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A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that

inflicted unprecedented public health and economic burden in all nooks and corners of

the world. Although the control of COVID-19 largely focused on the use of basic public

health measures (primarily based on using non-pharmaceutical interventions, such as

quarantine, isolation, social-distancing, face mask usage, and community lockdowns)

initially, three safe and highly-effective vaccines (by AstraZeneca Inc., Moderna Inc.,

and Pfizer Inc.), were approved for use in humans in December 2020. We present a

new mathematical model for assessing the population-level impact of these vaccines

on curtailing the burden of COVID-19. The model stratifies the total population into

two subgroups, based on whether or not they habitually wear face mask in public.

The resulting multigroup model, which takes the form of a deterministic system of

nonlinear differential equations, is fitted and parameterized using COVID-19 cumulative

mortality data for the third wave of the COVID-19 pandemic in the United States.

Conditions for the asymptotic stability of the associated disease-free equilibrium, as

well as an expression for the vaccine-derived herd immunity threshold, are rigorously

derived. Numerical simulations of the model show that the size of the initial proportion of

individuals in the mask-wearing group, together with positive change in behavior from

the non-mask wearing group (as well as those in the mask-wearing group, who do

not abandon their mask-wearing habit) play a crucial role in effectively curtailing the

COVID-19 pandemic in the United States. This study further shows that the prospect

of achieving vaccine-derived herd immunity (required for COVID-19 elimination) in the

U.S., using the Pfizer or Moderna vaccine, is quite promising. In particular, our study

shows that herd immunity can be achieved in the U.S. if at least 60% of the population

are fully vaccinated. Furthermore, the prospect of eliminating the pandemic in the U.S. in

the year 2021 is significantly enhanced if the vaccination program is complemented with

non-pharmaceutical interventions at moderate increased levels of compliance (in relation

to their baseline compliance). The study further suggests that, while the waning of natural

and vaccine-derived immunity against COVID-19 induces only a marginal increase in
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the burden and projected time-to-elimination of the pandemic, adding the impacts of

therapeutic benefits of the vaccines into the model resulted in a dramatic reduction in

the burden and time-to-elimination of the pandemic.

Keywords: COVID-19, vaccine, social-distancing, herd immunity, face mask, stability, reproduction number

1. INTRODUCTION

The novel coronavirus (COVID-19) pandemic, which started
as a pneumonia of an unknown etiology late in December
2019 in the city of Wuhan, became the most devastating public
health challengemankind has faced since the 1918/1919 influenza
pandemic. The COVID-19 pandemic, which rapidly spread
to essentially every nook and corner of the planet, inflicted
devastating public health and economic challenges globally. As of
January 24, 2021, the pandemic accounted for about 100 million
confirmed cases and 2, 128, 721 cumulative mortality globally.
Similarly, as of this date, the U.S., which reported its first COVID-
19 case on January 20, 2020, recorded over 25, 123, 857 confirmed
cumulative cases and 419, 204 deaths (1).

COVID-19, a member of the coronavirus family of RNA

viruses, is primarily transmitted from human-to-human through
inhalation of respiratory droplets from both symptomatic and

asymptomatically-infectious humans (2) albeit there is limited
evidence that COVID-19 can be transmitted via exhalation
through normal breathing and aerosol (3). The incubation period
of the disease is estimated to be between 2 and 14 days (with a
mean of 5.1 days), and majority of individuals infected with the
disease show mild or no clinical symptoms (4). The symptoms
typically include coughing, fever and shortness of breadth (for
mild cases) and pneumonia for severe cases (4). The people most
at risk of dying from, or suffering severe illness from, COVID-
19 are those with co-morbidities (such as individuals with
diabetes, obesity, kidney disease, cardiovascular disease, chronic
respiratory disease, etc.). Younger people, frontline healthcare
workers and employees who maintain close contacts (within 6
feet) with customers and other co-workers (such as meat factory
workers, retail store workers, etc.) are also at risk.

Prior to the approval of the three safe and effective vaccines
(by AstraZeneca, Moderna, and Pfizer) for use in humans in
December 2020 (5, 6), the control and mitigation efforts against
COVID-19 have been focused on the use of non-pharmaceutical
interventions (NPIs), such as quarantine, self-isolation, social
(physical) distancing, the use of face masks in public, hand
washing (with approved sanitizers), community lockdowns,
testing, and contact tracing. Of these NPIs, the use of face masks
in public was considered to be themainmechanism for effectively
curtailing COVID-19 (4, 7–9). Furthermore, owing to its limited
supply, the approved anti-COVID drug remdesivir is reserved for
use to treat individuals in hospital who display severe symptoms
of COVID-19. The U.S. started administering the Pfizer and
Moderna vaccines by December 2020 (5, 6). Another vaccine by
Janssen Biotech Inc., the vaccine division of Johnson & Johnson,
received Emergency Use Authorization (EUA) in the U.S. in late
February 2021 (10).

The Pfizer and Moderna vaccines, each offering a protective
efficacy of about 95% (11–13), are genetic vaccines that trigger
the immune system to recognize the coronavirus’ spike protein
and develop antibodies against it (11, 14). Each of these vaccines
is administered in a two-dose structure (one dose to prime the
immune system, and the second to boost it). For the Pfizer
vaccine, the second dose is administered 19–42 days after the
first dose, while that for the Moderna vaccine is administered
3–4 weeks after the first dose. Both vaccines need to be stored
at appropriate refrigeration temperatures (15). The AstraZeneca
vaccine, on the other hand, has estimated protective efficacy
of 70% (11–13). It uses a replication-deficient chimpanzee viral
vector that contains the genetic material of the SARS-CoV-2
virus spike protein (13). The AstraZeneca vaccine also requires
two doses (1 month apart) to achieve immunity, and unlike the
Pfizer andModerna vaccines, does not have to be stored in super-
cold temperatures (13). The Johnson & Johnson vaccine is an
adenovirus single-dose vaccine. The efficacy of the Johnson &
Johnson vaccine for preventing severe disease is 85% (16, 17).
Like in the case of AstraZeneca vaccine, the Johnson & Johnson
vaccine does not require extremely cold temperatures for storage.

An effective vaccine typically offers a range of protective
and therapeutic benefits to the vaccinated individual, such
as reducing the risk of acquiring infection and reducing the
severity of disease, hospitalization, andmortality and accelerating
recovery in breakthrough infections (for vaccines that offer
strong therapeutic benefits) (18, 19). A vaccine that has protective
and therapeutic efficacies, when introduced into a population
during an epidemic, will play a major role in curtailing the
epidemic, and its effective deployment would be dependent
on the rollout strategy used. The goal of this study is to
design a structured mathematical model that will allow for the
realistic assessment of the population-level impact of vaccination
programs based on using three of the aforementioned four
COVID-19 vaccines (namely the AstraZeneca, Moderna, and
Pfizer vaccines), with emphasis on determining the optimal
coverage rate needed to achieve vaccine-derived herd immunity
(which is required for eliminating the pandemic). A secondary
objective of this study is to explore whether the prospect for
eliminating the pandemic in the U.S. will be enhanced if the
vaccination program is combined with NPIs, such as social-
distancing at some level of compliance.

Numerous mathematical models, of various types, have been
developed and used to provide insight into the transmission
dynamics and control of COVID-19. The modeling types used
include statistical (20), compartmental/deterministic [e.g., (4,
7–9, 21–23)], stochastic [e.g., (24, 25)], network [e.g., (26)],
and agent-based [e.g., (27)]. A notable feature of the model
to be developed in the current study is its multigroup nature.
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Specifically, the total population will be subdivided into two
groups, namely those who habitually wear face mask in public
and those who do not. Cumulative mortality data for COVID-
19 pandemic in the U.S. will be used to parameterize the model.
The expected outcome of the study is the determination of the
minimum vaccine coverage level needed to effectively curtail (or
eliminate) community transmission of COVID-19 in the U.S.,
and quantify the reduction in the required vaccine coverage if
the vaccination program is supplemented with face masks usage
(under various face masks efficacy and compliance parameter
space). The rest of the paper is organized as follows. The novel
multigroup model is formulated in section 2. The parameters of
the model are also estimated, based on fitting the model with U.S.
COVID-19 mortality data for the third wave of the pandemic.
The model is rigorously analyzed, with respect to the asymptotic
stability of the disease-free equilibrium of the model, in section 3.
A condition for achieving community-wide vaccine-derived herd
immunity is also derived. Numerical simulations of the model
are reported in section 4. Discussions and concluding remarks
are presented in section 5. It is worth stating that this study was
carried out between December 2020 and January 2021, when the
U.S. was experiencing the third wave of the pandemic (hence,
what follows should be viewed in this context).

2. FORMULATION OF MATHEMATICAL
MODEL

In order to account for heterogeneity in face masks usage
in the community, the total population of individuals in the
community at time t, denoted by N(t), is split into the total
sub-populations of individuals who do not habitually wear face
mask in public (labeled “non-mask users”), denoted by N1(t),
and the total sub-populations of those who habitually wear face
mask in public (labeled “mask users”), represented by N2(t). That
is, N(t) = N1(t) + N2(t). Furthermore, the sub-population
N1(t) is sub-divided into the mutually-exclusive compartments
of unvaccinated susceptible [S1u(t)], vaccinated susceptible
[S1v(t)], exposed [E1(t)], pre-symptomatically-infectious [P1(t)],
symptomatically-infectious [I1(t)], asymptomatically-infectious
[A1(t)], hospitalized [H1(t)], and recovered [R1(t)] individuals,
so that

N1(t) = S1u(t)+S1v(t)+E1(t)+P1(t)+I1(t)+A1(t)+H1(t)+R1(t).

Similarly, the total sub-population of the mask users, N2(t), is
stratified into the compartments for unvaccinated susceptible
[S2u(t)], vaccinated susceptible [S2v(t)], exposed [E2(t)], pre-
symptomatically-infectious [P2(t)], symptomatically-infectious
[I2(t)], asymptomatically-infectious [A2(t)], hospitalized [H2(t)],
and recovered [R2(t)] individuals. Hence,

N2(t) = S2u(t)+S2v(t)+E2(t)+P2(t)+I2(t)+A2(t)+H2(t)+R2(t).

2.1. Infection Rates
In this section, the functional form of the infection rate (or
effective contact rate) for a susceptible individual in group 1

or 2 will be derived. The model to be formulated has four
infectious classes, namely the classes for pre-symptomatic (Pi),
symptomatic (Ii), asymptomatic (Ai), and hospitalized (Hi)
individuals (i = 1, 2). Hence, the rate at which an individual
in group i acquires infection from an infectious individual in
any of the four infectious classes is given by the average number
of contacts per unit time (measured in days) for susceptible
individuals (denoted by ck; with k = {Pi, Ii,Ai,Hi} and i = 1, 2),
times the sum (over all infectious compartments in group i) of
the probability of transmission per contact with an infectious
individual in group i (denoted by β̂i) times the probability that
a random infectious contact the susceptible individual makes is
with an infectious individual in group i (denoted by ρk).

Let ck be the average number of contacts an individual in
epidemiological compartment k makes per unit time. It then
follows that the probability that a random contact this individual
makes is with someone else in epidemiological compartment k
is given by the total number contacts made by everyone in that
compartment, denoted by cki, divided by the total number of

contacts for the entire population. That is, ρk =
cki

ctotal
, where

ctotal = cSiuS1u(t)+ cSivS1v(t)+ cEiE1(t)+ cPiP1(t)+ cIiI1(t)

+ cAiA1(t)+ cHiH1(t)+ cRiR1(t), i = 1, 2.

Based on the above definitions, it follows that the infection rate
of a susceptible individual in group i, denoted by λi (i = 1, 2), is
given by

λ1 = cS1u

[

β̂P1cP1P1 + β̂I1cI1I1 + β̂A1cA1A1 + β̂H1cH1H1

ctotal

]

+ cS1v(1− εo)

[

β̂P2cP2P2 + β̂I2cP2I2 + β̂A2cA2A2 + β̂H2cH2H2

ctotal

]

,

(2.1)

Similarly, the infection rate for a susceptible individual in group
2, denoted by λ2, is given by:

λ2 = (1− εi)cS2u

[

β̂P1cP1P1 + β̂I1cI1I1 + β̂A1cA1A1 + β̂H1cH1H1

ctotal

]

+ cS2v(1− εi)(1− εo)
[

β̂P2cP2P2 + β̂I2cP2I2 + β̂A2cA2A2 + β̂H2cH2H2

ctotal

]

.

(2.2)

In Equations (2.1) and (2.2), the parameters 0 < εo < 1
and 0 < εi < 1 represent the outward and inward protective
efficacy, respectively, of face masks to prevent the transmission
of infection to a susceptible individual (εo) as well as prevent
the acquisition of infection (εi) from an infectious individual.
For mathematical tractability (needed to reduce the number of
parameters of the model to be developed), we assume that every
member of the population has the same number of contacts. That
is, we assume that cS1u = cS1v = · · · = cR2 = kc. Hence,
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ctotal = kcN(t). Let βk = β̂kkc. Using this definition of βk and
ctotal = kcN in Equations (2.1) and (2.2) gives, respectively,

λ1 =

[

βP1P1 + βI1 I1 + βA1A1 + βH1H1

N

+ (1− εo)
βP2P2 + βI2 I2 + βA2A2 + βH2H2

N

]

, (2.3)

and,

λ2 = (1− εi)

[

βP1P1 + βI1 I1 + βA1A1 + βH1H1

N

+ (1− εo)
βP2P2 + βI2 I2 + βA2A2 + βH2H2

N

]

. (2.4)

2.2. Equations of Mathematical Model
Before giving the equations for the two-group vaccinationmodel,
it is important to recall that vaccination against COVID-19
in the U.S. is administered to individuals of a certain eligible
age [e.g., as of April 2021, people 12 years of age and older
for the Pfizer vaccine (28) and 18 years of age and older for
the Moderna vaccine]. Consequently, in formulating a model
that incorporates COVID-19 vaccines, it is important that
demographic parameters (birth and natural death) are included
to account for the new cohort of susceptible individuals that
reach the minimum eligible age for receiving the vaccine. The
equations for the rate of change of the sub-populations of non-
mask users (i.e., individuals in group 1) is given by the following
deterministic system of nonlinear differential equations (where a
dot represents differentiation with respect to time t):

Ṡ1u = 5 + α21S2u − λ1S1u − (α12 + ξv + µ)S1u,

Ṡ1v = ξvS1u + α21S2v − (1− εv)λ1S1v − (α12 + µ)S1v,

Ė1 = λ1S1u + (1− εv)λ1S1v + α21E2 − (α12 + σ1 + µ)E1,

Ṗ1 = σ1E1 + α21P2 − (α12 + σP + µ)P1,

İ1 = rσPP1 + α21I2 − (α12 + φ1I + γ1I + µ + δ1I)I1,

Ȧ1 = (1− r)σPP1 + α21A2 − (α12 + γ1A + µ)A1,

Ḣ1 = φ1II1 + α21H2 − (α12 + γ1H + µ + δ1H)H1,

Ṙ1 = γ1II1 + γ1AA1 + γ1HH1 + α21R2 − (α12 + µ)R1.
(2.5)

where, λ1 is as defined in (2.3).
In Equation (2.5), the parameter5 is the recruitment rate into

the population (this parameter also captures the inflow of new
susceptible individuals that have reached the minimum eligibility
age for getting a vaccine). Furthermore, α21 is the rate at which
individuals in the habitual mask-wearing group 2 change their
behavior and move to the non-masking group 1, and α12 is the
rate at which individuals in group 1 change their non-masking
behavior and move to group 2. For mathematical tractability,
we do not distinguish the change of behavior parameters (α12

and α21) for unvaccinated and vaccinated individuals, and we
assume that all recruited individuals (at the rate 5) are initially
in the non-masking group. The parameter ξv represents the per

capita vaccination rate, and the vaccine is assumed to induce
protective efficacy 0 < εv < 1 in all vaccinated individuals
(i.e., the vaccine is imperfect). Natural deaths occurs in all
epidemiological classes at a rate µ. Individuals in the E1 class
progress to the pre-symptomatic stage at a rate σ1, and those in
the pre-symptomatic class (P1) transition out of this class at a rate
σP [a proportion, q, of which become symptomatic, and move to
the I class at a rate qσP, and the remaining proportion, 1 − q,
move to the asymptomatically-infectious class at a rate (1−q)σP].
Symptomatic infectious individuals are hospitalized at a rate φ1I .
They recover at a rate γ1I and die due to the disease at a rate δ1I .
Hospitalized individuals die of the disease at the rate δ1H .

Similarly, the equations for the rate of change of the sub-
populations of mask users (i.e., individuals in group 2) is given
by the following system of nonlinear differential equations:

Ṡ2u = α12S1u − λ2S2u − (α21 + ξv + µ)S2u,

Ṡ2v = ξvS2u + α12S1v − (1− εv)λ2S2v − (α21 + µ)S2v,

Ė2 = λ2S2u + (1− εv)λ2S2v + α12E1 − (α21 + σ2 + µ)E2,

Ṗ2 = σ2E2 + α12P1 − (α21 + σP + µ)P2,

İ2 = qσPP2 + α12I1 − (α21 + φ2I + γ2I + µ + δ2I)I2,

Ȧ2 = (1− q)σPP2 + α12A1 − (α21 + γ2A + µ)A2,

Ḣ2 = φ2II2 + α12H1 − (α21 + γ2H + µ + δ2H)H2,

Ṙ2 = γ2II2 + γ2AA2 + γ2HH2 + α12R1 − (α21 + µ)R2,
(2.6)

with λ2 defined in (2.4). Thus, Equations (2.5) and (2.6) represent
the multi-group model for assessing the population-level impact
of face masks usage and vaccination on the transmission
dynamics and control of COVID-19 in a community. The flow
diagram of the model {(2.5), (2.6)} is depicted in Figure 1 (the
state variables and parameters of the model are described in
Tables 1, 2, respectively).
The multi-group model {(2.5), (2.6)} is an extension of the two-
group mask-use model in (7) by, inter alia:

(i) allowing for back-and-forth transitions between the two
groups (mask-users and non-mask-users), to account for
human behavioral changes vis a vis decision to either be (or
not to be) a face mask user in public;

(ii) incorporating an imperfect vaccine, which offers protective
efficacy (0 < εv < 1) against acquisition of COVID-19
infection;

(iii) allowing for disease transmission by pre-symptomatic and
asymptomatically-infectious individuals.

2.3. Data Fitting and Parameter Estimation
In this section, cumulative COVID-19 mortality data for the
U.S. (for the period October 12, 2020–January 20, 2021) will be
used to fit the model (2.5)–(2.6) in the absence of vaccination.
The fitting will allow us to estimate some of the key (unknown)
parameters of the model. In particular, the parameters to be
estimated from the data are the community transmission rate
for individuals who do not wear face masks in public (β1),
the transmission rate for individuals who habitually wear face
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FIGURE 1 | Flow diagram of the model {(2.5), (2.6)}.

masks in public (β2), the inward efficacy of masks in preventing
disease acquisition by susceptible individuals who habitually
wear face masks (εi), the outward efficacy of masks to prevent
the spread of disease by infected individuals who habitually
wear face masks (εo), the rate at which people who do not
wear masks adopt a mask-wearing habit (α12), the rate at
which those who habitually wear face masks stop wearing
masks in public (α21), and the mortality rates of symptomatic
infectious and hospitalized individuals (δi and δh, respectively).
It should be mentioned that modification parameters ηP, ηI , ηA,,
and ηH relating to disease transmission by pre-symptomatic
infectious, symptomatic infectious, asymptomatic infectious, and
hospitalized individuals, respectively, are introduced in the forces
of infection λ1 and λ2, so that βj = ηjβk (j ∈ {Pk, Ik,Ak,Hk}, k ∈

{1, 2}). The model was fitted using a standard nonlinear least
squares approach, which involved using the inbuilt MATLAB
minimization function “lsqcurvefit” to minimize the sum of the
squared differences between each observed cumulative mortality
data point and the corresponding cumulative mortality point
obtained from themodel (2.5)–(2.6) in the absence of vaccination
(4, 29, 30). The choice of mortality over case data is motivated
by the fact that mortality data for COVID-19 is more reliable
than case data [see (8) for details]. The estimated values of the
fitted parameters, together with their 95% confidence intervals,
are tabulated in Table 3. The (fixed) values of the remaining

parameters of themodel are tabulated inTable 4. Figure 2 depicts
the fitting of the model to the observed cumulative COVID-
19 mortality data for the U.S. Furthermore, Figure 2 compares
the simulations of the model using the fitted (estimated) and
fixed parameters (given in Tables 3, 4) with the observed daily
COVID-19 mortality for the United States.

3. MATHEMATICAL ANALYSIS

Since the model {(2.5), (2.6)}monitors the temporal dynamics of
human populations, all of its state variables and parmeters are
non-negative. Consider the following biologically-feasible region
for the model:

� =

{

(S1u, S1v, S2u, S2v,E1,E2, P1, P2, I1, I2,A1,A2,H1,H2,R1,R2)

∈ R16
+ :N(t) ≤

5

µ

}

. (3.1)

Theorem 3.1. The region � is positively-invariant with respect to
the model {(2.5), (2.6)}.
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TABLE 1 | Description of the state variables of the model {(2.5), (2.6)}.

State

variable

Description

S1u Population of non-vaccinated susceptible individuals who do not

habitually wear face masks

S2u Population of non-vaccinated susceptible individuals who habitually

face masks

S1v Population of vaccinated susceptible individuals who do not habitually

wear face masks

S2v Population of vaccinated susceptible individuals who habitually wear

face masks

E1 Population of exposed (newly-infected) individuals who do not

habitually wear face masks

E2 Population of exposed (newly-infected) individuals who habitually wear

face masks

P1 Population of pre-symptomatic infectious individuals who do not

habitually wear face masks

P2 Population of pre-symptomatic infectious individuals who habitually

wear face masks

I1 Population of symptomatically-infectious individuals who do not

habitually wear face masks

I2 Population of symptomatically-infectious individuals who habitually

wear face masks

A1 Population of asymptomatically-infectious individuals who do not

habitually wear face masks

A2 Population of asymptomatically-infectious individuals who habitually

wear face masks

H1 Population of hospitalized individuals who do not habitually wear face

masks

H2 Population of hospitalized individuals who habitually wear face masks

R1 Population of recovered individuals who do not habitually wear face

masks

R2 Population of recovered individuals who habitually wear face masks

Proof: Adding all the equations of the model {(2.5), (2.6)} gives

Ṅ = 5 − µN − δ1II1 − δ1HH1 − δ2II2 − δ2HH2. (3.2)

Recall that all parameters of the model {(2.5), (2.6)} are non-
negative. Thus, it follows, from (3.2), that

Ṅ ≤ 5 − µN. (3.3)

Hence, if N > 5
µ
, then Ṅ < 0. Furthermore, by applying a

standard comparison theorem (37) on (3.3), we have:

N(t) ≤ N(0)e−µt +
5

µ
(1− e−µt).

In particular, N(t) ≤ 5
µ
if N(0) ≤ 5

µ
. If N(0) > 5

µ
[i.e., N(0) is

outside �], then N(t) > 5
µ
, for all t > 0 but with lim

t→∞
N(t) =

5

µ
(and this type of solution trajectory strives to enter the region
�). Thus, every solution of the model {(2.5), (2.6)} with initial
conditions in � remains in � for all time t > 0. In other
words, the region � is positively-invariant and attracts all initial

TABLE 2 | Description of the parameters of the model {(2.5), (2.6)}.

Parameters Description

5 Recruitment rate into the population

µ Natural mortality rate

βP1(βP2) Effective contact rate for pre-symptomatic individuals who do not

wear (wear)

face masks

βI1(βI2) Effective contact rate for infectious symptomatic individuals who

do not wear (wear)

face masks

βA1(βA2) Effective contact rate for symptomatically-infectious individuals

who do not wear (wear)

face masks

βH1(βH2) Effective contact rate for hospitalized individuals who do not wear

(wear)

face masks

0 < ǫ0 < 1 Outward protective efficacy of face masks

0 < ǫi < 1 Inward protective efficacy of face masks

α12 Rate at which non-habitual face masks wearers choose to

become habitual wearers

α21 Rate at which habitual face masks wearers choose to become

non-habitual wearers

ξv Per capita vaccination rate

0 < εv < 1 Protective efficacy of the vaccine

σ1(σ2) Rate at which exposed individuals who do not wear (wear) face

masks progress to the

corresponding pre-symptomatic infectious stage

σP Rate at which pre-symptomatic infectious individuals progress to

symptomatically-infectious or asymptomatically-infectious stage

r(q) Proportion of pre-symptomatic infectious individuals who do not

wear (wear) face masks

that become symptomatically-infectious

φ1I (φ2I ) Hospitalization rate for symptomatically-infectious individuals who

do not wear (wear)

face masks

γ1A(γ2A) Recovery rate for asymptomatically-infectious individuals who do

not wear (wear)

face masks

γ1I (γ2I ) Recovery rate for symptomatically-infectious individuals who do

not wear (wear)

face masks

γ1H (γ2H) Recovery rate for hospitalized individuals who do not wear (wear)

face masks

δ1I (δ2I ) Disease-induced mortality rate for symptomatically-infectious

individuals who do not

wear (wear) face masks

δ1H (δ2H ) Disease-induced mortality rate for hospitalized individuals who do

not wear (wear)

face masks

solutions of the model {(2.5), (2.6)}. Hence, it is sufficient to
consider the dynamics of the flow generated by {(2.5), (2.6)} in
� (where the model is epidemiologically- and mathematically
well-posed) (38).
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TABLE 3 | Estimated (fitted) parameter values and their 95% confidence intervals

for the model (2.5)–(2.6) in the absence of vaccination, using COVID-19 mortality

data for the U.S. for the period from October 12, 2020 to January 20, 2021.

Parameter Value Confidence interval

β1 0.224334/day [0.201828, 0.370926]/day

β2 0.072957/day [0.000002, 0.178140]/day

εo 0.507666 (dimensionless) [0.282518, 0.692441] (dimensionless)

εi 0.623667 (dimensionless) [0.020807, 0.999999] (dimensionless)

α12 0.006229/day [0.004732, 0.008508]/day

α21 0.000798/day [0.000000, 0.000999]/day

δi 0.000573/day [0.000000, 0.002399]/day

δh 0.009505/day [0.000708, 0.011030]/day

3.1. Asymptotic Stability of Disease-Free
Equilibrium
The model {(2.5), (2.6)} has a unique disease-free equilibrium
(DFE), obtained by setting all the infected compartments of the
model to zero, given by:

E0 :
(

S∗1u, S
∗
1v, S

∗
2u, S

∗
2v,E

∗
1 ,E

∗
2 , P

∗
1 , P

∗
2 , I

∗
1 , I

∗
2 ,A

∗
1 ,A

∗
2 ,H

∗
1 ,H

∗
2 ,R

∗
1 ,R

∗
2

)

=
(

S∗1u, S∗1v, S
∗
2u, S

∗
2v, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

,

where,

S∗1u =
5(α21 + ξv + µ)

(ξv + µ)(ξv + α12 + α21 + µ)
,

S∗1v =
5(µ2ξv + 2µ5α21ξv + α2

21ξv + µξ 2v + α2
21ξ

2
v )

µ(µ + α12 + α21)(µ + ξv)(µ + ξv + α12 + α21)
,

S∗2u =
5α12

(ξv + µ)(ξv + α12 + α21 + µ)
,

S∗2v =
5ξvα12(2µ + α12 + α21 + ξv)

µ(µ + α12 + α21)(µ + ξv)(µ + ξv + α12 + α21)
.

The local asymptotic stability property of the DFE (E0) can be
explored using the next generation operator method (39, 40).
In particular, using the notation in (39), it follows that the
associated non-negative matrix (F) of new infection terms, and
the M-matrix (V), of the linear transition terms in the infected
compartments, are given, respectively, by (where the entries fi
and gi, i = 1, · · · , 8, of the non-negative matrix F, are given in
Appendix I):

F =

































0 f1 f2 f3 f4 0 f5 f6 f7 f8
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 g1 g2 g3 g4 0 g5 g6 g7 g8
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

































,

and,

V =



































K1 0 0 0 0 −α21 0 0 0 0

−σ1 K2 0 0 0 0 −α21 0 0 0

0 −rσp K3 0 0 0 0 −α21 0 0

0 −(1− r)σp 0 K4 0 0 0 0 −α21 0

0 0 −φ1I 0 K5 0 0 0 0 −α21

−α12 0 0 0 0 K6 0 0 0 0

0 −α12 0 0 0 0 K7 0 0 0

0 0 −α12 0 0 0 −qσp K8 0 0

0 0 0 −α12 0 0 −(1− q)σp 0 K9 0

0 0 0 0 −α12 0 0 −φ2I 0 K10



































,

where K1 = α12 + σ1 + µ,K2 = α12 + σP + µ,K3 = α12 +

φ1I + γ1I + µ + δ1I ,K4 = α12 + γ1A + µ,K5 = α12 + γ1H +

µ + δ1H ,K6 = α21 + σ2 + µ,K7 = α21 + σP + µ,K8 =

α21 + φ2I + γ2I + µ + δ2I ,K9 = α21 + γ2A + µ and K10 =

α21 + γ2H + µ+ δ2H . The theoretical analysis will be carried out
for the special case of the model {(2.5), (2.6)} in the absence of
the back-and-forth transitions between the no-mask and mask-
user groups (i.e., the special case of the model with α12 = α21 =

0). This is needed for mathematical tractability. It follows that
the control reproduction number of the model {(2.5), (2.6)} (with
α12 = α21 = 0), denoted by Rc, is given by (where ρ is the
spectral radius):

Rc = ρ(FV−1)

=

σ1[S
∗
1u + (1− εv)S

∗
1v]((K̄5[rK̄4βI1 + (1− r)K̄3βA1 ]+ rK̄4φ1IβH1 )σp

+K̄3K̄4K̄5βP1 )

N∗

5
∏

i=1

K̄i

,

(3.4)

where, K̄1 = σ1+µ, K̄2 = σP+µ, K̄3 = φ1I+γ1I+µ+δ1I , K̄4 =

γ1A + µ, K̄5 = γ1H + µ + δ1H . The result below follows from
Theorem 2 of (39).

Theorem 3.2. The DFE (E0) of the model {(2.5), (2.6)}, with
α12 = α21 = 0, is locally-asymptotically stable if Rc < 1, and
unstable ifRc > 1.

The threshold quantity Rc is the control reproduction number
of the model {(2.5), (2.6)}. It measures the average number
of new COVID-19 cases generated by a typical infectious
individual introduced into a population where a certain fraction
of the population is protected (via the use of interventions,
such as face mask, social-distancing, and/or vaccination). The
epidemiological implication of Theorem 3.2 is that a small
influx of COVID-19 cases will not generate an outbreak in the
community if the control reproduction number (Rc) is brought
to, and maintained at a, value less than unity. In the absence of
public health interventions (i.e., in the absence of vaccination,
face mask usage and social-distancing), the control reproduction
number (Rc) reduces to the basic reproduction number (denoted
byR0), given by.
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TABLE 4 | Baseline values of the fixed parameters of the model (2.5)–(2.6).

Parameter Value References

σ1 (σ2) 1/2.5 (1/2.5)/day (31, 32)

σp 1/2.5/day (31, 32)

r (q) 0.2(0.2) (dimensionless) (33, 34)

φ1I 1/6/day (35)

φ2I 1/6/day (35)

γI 1/10/day (27, 36)

γA 1/5/day (35)

γH 1/8/day (27)

5 1.2× 104/day Estimated

µ 1/(79× 365)/day Estimated

ηP 1.25 (dimensionless) Assumed

ηI 1.0 (dimensionless) Assumed

ηA 1.50 (dimensionless) Assumed

ηH 0.25 (dimensionless) Assumed

ξv 2.97× 10−4/day Assumed

εv 0.70 (dimensionless) (12, 13)

R0 = Rc|ε0=εi=εv=S∗1v=S∗2v=0

=
σ1((K̄5[rK̄4βI1 + (1− r)K̄3βA1 ]+ rK̄4φ1IβH1 )σp + K̄3K̄4K̄5βP1 )

5
∏

i=1

K̄i

(3.5)

3.2. Derivation of Vaccine-Induced Herd
Immunity Threshold
Herd immunity is a measure of the minimum percentage of
the number of individuals in a community that is susceptible
to a disease that need to be protected (i.e., become immune) so
that the disease can be eliminated from the population. There
are two main ways to achieve herd immunity, namely through
acquisition of natural immunity (following natural recovery from
infection with the disease) or by vaccination. Vaccination is
the safest and fastest way to achieve herd immunity (41, 42).
For vaccine-preventable diseases, such as COVID-19, not every
susceptible member of the community can be vaccinated, for
numerous reasons (such as individuals with certain underlying
medical conditions, infants, pregnant women, or those who opt
out of being vaccinated for various reasons etc.) (9). So, the
question, in the context of vaccine-preventable diseases, is what is
the minimum proportion of susceptible individuals that we need
to vaccinate in order to achieve herd immunity (so that those
individuals that cannot be vaccinated will become protected
owing to the community-wide herd-immunity). In this section,
a condition for achieving vaccine-derived herd immunity in the
U.S. will be derived.

Let fv = S∗1v/N
∗, with N∗ = 5/µ, be the proportion of

susceptible individuals in Group 1 that have been vaccinated
at the disease-free equilibrium (E0). Using this definition in

Equation (3.4) gives:

Rc =

σ1(1− εvfv)((K̄5[rK̄4βI1 + (1− r)K̄3βA1 ]+ rK̄4φ1IβH1 )σp
+K̄3K̄4K̄5βP1 )

5
∏

i=1

K̄i

.

(3.6)
SettingRc, in Equation (3.6), to unity and solving for fv gives the
herd immunity threshold (denoted by f cv ) in terms of the basic
reproduction number (9, 21):

f cv =
1

εv

(

1−
1

R0

)

(for R0 > 1). (3.7)

It follows from (3.6) and (3.7) that Rc < (>)1 if fv >

(<)f cv . Further, Rc = 1 whenever fv = f cv . This result is
summarized below:

Theorem 3.3. Consider the special case of the model {(2.5), (2.6)}
with α12 = α21 = 0. Vaccine-induced herd immunity can be
achieved in the U.S., using an imperfect anti-COVID vaccine, if
fv > f cv (i.e., if Rc < 1). If fv < f cv (i.e., if Rc > 1), then the
vaccination programwill fail to eliminate the COVID-19 pandemic
in the U.S.

The epidemiological implication of Theorem 3.3 is that the use of
an imperfect anti-COVID vaccine can lead to the elimination of
the COVID-19 pandemic in the U.S. if the sufficient number of
individuals residing in the U.S. is vaccinated, such that fv > f cv .
The Vaccination program will fail to eliminate the pandemic
if the vaccine coverage level is below the aforementioned herd
immunity threshold (i.e., if fv < f cv ). Although vaccination,
no matter the coverage level, is always useful (i.e., vaccination
will always reduce the associated reproduction number, Rc,
thereby reducing disease burden, even if the program is unable
to bring the reproduction number to a value less than unity),
elimination can only be achieved if the herd immunity threshold
is reached (i.e., disease elimination is only feasible if the
associated reproduction number of the model is reduced to, and
maintained at, a value less than unity). The pandemic will persist
in the U.S. ifRc > 1.

Figure 3A depicts the cumulative mortality of COVID-19
in the U.S. for various steady-state vaccination coverage levels
(fv). This figure shows a decrease in cumulative mortality
with increasing vaccination coverage. In particular, a marked
decrease in cumulative mortality, in comparison to the baseline
cumulative mortality (blue curve in Figure 3A), is recorded when
herd immunity (i.e., when fv > f cv ) is attained (green curve
of Figure 3A). While a noticeable decrease in the cumulative
mortality is also observed when the vaccine coverage equals
the herd immunity threshold (gold curve of Figure 3A), the
cumulative mortality dramatically increases (in comparison to
the baseline, depicted by the blue curve of this figure) if the
vaccine coverage is below the herd immunity threshold (magenta
curve of Figure 3A).

The effect of vaccination coverage (fv) and efficacy (εv) on the
control reproduction number (Rc) is assessed by generating a
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FIGURE 2 | (A) Observed cumulative mortality (red dots), and the predicted cumulative mortality (blue curve) for the U.S. generated using the model (2.5)–(2.6) (in the

absence of vaccination) for the period from October 12, 2020 to January 20, 2021. (B) Simulations of the model (2.5)–(2.6) (without vaccination) using the estimated

(fitted) and fixed parameters tabulated in Tables 3, 4, respectively.

FIGURE 3 | Assessment of the effects of vaccine coverage (fv ) and efficacy (εv ) on COVID-19 dynamics in the U.S. (A) Simulations of the model {(2.5), (2.6)}, with

α12 = α21 = 0, showing the cumulative COVID-19 mortality in the U.S., as a function of time, for various values of vaccine coverage. Parameter values used are as

given by the baseline values in Tables 3, 4, with α12 = α21 = 0 and various values of fv. Magenta curve (fv = 0.3021 < 0.5900 = fcv ), blue curve (baseline parameter

values, and baseline level of social-distancing compliance inherent in the cumulative mortality data, for the period October 12, 2020–January 20, 2021, used to fit the

model), gold curve (fv = 0.5900 = fcv ) and green curve (fv = 0.9216 > 0.5900 = fcv ). The observed cumulative deaths data, fitted to the baseline scenario predicted by

the model (blue curve), is shown in red dots. (B) Contour plot of the control reproduction number (Rc) of the model {(2.5), (2.6)}, with α12 = α21 = 0, as a function of

vaccine coverage (fv ) and vaccine efficacy (εv ). Parameter values used are as given in Tables 3, 4, with α12 = α21 = 0.

TABLE 5 | Vaccine-induced herd immunity threshold (fcv ) for the U.S. for various levels of increases in baseline social-distancing compliance (cs).

Herd threshold Herd threshold (%) Herd threshold (%) Herd threshold (%)

Vaccine name (efficacy) cs = 0 (baseline) cs = 5 cs = 10 cs = 30

AstraZeneca (εv = 70%) fcv = 80 fcv = 77 fcv = 73 fcv = 53

Pfizer & Moderna (εv = 95%) fcv = 59% fcv = 56.4 fcv = 54 fcv = 39

Parameter values used are as given in Tables 3, 4, with α12 = α21 = 0.

contour plot ofRc, as a function of fv and εv. The results obtained
(Figure 3B) show that the values of the control reproduction
number for the U.S., during the simulation period (October

12, 2020–January 20, 2021), range from 0.4 to 2.2. Further, this
figure shows that the control reproduction number decreases
with increasing values of vaccination efficacy and coverage. For
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example, using the AstraZeneca vaccine (with efficacy εv =

0.7), about 80% of the U.S. population needs to be successfully
vaccinated (with the two AstraZeneca doses) in order to bring the
control reproduction number to a value less than unity. In other
words, this figure shows that herd immunity can be achieved
using the AstraZeneca vaccine in the U.S. if at least 80% of the
populace received the two doses of the AstraZeneca vaccine.
Using either the Pfizer or Moderna vaccine (each with efficacy
of about 95%), on the other hand, the control reproduction
number can be brought to a value less than unity (i.e., achieve
herd immunity) if at least 60% of the U.S. populace received
the two doses of either vaccine. Thus, this figure shows that
the prospect of achieving vaccine-derived herd immunity using
any of the three vaccines considered in this study (AstraZeneca,
Pfizer, and Moderna) is promising if the coverage is moderately-
high enough (with the prospect far more likely to be achieved
using the Pfizer or Moderna vaccine, in comparison to using the
AstraZeneca vaccine).

We also explored the potential impact of additional social-
distancing on the minimum vaccination coverage needed to
achieve herd immunity. It should, first of all, be stressed
that, since our model was parameterized using the cumulative
mortality data during the third wave of the pandemic in the
U.S. (October 12, 2020–January 21, 2021), the effects of other
non-pharmaceutical interventions, such as face masks usage and
social-distancing, are already embedded into the results/data. In
other words, the data (or the parametrization of our model)
already includes some baseline level of these interventions.
Specifically, we assume that the cumulative mortality data
includes a baseline level of social-distancing compliance in the
population (which is, clearly, quite high compared to what it was
during the early stages of the pandemic in the U.S.) We now
ask the question as to whether or not the minimum requirement
for 80 and 60% coverage needed to achieve herd immunity,
using the AstraZeneca or Pfizer/Moderna vaccine, respectively,
can be reduced if the baseline social-distancing compliance is
increased. In this study, we model social-distancing compliance
by multiplying the effective contact rates (β1 and β2) with the
factor 1 − cs, where 0 < cs ≤ 1 is a measure of the additional
social-distancing compliance (to the baseline social-distancing
compliance achieved during the beginning of our simulation
period; that is, by October 12, 2020).

We simulated the model {(2.5), (2.6)} using various values
of cs, and the results obtained are tabulated in Table 5. This
table shows that if an additional 5% of the U.S. population
observe social-distancing in public (in addition to the baseline
social-distancing compliance achieved by October 12, 2020), the
minimum vaccine coverages required to achieve herd immunity
using the AstraZeneca and Pfizer/Moderna vaccines reduce,
respectively, to 77 and 56.4%. Furthermore, if the increase in
baseline social-distancing compliance is 10%, the minimum
coverage needed to achieve herd immunity further reduce (but
marginally) to 73 and 54%, respectively. However, when the
increase in baseline social-distancing compliance is 30%, herd
immunity can be achieved using the AstraZeneca vaccine by
vaccinating only 53% of the U.S. population with this vaccine.
For this scenario, only about 39% of the U.S. population needs

to be vaccinated to achieve herd immunity if either the Pfizer or
Moderna vaccine is used.

Thus, this study shows that the prospect of achieving vaccine-
derived herd immunity in the U.S. using any of the three vaccines
considered in this study is greatly enhanced if the vaccination
program is complemented with an increased (and sustained)
social-distancing strategy (from its baseline effectiveness and
coverage level). In other words, if more people living in the U.S.
will continue to observe social-distancing (e.g., additional 30%
from the baseline social-distancing compliance), then COVID-19
elimination can be achieved if roughly only half the population is
vaccinated using the AstraZeneca vaccine, or 2 in 5 vaccinated if
either the Pfizer or Moderna vaccine is used instead. The U.S.
is currently using the latter vaccines. Hence, with about 30%
additional social-distancing compliance, we would only need to
vaccinate about 2 in 5 residents of the U.S. to achieve vaccine-
derived herd immunity (hence, eliminate the pandemic).

4. NUMERICAL SIMULATIONS:
ASSESSMENT OF CONTROL STRATEGIES

The model {(2.5), (2.6)} will now be simulated to assess the
population-level impact of the various intervention strategies
described in this study. In particular, our objective is to assess the
impact of social-distancing and face mask usage, implemented
as sole interventions and in combination with any of the
three vaccines (namely the AstraZeneca, Moderna, and Pfizer
vaccines), on curtailing (or eliminating) the burden of the
COVID-19 pandemic in the United States. Unless otherwise
stated, the simulations will be carried out using the estimated
(fitted) and fixed baseline values of the parameters of the
model tabulated in Tables 3, 4. Furthermore, unless otherwise
stated, the baseline initial size of the population of individuals
who habitually wear face masks in public (assumed to be
30%), denoted by N2(0), will be used in the simulations. The
numerical simulation results for the baseline scenario (i.e., where
baseline values of the parameters of the model, as well as
the baseline initial size of the mask-wearing population, are
used) will be illustrated in blue curves in the forthcoming
figures. Furthermore, all numerical simulations will be carried
out for the period starting from October 12, 2020 (which
corresponds to the onset of the third wave of the pandemic in
the United States).

4.1. Assessing the Impact of Initial
Population of Face Mask Wearers
The model (2.5)–(2.6) is simulated to assess the community-wide
impact of using face masks, as the sole intervention, in curtailing
the spread of the pandemic in the United States. Specifically, we
simulate the model using the baseline values of the parameters in
Tables 3, 4 and various values of the initial size of the population
of individuals who habitually wear face masks in public since
the beginning of the pandemic in the United States [denoted
by N2(0)]. It should be noted that the parameters associated
with other interventions (e.g., vaccination-related and social-
distancing-related parameters) are kept at their baseline values
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FIGURE 4 | Assessment of the impact of face mask usage, as a sole intervention, on COVID-19 pandemic in the U.S. Simulations of the model (2.5)–(2.6), showing

cumulative mortality, as a function of time, for (A) face mask transition parameters (α12 and α21 ) maintained at their baseline values, (B) mask-wearers strictly adhere

to wearing masks (α21 = 0) and non-mask-wearers transit to mask wearing at their baseline rate (α12 6= 0), and (C) non-mask wearers and mask-wearers do not

change their behavior (i.e., α12 = α21 = 0). Mask use change is implemented in terms of changes in the initial size of the population of individuals who wear face

masks (from the onset of simulations, on October 12, 2020). Blue curves (in each of the plots) represent the baseline scenarios where the initial size of the population

of mask wearers is fixed at 30%, and the transition parameters, α12 and α21, are maintained at their baseline values. Parameter values used in the simulations are as

given by the baseline values in Tables 3, 4, with different values of α12 and α21 (except for the blue curves, where α12 and α21 are fixed at their baseline values).

given in Tables 3, 4. Although a sizable number of U.S. residents
(notably individuals categorized in the first-tier priority group
for receiving the COVID-19 vaccine, such as frontline healthcare
workers, individuals at residential care facilities, the elderly etc.)
had already been vaccinated using one of the two vaccines that
received FDA Emergency Use Authorization in December 2020
[20.54 million vaccines doses of Pfizer and Moderna vaccines
had already been administered in the U.S. as of January 23, 2021
(43)], these vaccines were not expected to be widely available
to the general public until some time in March or April, 2021.
Consequently, we set March 15, 2021 as our reference point
for when we expect the vaccines to be widely available to the
general public. Under this scenario (of vaccines expected to be
widely available a few months after the initial starting point of
our simulations, namely October 12, 2020), the objective of this
set of simulations is to assess the impact of face masks usage, as
a sole intervention, in controlling the spread of the pandemic in
the U.S. before the two vaccines that received FDA EUA (Pfizer or
Moderna) become widely available to the general U.S. public (to
the extent that high vaccination coverage, such as vaccinating one
million U.S. residents per day, can be realistically achieved). The
new U.S. administration aims to vaccinate 100 million residents
during its first 100 days.

The simulation results obtained, depicted in Figure 4, show
(generally) that the early adoption of facemasks control measures
[as measured in terms of the initial proportion of the populace
who choose to habitually wear face masks whenever they are out
in the public, denoted by N2(0)] play a vital role in curtailing
the COVID-19 mortality in the U.S., particularly for the case
when mask-wearers do not abandon their masks-wearing habit
(i.e., α21 = 0). For the case where the parameters associated
with the back-and-forth transitions between the masking and
non-masking sub-populations (i.e., α12 and α21) are maintained
at their baseline values (given in Tables 3, 4), this figure shows

that the size of the initial proportion of individuals who wear
face masks has a significant impact on the cumulative COVID-
19 mortality, as measured in relation to the cumulative mortality
recorded when the initial proportion of mask wearers is at
baseline level (blue curves in Figure 4). In particular, a 34%
reduction in the cumulative mortality, in comparison to the
cumulative mortality for the baseline scenario, will be recorded
by March 15, 2021, if the initial proportion of mask-wearers is
40% (Figure 4A, magenta curve). Furthermore, the reduction
in cumulative mortality by March 15, 2021 increases to 52% if
the initial proportion of mask-wearers is 75% (Figure 4A, green
curve). On the other hand, for the case when mask-wearers
remain mask-wearers since the beginning of the simulation
period (i.e., since October 12, 2020), so that α21 = 0, while non-
mask wearers (i.e., those in Group 1) can change their behavior
and become mask-wearers (i.e., α12 6= 0), our simulations show
that the initial proportion of individuals who adopt masking
only marginally affects the cumulative mortality (Figure 4B),
in relation to the scenario in Figure 4A, where both α12 and
α21 are nonzero). In particular, if 40% of the U.S. population
adopted mask-wearing right from the aforementioned October
12, 2020, up to 37% of the baseline COVID-19 mortality can
be averted (Figure 4B, magenta curve), in comparison to the
baseline (Figure 4B, blue curve). Furthermore, the reduction
in baseline cumulative mortality rises to 53% if three in every
four Americans opted to wear face masks since the beginning
of the simulation period (Figure 4B, green curve). This also
represents a marginal increase in the cumulative deaths averted,
in comparison to the scenario when α12 6= 0 and α21 6= 0
(Figure 4A, green curve).

For the case when no back-and-forth transitions between the
two (mask-wearing and non-mask-wearing) groups is allowed
(i.e., when α12 = α21 = 0), our simulations show a
far more dramatic effect of face mask usage on COVID-19
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mortality (Figure 4C). For instance, this figure shows that higher
cumulative mortality is recorded, in comparison to the baseline
masks use scenario, when the initial size of the population of
mask wearers is 40% (Figure 4C, magenta curve), in comparison
to the blue curve of the same figure). Specifically, this represents
a 55% increase, in comparison to the baseline cumulative
mortality. This simulation result suggests that the 40% initial size
of the populace wearing face masks, during the onset of the third
wave of the pandemic in the U.S. (starting October 12, 2020), falls
below the mask-use compliance threshold level needed to reduce
the cumulative mortality during the third wave. On the other
hand, if the initial size of the population of face masks wearers is
increased to 50%, a decrease (and not an increase) in cumulative
mortality is recorded, in comparison to the cumulative mortality
for the baseline scenario (Figure 4C, gold curve, in comparison
to the blue curve of the same figure). Further dramatic reduction
(52%), in relation to the baseline scenario, will be achieved if
the initial size of the mask-wearing population is increased to
75% (Figure 4C, green curve, in comparison to the blue curve
of the same figure). Thus, these simulations show that, for the
case when no change of mask-wearing behavior is allowed (i.e.,
everyone remains in their original group), there is a threshold
value of the initial size of the population of mask wearers above
(below) which the cumulative mortality is decreased (increased).
Specifically, this simulation shows that (for this scenario with
α12 = α21 = 0), at least half the population need to be
wearing face masks right from the beginning of the epidemic to
ensure greater reduction in cumulative mortality, in comparison
to the baseline scenario (when the initial size of themask-wearing
sub-population is 30%).

In summary, comparing the same initial mask coverage
(i.e., the same curve colors) in Figures 4A–C, it is clear that
the scenario where individuals are allowed to change their
behaviors from not wearing face masks to wearing face masks
(i.e., α12 6= 0), but masks wearers do not abandon masks
wearing (i.e., α21 = 0), depicted in Figure 4B, resulted in
saving more lives (albeit only slightly), compared to the scenarios
where no change of behavior is allowed for members of each
group (Figure 4C) or members of both groups can change their
behavior (Figure 4A). In other words, our study emphasizes the
need for non-maskers to adopt a mask-wearing culture (i.e.,
α12 6= 0) and for habitual mask-wearers not to abandon their
mask-wearing habit (i.e., α21 = 0).

4.2. Assessing the Impact of Additional
Social-Distancing Compliance
In this section, we carry out numerical simulations to assess the
potential impact of increases in the baseline social-distancing
compliance (cs) on the control of the pandemic. Specifically,
the model {(2.5), (2.6)} will be simulated using the baseline
parameter values tabulated in Tables 3, 4 with various values
of cs (corresponding to the various levels of the increase in
baseline social-distancing compliance in the U.S., starting from
October 12, 2020). It should be noted that, for these simulations,
the baseline initial size of the masking population, N2(0), is

maintained. Furthermore, vaccine-related parameter values are
maintained at their baseline levels in Tables 3, 4.

The simulation results obtained, depicted in Figure 5, show
that, in the absence of additional increase in baseline social-
distancing (i.e., cs = 0, so that social-distancing compliance
is maintained at the baseline level inherent in the cumulative
mortality data by October 12, 2020), the U.S. would record about
500,000 cumulative deaths by March 15, 2021 (Figure 5A, blue
curve). For this (baseline social-distancing) scenario, the U.S.
would have recorded a peak daily mortality of about 3, 000 deaths
on January 5, 2021 (Figure 5B, blue curve). The simulations in
Figure 5 further show that the cumulative mortality (Figure 5A)
and daily mortality (Figure 5B) decrease with increasing
levels of the additional social-distancing compliance (cs) in
the population. For example, if the baseline social-distancing
achieved during the onset of the third wave of the pandemic in
the U.S. is further increased by only 5%, the simulation results
show that up to a 19% of the cumulative mortality can be averted
byMarch 15, 2021 (Figure 5A, magenta curve), in comparison to
the baseline social-distancing scenario (Figure 5A, blue curve).
Similarly, for this 5% increase in social-distancing (in relation
to the baseline), up to 36% reduction in daily mortality can
be achieved (Figure 5B, magenta curve), in comparison to the
baseline scenario (Figure 5B, blue curve), and the pandemic
would have peaked a week earlier (in late December 2020;
the daily mortality at this peak would have been 1, 900), in
comparison to the peak recorded in the baseline social-distancing
scenario (Figure 5B, blue curve). More dramatic reduction in
mortality will be recorded if the level of additional social-
distancing compliance is further increased. For instance, if the
baseline social-distancing compliance is increased by 10%, our
simulations show that about 31% of the cumulative deaths
recorded for the case with baseline social-distancing scenario
(Figure 5A, blue curve) would have been averted (Figure 5A,
gold curve). For this scenario, up to 59% of the daily deaths would
have been prevented and the pandemic would have peaked in
mid December 2020 (the daily mortality at this peak would have
been 1, 229), as depicted in the gold curve of Figure 5B. Finally,
if the baseline social-distancing compliance is increased by 30%,
the pandemic would have failed to generate a major outbreak in
the U.S. (Figure 5, green curves). In particular, the cumulative
mortality for the U.S. byMarch 15, 2021 will be about 252, 400 (as
against the nearly 400,000 fatalities that were recorded), as shown
by the green curve of Figure 5A, in comparison to the blue curve
of the same figure.

In summary, the results in Figure 5 show that COVID-
19 could have been effectively suppressed in the U.S. if the
baseline social-distancing compliance (recorded during the
onset of the third wave of the pandemic in early October
2020) is increased by about 10–30%. These (recommended)
increases in social-distancing compliance seem reasonably
attainable. Hence, our study suggests that a moderate increase
in the baseline social-distancing compliance will lead to
the effective control of the COVID-19 pandemic in the
U.S. This (increase in baseline social-distancing, as well as
face masks usage) should be sustained until herd immunity
is attained.
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FIGURE 5 | Assessment of the singular impact of increases in baseline social-distancing compliance on COVID-19 pandemic in the U.S. Simulations of the model

(2.5)–(2.6) showing (A) cumulative mortality, as a function of time; (B) daily mortality, as a function of time, for various levels of increases in baseline social-distancing

(SD) compliance (cs) attained during the third wave of the pandemic in the United States. Parameter values used in the simulations are as given by the baseline values

in Tables 3, 4, with β1 and β2 multiplied by (1− cs).

FIGURE 6 | Assessment of the combined impact of vaccination and social-distancing on cumulative mortality. Simulations of the model (2.5)–(2.6), depicting

cumulative as a function of time, for the three vaccines considered in this study and various levels of increases in baseline social-distancing compliance starting from

October 12, 2020 (cs). (A–C) Pfizer or Moderna vaccine. (D–F) AstraZeneca vaccine. The vaccination rates ξv = 7.4× 10−4, 1.5× 10−3 per day, and 3.0× 10−3 per

day correspond, respectively, to vaccinating ∼2.5× 105, 5.0× 105 and 1.0× 106 people per day. Other parameter values of the model used are as presented

in Tables 3, 4.

4.3. Assessment of Combined Impact of
Vaccination and Social-Distancing
The model (2.5)–(2.6) will now be simulated to assess the
community-wide impact of the combined vaccination and social-
distancing strategy. Although the two vaccines received FDA’s
EUA by mid December 2020, we assume a hypothetical situation
in which the vaccination started by mid October 2020 (the reason
is to ensure consistency with the cumulative mortality data we

used, which started from October 12, 2020 corresponding to the
onset of the third wave of the pandemic in the United States).
We consider the AstraZeneca vaccine (with estimated efficacy
of 70%) and the two FDA-EUA vaccines (Moderna and
Pfizer vaccines, each with estimated efficacy of about 95%).
Simulations are carried out using the baseline parameter values
in Tables 3, 4, with various values of the vaccination coverage
parameter (ξv). For these simulations, parameters and initial
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TABLE 6 | Percentage reduction in projected cumulative COVID-19 mortality on April 10, 2021, in relation to the cumulative mortality in the absence of vaccination

(511, 100 COVID-19 deaths on April 10, 2021), for the three vaccines considered in this study: AstraZeneca vaccine (efficacy εv = 0.7); Pfizer and/or Moderna vaccine

(efficacy εv = 0.95), and various levels of increases in baseline social-distancing compliance attained on October 12, 2020 (cs) and vaccination rate (ξv ). SD,

social-distancing compliance.

Reduction with Reduction with Reduction with

Number of people Baseline SD (cs = 0) cs = 0.05 cs = 0.10

vaccinated per day εv = 70% εv = 95% εv = 70% εv = 95% εv = 70% εv = 95%

250,000 9% 12% 25% 27% 35% 36%

500,000 16% 20% 29% 32% 38% 39%

1,000,000 26% 31% 35% 38% 41% 43%

FIGURE 7 | Effect of vaccination and social-distancing on time-to-elimination. Simulations of the model (2.5)–(2.6), depicting the impact of three vaccines against

COVID-19 (the AstraZeneca vaccine, and the Pfizer or Moderna vaccine) and social-distancing, on time-to-elimination of the pandemic in the U.S. (A–C) Moderna or

Pfizer vaccines. (D–F) AstraZeneca vaccine. The social-distancing compliance is baseline for (A,D), cs = 0.05 for (B,E), and cs = 0.10 for (E,F). The vaccination rates

ξv = 7.4× 10−4, 1.5× 10−3, 3.0× 10−3 per day correspond, respectively, to vaccinating approximately 2.5× 105, 5.0× 105, 1.0× 106 people per day. The values of

the other parameters of the model used in the simulation are as given in Tables 3, 4.

conditions related to the other intervention (face mask usage)
are maintained at their baseline values. Since the Moderna and
Pfizer vaccines have essentially the same estimated efficacy (≈
95%), we group them together in the numerical simulations for
this section.

The simulation results obtained for the Moderna and
Pfizer vaccine, depicted in Figures 6A–C, show that, in the
absence of vaccination (and with social-distancing at baseline
compliance level), approximately 511, 100 cumulative deaths
will be recorded in the U.S. by April 10, 2021 (blue curves
of Figures 6A–C). Furthermore, this figure shows a marked
reduction in daily mortality with increasing vaccination coverage
(ξv). This reduction further increases if vaccination is combined
with social-distancing. For instance, with social-distancing
compliance maintained at its baseline value on October 12,
2020 (i.e., cs = 0), vaccinating at a rate of 0.00074 per day

(which roughly translates to vaccinating 250, 000 people every
day) resulted in a reduction of the projected cumulative mortality
recorded by April 10, 2021 by 12%, in comparison to the case
when no vaccination is used (magenta curve in Figure 6A, in
comparison to the blue curve of the same figure). In fact, up
to 31% of the projected cumulative mortality to be recorded
by April 10, 2021 could be averted if, for this vaccination rate,
the baseline social-distancing compliance is increased by 10%
(i.e., cs = 0.1; magenta curve in Figure 6C, in comparison to
magenta curve in Figure 6A). If the vaccination rate is further
increased to, for instance, ξv = 0.0015 per day (corresponding
to vaccinating about 500, 000 people every day), while keeping
social-distancing at its baseline compliance level (i.e., cs = 0), our
simulations show a reduction of 27% in the projected cumulative
mortality by April 10, 2021, in comparison to the baseline social-
distancing scenario (gold curve, Figure 6A, in comparison to
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the blue curve of the same figure). This reduction increases to
38% if the vaccination program is supplemented with social-
distancing that increases the baseline compliance by 10% (gold
curve, Figure 6C). If 1 million people are vaccinated per day
(i.e., ξv = 0.003 per day), our simulations show that the use
of the Moderna and Pfizer vaccines could lead to up to 36%
reduction in the projected cumulative mortality by April 10,
2021 in the U.S. if the vaccination program is combined with a
10% increase in social-distancing compliance level (green curve
of Figure 6C). Finally, compared to the Moderna and Pfizer
vaccines, slightly lower reductions in the projected cumulative
mortality are recorded when the AstraZeneca vaccine (with
moderate to high vaccination coverage) is used (Figures 6D–F),
particularly if combined with social-distancing. These results are
summarized in Table 6.

4.4. Combined Impact of Vaccination and
Social-Distancing on Time-to-Elimination
The model (2.5)–(2.6) will now be simulated to assess the
population-level impact of the combined vaccination and social-
distancing interventions on the expected time the pandemic
might be eliminated in the U.S. if the two strategies are
implemented together. Mathematically, we define “elimination"
to mean when the number of daily new cases is identically zero.
As in section 4.3, we consider the three vaccines (AstraZeneca,
Moderna, and the Pfizer vaccines), and assume that the
vaccination program was started on October 12, 2020. The model
is simulated to generate a time series of new daily COVID-19
cases in the U.S., for various vaccination rate (ξv) and levels of
increases in baseline social-distancing compliance (cs).

The results obtained, for each of the three vaccines, are
depicted in Figure 7. This figure shows a marked decrease
in disease burden (measured in terms of the number of new
daily cases), with the possibility of elimination of the pandemic
within 8–10 months from the commencement of the vaccination
program. In particular, these simulations show that vaccinating
250, 000 people per day, with the Moderna or the Pfizer vaccine,
will result in COVID-19 elimination in the U.S. by mid August
of 2021, if the social-distancing compliance is kept at its
current baseline compliance level (blue curve of Figure 7). For
this scenario, the elimination will be reached in late August
2021 using the AstraZeneca vaccine. If the vaccination rate
is further increased, such as to vaccinating 1 million people
every day (and keeping social-distancing at its October 12, 2020
baseline), COVID-19 elimination is achieved much sooner in the
United States. For instance, for this scenario (i.e., with ξv =

0.003 per day), the pandemic can be eliminated by late June
of 2021 using the Moderna or the Pfizer vaccines (green curve
of Figure 7A) and by mid July of 2021 using the AstraZeneca
vaccine (blue curve of Figure 7D).

Our simulations further show that if the vaccination program
is combined with social-distancing that increases the baseline
compliance by 10%, COVID-19 can be eliminated in the U.S. by
as early as the end ofMay of 2021 using theModerna or the Pfizer
vaccine (green curve of Figure 7C), and by late June of 2021 using
the AstraZeneca vaccine (green curve, Figure 7F). In conclusion,

these simulations show that any of the three vaccines considered
in this study will lead to the elimination of the pandemic in the
U.S. if the vaccination rate is moderately-high enough. The time-
to-elimination depends on the vaccination rate and the level of
increases in the baseline social-distancing compliance attained by
October 12, 2020. The pandemic can be eliminated as early as the
end of May of 2021 if moderate to high vaccination rate (e.g.,
1 million people are vaccinated per day) and social-distancing
compliance (e.g., cs = 0.1) is attained and maintained.

It is worth mentioning that two of the three vaccines that
are currently being used in the U.S. were only approved by the
FDA in December 2020 (the Pfizer vaccine was approved on
December 11, 2020, while the Moderna vaccine was approved a
week later), and their administration into the arms of Americans
started late in December 2020. Therefore, as we noted earlier,
the greater U.S. community might only be able to receive any of
the vaccines by March or April 2021 (we chose March 15, 2021
as our reference point for simulation/comparative purposes).
Thus, with a mass vaccination start date of mid March 2021
(i.e., if we can only achieve vaccinating 1 million or more
people daily frommidMarch 2021), then COVID-19 elimination,
assuming a 10% increase in baseline social-distancing compliance
achieved on October 12, 2020, can be achieved by the end of
October 2021 using the Moderna or the Pfizer vaccine (for
the AstraZeneca vaccine, elimination will extend to November
of 2021). It should be mentioned that the elimination can be
achieved even earlier if large scale community vaccination in the
U.S. is started earlier than our projected March 15, 2021, and
particularly if this (early large scale vaccination before March 15,
2021) is also complemented with significant increase in baseline
social-distancing compliance (such as increasing the baseline
compliance by 10%).

In summary, our study clearly shows that the prospect of
eliminating COVID-19 in the U.S. by the middle or early fall
of 2021 is very much feasible if moderate level of coverage can
be achieved using either of the two vaccines being used in the
U.S., and if this vaccination coverage is complemented with a
social-distancing strategy that increases the baseline compliance
achieved by October 12, 2020 by a mere 10%. Our study certainly
points to the fact that we will be seeing the back of this devastating
Coronavirus beast, and socio-economic life may return to near
normalcy, in 2021.

4.5. Assessing the Impacts of Waning
Immunity, Mask Fatigue, and Relaxation of
Mask Mandate for Fully-Vaccinated
Individuals, and Therapeutic Benefits of
Vaccines
In this section, the multi-group model (2.5)–(2.6) will be adapted
and simulated to assess the population-level impact of three
other factors that may significantly affect the effectiveness of
the vaccination program against COVID-19, namely (a) waning
natural and vaccine-derived immunity (44–46), (b) mask fatigue
(and giving up masking) by fully-vaccinated individuals (47),
and (c) therapeutic benefits of the vaccines (such as reducing
development of severe disease, hospitalization and mortality in
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breakthrough infections, as well as in reducing transmissibility of
infected vaccinated individuals) (18, 19, 48). Although the model
(2.5)–(2.6) does not explicitly incorporate the aforementioned
factors, it can readily be adapted to allow for their assessment.
We describe below how the model can be adapted to achieve
this objective, in addition to illustrating the effects of the factors
via numerical simulations of the resulting adapted version of the
model (2.5)–(2.6). For consistency, the simulations in this section
will also be carried out from the beginning of the third pandemic
wave in the U.S. (i.e., from October 12, 2020).

4.5.1. Waning Natural and Vaccine-Derived Immunity
Waning natural immunity can be incorporated in the model
by allowing a transition from the compartment of recovered
individuals (for each of the two groups) into the corresponding
compartment for unvaccinated susceptible individuals (i.e.,
the immunity derived from natural recovery from COVID-
19 infection ultimately wanes, and the recovered individuals
subsequently become wholly-susceptible again). To adapt the
model to account for this, we introduce a new parameter, ωr , to
represent the per capita rate at which recovered individuals revert
to the corresponding unvaccinated susceptible compartment
(i.e., the quantity ωr Ri, with i = 1, 2) is subtracted from the
equation for Ri and added to the corresponding equation for Siu
in the model (2.5)–(2.6).

Similarly, vaccine-derived waning immunity can be
incorporated into the model (2.5)–(2.6) by allowing for
transitions from the vaccinated susceptible compartments
(Siv; i = 1, 2) to the corresponding unvaccinated susceptible
compartment (Siu; i = 1, 2). We introduce a new parameter, ωv,
to represent the rate of waning of vaccine-derived immunity.
To incorporate this into the model, the quantity ωvSiv (i = 1, 2)
is subtracted from the equation for Siv and added to the
corresponding equation for Siu in the model (2.5)–(2.6). For
simulation purposes, we set ωr and ωv to be 1/270 per day and
1/180 per day (44, 46), respectively (corresponding to a 9 and 6
months duration for the waning of natural and vaccine-derived
immunity, respectively).

The model (2.5)–(2.6) is now simulated, using the parameter
values in Tables 3, 4, together with the above modifications
(accounting for waning natural and vaccine-derived immunity,
using the estimated values of ωr and ωv), to assess the potential
impact of waning immunity on the COVID-19 dynamics in
the United States. The results obtained, depicted in Figure 8A,
show a slight increase in the peak number of new daily cases,
in comparison to the results in Figure 7A, where the effect
of waning immunity was not considered. In particular, if the
vaccination rate is 250, 000 per day (i.e., if ξv is set at ξv =

7.4× 10−4 per day), then the peak number of new cases increases
by approximately 2% (in comparison to the case where no waning
immunity is considered), and the time-to-elimination of the
pandemic increases by about 13 days (compare blue curves in
Figures 7A, 8A). If the daily vaccination rate is increased to one
million per day (i.e., if ξv = 3.0 × 10−3 per day), then the peak
new cases increases by up to 6% (in comparison to the case with
no waning immunity) and the time-to-elimination increases by
about a month (compare green curves in Figures 7A, 8A). The

increases in burden and time-to-extinction in this case (with 1
million vaccinated daily, in comparison to the case with 250,000
people getting vaccinated daily) is due to the fact waning of both
natural and vaccine-derived immunity causes a corresponding
increase in the pool of susceptible individuals who can acquire
infection (thereby increasing number of new cases and extending
time-to-elimination). Thus, these simulations show that waning
of natural and vaccine-derived immunity cause only a marginal
increase in the burden and time-to-elimination of the pandemic.

4.5.2. Mask Fatigue and Relaxation of Mask

Mandates for Fully-Vaccinated Individuals
To incorporate the effect of mask fatigue, or relaxation of mask
mandates (47), in fully-vaccinated individuals into the model
(2.5)–(2.6), we consider the worst-case scenario where all fully-
vaccinated individuals opt to give up masking in public. To
account for the worst case scenario of this (i.e., the case in
which every fully-vaccinated individual abandons masking) in
the model, we remove the state variable S2v, for the vaccinated
susceptible individuals in the mask-wearing group 2, from the
model. Further, we re-direct all the new vaccinated individuals
from group 2 into the vaccinated class of the non-masking group
1 (i.e., we add the term ξvS2u from the equation for the rate of
change of the S2u population to that for the rate of change of
the S1v population, and the equation for S2v is removed from the
model) and also remove the term −α12S1v from the equation for
the rate of change of the S1v population (to ensure that vaccinated
individuals in group 1 do not move to the mask-wearing group
2). Simulations of the model (2.5)–(2.6), under this setting (and
using the parameter values in Tables 3, 4), depicted in Figure 8B,
show a marginal change in the peak number of new cases and
the time-to-elimination, in comparison to the case when fully-
vaccinated individuals do not completely give up masking (i.e.,
compare Figure 8B with Figure 7A).

4.5.3. Therapeutic Benefits of COVID-19 Vaccines
Result from recent clinical trials have shown very promising
therapeutic benefits for both the Pfizer and Moderna vaccines
(18, 19). In this section, we seek to use the multi-group model
(2.5)–(2.6) to assess the impact of such benefits on the dynamics
of the disease in the United States. Since the model does not
explicitly stratify the population of infected individuals according
to whether they are vaccinated or not, a number of factors
will come into play when estimating the overall impact of the
therapeutic benefits, such as the high efficacy of the two vaccines
(∼95%, thereby significantly reducing the size of breakthrough
infections), level of vaccine hesitancy in the community and
the current daily infection rate in the community. Taking
all these into account, we consider it plausible, as a first
approximation, to estimate the overall therapeutic benefits in
the U.S., at the beginning of the third wave characterized by
low vaccination coverage (December 2020 until about February
2021), high disease burden (skyrocketing number of reported
confirmed cases, hospitalizations and COVID-19 mortality), by
a 5% reduction in severe or symptomatic illness, breakthrough
transmission, hospitalization, and mortality, as well as a 5%
increase in the rate of recovery from infection for vaccinated
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FIGURE 8 | Effect of (A) vaccine-induced and natural immunity waning, (B) unmasking by vaccinated individuals, and (c) therapeutic benefits of vaccines on the

burden of the pandemic and the time-to-elimination. The vaccination rates ξv = 7.4× 10−4, 1.5× 10−3, 3.0× 10−3, per day correspond, respectively, to vaccinating

approximately 2.5× 105, 5.0× 105, 1.0× 106 people per day. The vaccine-induced and natural immunity waning rate parameters, ωv and ωr , are set to ωv = 1/180

per day (44) and ωr = 1/270 per day (46), respectively. The effect of therapeutic benefits of the vaccine depicted in (C) is incorporated by reducing the baseline values

of the parameters (from Tables 3, 4) that are related to development of severe disease (r), hospitalization (φjI, j = 1, 2) and mortality (δjI, δjH, j = 1, 2) by 5%, in addition

to increasing the baseline value of the parameters related to the recovery rate (γjI, γjA, γjH, j = 1, 2) by 5%. The values of the other parameters of the model used in the

simulation are as given in Tables 3, 4.

infected individuals. In other words, the effect of therapeutic
benefits of the vaccine is incorporated into ourmodel by reducing
the baseline values of the parameters related to development of
severe disease (r), hospitalization (φjI , j = 1, 2) and mortality δjI
and δjH with j = 1, 2) by 5%, in addition to increasing the baseline
value of the parameter related to the recovery rate (γjI , γjA
and γjH , with j = 1, 2). The simulation results obtained, for
this hypothetical scenario, show a marked reduction in disease
burden and a decrease in time-to-elimination (Figure 8C), in
comparison to the case where such therapeutic benefits are not
accounted for (Figure 7A). In particular, if one million people
are vaccinated daily (i.e., if the vaccination rate is set at ξv =

3.0 × 10−3 per day), up to 37% decrease in the peak number
of new cases could be achieved. Further, the time-to-elimination
decreases by 17 days (compare green curves in Figures 7A,
8A). Higher reductions in disease burden, and more accelerated
time-to-elimination, will be achieved if higher percentages of
therapeutic benefits are assumed. It should be mentioned that
a more rigorous way to introduce the impact of therapeutic
benefits into the multi-group model (2.5)–(2.6) will be to further
restructure the infected compartments of the model in terms of
whether they are vaccinated or not (doing so will result in amodel
with at least 28 nonlinear differential equations, which may be
difficult to track mathematically and statistically).

In summary, it is shown in this section (based on the
parameter values used in our simulations) that, while waning
natural and vaccine-derived immunity generally induces a
relatively small increase in the burden of the pandemic, together
with a correspondingly marginal increase in the time-to-
elimination (in comparison to the case when these effects are
not incorporated into the model), the therapeutic benefits of
the vaccines offer a dramatic impact on the trajectory of the

disease (by significantly reducing both the burden and time-to-
elimination of the pandemic, in comparison to the case when
such benefits are not accounted for in the model). Finally, it is
worth stating that, although the simulations carried out in section
4.5 are for the Pfizer and Moderna COVID-19 vaccines only
(illustrated in Figure 7), similar simulations can also be carried
out for the AstraZeneca and other vaccines with lower preventive
effective efficacies. These simulations will, of course, show higher
disease burden (owing to their reduced efficacy), in comparison
to the case when Pfizer and Moderna vaccines are used.

5. DISCUSSION AND CONCLUSIONS

Since its emergence late in December of 2019, the novel
Coronavirus pandemic has inflicted devastating public health
and economic burden across the world. As of January 24,
2021, the pandemic accounted for over 100 million confirmed
cases and 2.1 million fatalities globally (the United States
accounted for 25, 123, 857 confirmed cases and 419, 204
deaths). Although control efforts against the pandemic have
focused on the use of non-pharmaceutical interventions, such
as social-distancing, face mask usage, quarantine, self-isolation,
contact-tracing, community lockdowns, etc., a number of
highly-efficacious and safe anti-COVID-19 vaccines have been
developed and approved for use in humans. In particular, two
of the three FDA-EUA vaccines (manufactured by Moderna
Inc. and Pfizer Inc.) have estimated protective efficacy of about
95%. Furthermore the AstraZeneca vaccine, developed by the
pharmaceutical giant, AstraZeneca and University of Oxford
has protective efficacy of 70%. Mathematics (modeling, analysis,
and data analytics) has historically been used to provide robust
insight into the transmission dynamics and control of infectious
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diseases, dating back to the pioneering works of the likes of
Daniel Bernoulli in the 1760s (on smallpox immunization), Sir
Ronald Ross and George Macdonald between the 1920s and
1950s (on malaria modeling) and the compartmental modeling
framework developed by Kermack and McKendrick in the
1920s (49–51). In this study, we used mathematical modeling
approaches, coupled with rigorous analysis, to assess the potential
population-level impact of the use of the three vaccines and data
analytics in curtailing the burden of the COVID-19 pandemic
in the U.S. We have also assessed the impact of other non-
pharmaceutical interventions, such as face mask and social-
distancing, implemented singly or in combination with any of the
three vaccines, on the dynamics and control of the pandemic.

We developed a novel mathematical model, which stratifies
the total population into two subgroups of individuals who
habitually wear face masks in public and those who do not.
The resulting two group COVID-19 vaccination model, which
takes the form of a deterministic system of nonlinear ordinary
differential equations, was initially fitted using observed
cumulative COVID-induced mortality data for the U.S.
Specifically, we fitted the model with the cumulative mortality
data corresponding to the period when the U.S. was experiencing
the third wave of the COVID-19 pandemic (estimated to have
started around October 12, 2020). In addition to allowing for the
assessment of the population-level of each of the three currently-
available vaccines, the model also allows for the assessment of
the initial size of the population of individuals who habitually
wear face masks in public, as well as assessing the impact of
increase in the baseline social-distancing compliance attained
as of October 12, 2020. After the successful calibration of the
model, we carried out rigorous asymptotic stability analysis to
gain insight into the main qualitative features of the model.
In particular, we showed that the disease-free equilibrium of
the model is locally-asymptotically stable whenever a certain
epidemiological threshold, known as the control reproduction
number (denoted by Rc), is less than unity. The implication of
this result is that (for the case when Rc < 1), a small influx of
COVID-infected individuals will not generate a alrge outbreak
in the community.

The expression for the reproduction number (Rc) was used
to compute the nationwide vaccine-induced herd immunity
threshold for a special case of the model where change of
masking behavior is not allowed (i.e., where mask wearers remain
wearers and non-wearers do not become wearers). The herd
immunity threshold represents the minimum proportion of the
susceptible U.S. population that needs to be vaccinated to ensure
elimination of the pandemic. Simulations of our model showed,
for the current baseline level of social-distancing in the U.S.
(and baseline level of initial size of the population of face
masks wearers), herd immunity can be achieved in the U.S.
using the AstraZeneca vaccine if at least 80% of the susceptible
population is fully vaccinated. The threshold herd immunity
level needed when either the Pfizer or Moderna vaccine is
used reduces to 59%. Our simulations further showed that
the level of herd immunity needed to eliminate the pandemic
decreases, for each of the three vaccines, with increasing
levels of baseline social-distancing compliance. In particular,

the baseline social-distancing achieved at the beginning of our
simulation period (i.e., the level of social-distancing in the
U.S. as of October 12, 2020) is increased by 10%, the herd
immunity requirement for the AstraZeneca or Pfizer/Moderna
vaccine reduced, respectively, to 73 and 54%. Furthermore, if
the baseline social-distancing is increased by 30%, the herd
immunity threshold needed to eliminate the pandemic using the
AstraZeneca or Pfizer/Moderna vaccine reduced to a mere 53
and 39%, respectively. In other words, this study showed that the
prospect of achieving vaccine-derived herd immunity, using any
of the three vaccines considered in this study, is very promising,
particularly if the vaccination program is complemented with
increased levels of baseline social-distancing.

The multigroup nature of the model we developed in this
study, where the total population is stratified into the two
groups of those who habitually face mask in public and those
who do not (with back-and-forth transitions between the two
groups allowed), enabled us to assess the population-level impact
of the initial sizes of the two groups in curtailing the spread
of the pandemic in the United States. We assessed this by
simulating the model during the beginning of the third wave
of the pandemic in the U.S. (starting from October 12, 2020),
and used the proportion of masks-wearers embedded in the
cumulative mortality data we used to fit the model as the
baseline. Our study emphasized the fact that early adoption of
mask mandate plays a major role in effectively reducing the
burden (as measured in terms of cumulative mortality) of the
pandemic. This effect is particularly more pronounced when
individuals in the face masks-wearing group do not change their
behavior and transition to the non-mask wearing group (and
non-mask wearers adopt a masks-wearing habit). Our study
further showed that, for the case where the aforementioned
back-and-forth transitions between the masks-wearing and the
non-mask wearing groups are allowed, there is a threshold
level of the initial size of the proportion of face masks-wearers
above which the disease burden will be reduced, below which
the disease burden actually increases. Our study estimated
this threshold value of the initial size of the masks-wearing
group to be about 50%. The epidemiological implication of
this result is that the continued implementation of face masks
use strategy (particularly at the high initial coverage level)
will be highly beneficial in effectively curtailing the pandemic
burden between now and the time when the two FDA-EUA
vaccines become widely available to the general public in
the U.S. (expected to be around mid March to mid April
of 2021).

We further showed that the time-to-elimination of COVID-
19 in the U.S., using a vaccine (and a non-pharmaceutical
intervention), depended on the daily vaccination rate (i.e.,
number of people vaccinated per day) and the level of increase in
baseline social-distancing compliance achieved at the onset of the
third wave of the pandemic (October 12, 2020). Specifically, our
study showed that the COVID-19 pandemic can be eliminated
in the U.S. by early May of 2021 if we are able to achieve
moderate level of daily vaccination rate (such as vaccinating
1 million people every day) and the baseline social-distancing
compliance achieved on October 12, 2020 is increased by 10%
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(and sustained). It should, however, be mentioned that the time-
to-elimination is sensitive to the level of community transmission
of COVID-19 in the population (it is also sensitive to the
effectiveness and coverage (compliance) levels of the other (non-
pharmaceutical) interventions, particularly face mask usage and
social-distancing compliance, implemented in the community).
Specifically, our study was carried out between December 2020
and January 2021, when the United States was experiencing a
devastating third wave of the COVID-19 pandemic (recording
on average over 200, 000 confirmed cases per day, together
with record numbers of hospitalizations and COVID-induced
mortality). This explains the somewhat longer estimated time-
to-elimination of the pandemic, using any of the three vaccines
considered in this study, for the case where social-distancing
compliance is kept at the baseline level. The estimate for
the time-to-elimination (using any of the vaccines considered
in this study) will be shorter if the community transmission
is significantly reduced (as will be vividly evident from the
reduced values of the transmission-related and mortality-related
parameters of the re-calibrated version of our model).

It is worth emphasizing that at the time this study was
carried out (between December 2020 and January 2021), it
was unclear whether natural or vaccine-induced immunity to
COVID-19 waned over time. It was also unclear whether the then
new vaccines that received FDA’s Emergency Use Authorization
(Pfizer andModerna) offer therapeutic benefits (such as reducing
severe disease, hospitalization and deaths, in addition to
accelerating recovery rate in vaccinated infected individuals).
However, by the time we are reviewing the manuscript (June
2021), new data and studies have provided clarity on waning
immunity to COVID-19 (45, 46) and on the therapeutic benefits
of some of the COVID-19 vaccines (18, 19). Furthermore, the
U.S. Centers for Disease Control and Prevention has modified its
guidelines on masking, allowing fully-vaccinated individuals not
to wear masks under certain circumstances (47). Consequently,
we adapted the multi-group model we developed to allow for the
assessment of the aforementioned new facts associated with the
COVID-19 dynamics. Specifically, we adapted and simulated the
model to assess the impact of waning immunity (both natural and
vaccine-derived), mask fatigue and relaxation of mask mandates
for fully-vaccinated individuals and the therapeutic benefits of
the FDA-authorized vaccines on the disease burden (measured
in terms of peak daily cases) and time-to-elimination of the
pandemic in the United States. The simulations were carried out
for the hypothetical scenario that the vaccination program was
started at the beginning of the third wave of the pandemic in
the U.S. (i.e., in October of 2020). Since the vaccines were not
available until December 2020, and large scale vaccine rollout
was only achieved some time in end of March 2021 or early
April 2021, we adapted our conclusions appropriately to account
for this time lag. Consequently, our simulation results, for these
settings, show that, while waning natural and vaccