.5 0.19

Supramarginal Left 43.17 � 5.3 40.53 � 4.5 0.08

Right* 40.87 � 6.4 37.11 � 4.8 0.03

Banks of superior temporal sulcus Left** 11.69 � 2.0 9.68 � 1.6 0.0007

Right* 10.66 � 1.3 9.43 � 1.6 0.008

Inferior parietal Left 50.39 � 5.4 47.03 � 8.1 0.10

Right 61.01 � 8.5 57.99 � 8.5 0.24

Superior parietal Left 57.73 � 5.8 57.02 � 5.5 0.68

Right 58.22 � 5.5 57.23 � 6.4 0.58

Inferior temporal Left** 38.27 � 4.3 31.84 � 5.6 0.00009

Right** 37.15 � 4.6 31.01 � 5.8 0.0003

Middle temporal Left* 34.74 � 4.0 30.76 � 4.3 0.002

Right* 39.59 � 4.7 33.70 � 4.7 0.001

Superior temporal Left 40.62 � 4.9 38.31 � 4.4 0.11

Right 38.31 � 4.7 36.06 � 4.3 0.10

Transverse temporal Left 4.77 � 0.8 4.54 � 0.7 0.32

Right 3.68 � 0.7 3.44 � 0.5 0.20

Temporal pole Left 5.11 � 0.8 5.49 � 0.5 0.06

Right 4.44 � 0.8 4.35 � 0.7 0.71

Pericalcarine Left 13.62 � 2.4 12.67 � 2.3 0.18

Right 15.28 � 2.5 13.98 � 2.5 0.09

Lateral occipital Left 52.15 � 6.0 49.84 � 5.1 0.17

Right* 51.06 � 6.1 46.79 � 4.5 0.01

Abbreviations: ASD, autism spectrum disorder; TD, typically developed.

*p < 0.05, **p < 0.0007, **Significance level after Bonferroni correction within the family of Ar ¼ 0.05/68 ¼ 0.00074.
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AP P END I X D White matter (WM) segmentation results

Region of interest Laterality ASD, mean ± SD (cm3) TD, mean ± SD (cm3) p‐value

Caudal anterior cingulate Left 3.03 � 0.5 2.81 � 0.4 0.10

Right* 3.46 � 0.7 3.11 � 0.4 0.05

Rostral anterior cingulate Left 2.87 � 0.5 2.73 � 0.6 0.36

Right 2.43 � 0.4 2.18 � 0.4 0.03

Isthmus cingulate Left 4.22 � 0.7 4.23 � 0.8 0.96

Right 3.79 � 0.6 3.74 � 0.7 0.80

Posterior cingulate Left* 4.84 � 0.6 4.45 � 0.4 0.02

Right 4.75 � 0.8 4.39 � 0.5 0.07

Insula Left* 9.04 � 1.6 8.14 � 0.9 0.03

Right* 9.33 � 1.7 7.93 � 1.1 0.002

Lingual Left* 5.95 � 1.0 5.06 � 0.7 0.002

Right* 5.96 � 1.0 5.13 � 0.9 0.008

Fusiform Left 7.33 � 0.7 6.80 � 1.4 0.10

Right 7.25 � 0.9 6.77 � 1.2 0.14

Entorhinal Left 0.95 � 0.3 0.80 � 0.2 0.07

Right* 0.78 � 0.2 0.62 � 0.2 0.007

Parahippocampal Left* 1.78 � 0.3 1.57 � 0.3 0.03

Right* 1.95 � 0.4 1.59 � 0.3 0.002

Precuneus Left 10.13 � 1.4 9.59 � 1.3 0.18

Right 10.80 � 1.8 10.19 � 1.6 0.23

Cuneus Left* 2.57 � 0.4 2.25 � 0.5 0.02

Right 2.52 � 0.4 2.31 � 0.4 0.09

Superior frontal Left 19.37 � 2.3 18.82 � 2.3 0.43

Right 18.81 � 2.0 18.07 � 3.4 0.37

Rostral middle frontal Left 13.61 � 1.6 12.80 � 1.9 0.14

Right* 14.25 � 2.2 12.68 � 2.3 0.03

Caudal middle frontal Left 7.39 � 1.2 6.82 � 1.0 0.10

Right 6.17 � 1.1 5.87 � 1.1 0.36

Lateral orbitofrontal Left* 7.13 � 1.0 6.37 � 0.9 0.009

Right* 7.17 � 0.9 6.57 � 1.0 0.04

Medial orbitofrontal Left 3.77 � 0.7 3.78 � 0.6 0.94

Right 3.72 � 0.5 3.74 � 0.5 0.91

Pars triangularis Left 3.08 � 0.5 3.16 � 0.6 0.59

Right 3.46 � 0.6 3.52 � 0.5 0.73

Pars opercularis Left 4.09 � 0.9 3.76 � 0.8 0.21

Right 3.55 � 0.7 3.32 � 0.4 0.16

Pars orbitalis Left 0.99 � 0.1 0.91 � 0.1 0.09

Right* 1.31 � 0.2 1.18 � 0.3 0.11

Frontal pole Left 0.25 � 0.1 0.25 � 0.1 0.89

Right 0.34 � 0.1 0.34 � 0.1 0.83
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AP P END I X D (Continued)

Region of interest Laterality ASD, mean ± SD (cm3) TD, mean ± SD (cm3) p‐value

Precentral Left 13.53 � 3.1 13.49 � 1.7 0.96

Right 13.88 � 2.5 14.01 � 1.6 0.84

Paracentral Left 3.97 � 0.7 4.08 � 0.6 0.61

Right 4.81 � 1.0 5.04 � 0.8 0.39

Postcentral Left 8.36 � 1.1 7.75 � 0.9 0.05

Right 8.05 � 1.2 7.61 � 1.1 0.21

Supramarginal Left 9.40 � 1.4 8.93 � 1.2 0.23

Right 9.54 � 1.6 8.83 � 1.4 0.12

Banks of superior temporal sulcus Left* 32.4 � 0.8 25.4 � 0.7 0.004

Right* 3.13 � 0.5 2.77 � 0.7 0.05

Inferior parietal Left 10.92 � 1.4 9.92 � 1.7 0.04

Right 13.03 � 2.0 12.23 � 1.7 0.16

Superior parietal Left 13.02 � 1.6 12.17 � 2.5 0.17

Right 12.66 � 1.6 12.13 � 2.0 0.33

Inferior temporal Left* 7.06 � 0.8 6.05 � 1.3 0.002

Right* 6.79 � 0.8 58.1 � 1.3 0.004

Middle temporal Left* 5.79 � 0.8 5.25 � 0.9 0.04

Right* 6.73 � 0.8 5.93 � 1.2 0.01

Superior temporal Left 8.29 � 1.3 7.89 � 1.1 0.27

Right 7.18 � 1.2 6.75 � 0.9 0.20

Transverse temporal Left 0.86 � 0.2 0.82 � 0.1 0.42

Right 0.61 � 0.1 0.60 � 0.1 0.83

Temporal pole Left* 0.76 � 0.1 0.85 � 0.1 0.02

Right 0.70 � 0.2 0.70 � 0.2 0.98

Pericalcarine Left 3.24 � 0.8 2.92 � 0.6 0.13

Right* 3.39 � 0.7 2.87 � 0.6 0.01

Lateral occipital Left 9.85 � 1.3 9.23 � 1.3 0.12

Right* 9.94 � 1.5 8.73 � 1.2 0.005

Abbreviations: ASD, autism spectrum disorder; TD, typically developed.

*p < 0.05.

18 of 18 - SAROVIC ET AL.


	Autism classified by magnetic resonance imaging: A pilot study of a potential diagnostic tool
	1 | INTRODUCTION
	2 | METHOD
	2.1 | Population
	2.2 | Data acquisition
	2.3 | Data processing
	2.4 | Statistical method used for analyzing segmented magnetic resonance imaging data
	2.5 | LOOCV and performance metric
	2.6 | Comparison with machine learning methods

	3 | RESULTS
	3.1 | Behavioral phenotype
	3.2 | Brain segmentation results
	3.3 | Overall classifier performance

	4 | DISCUSSION
	4.1 | Limitations of the study
	4.2 | Use in the study of ASD
	4.3 | Applicability of the method on other psychiatric conditions
	4.4 | Methodological discussion
	4.5 | Recommendations for future multivariate analyses

	5 | CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST


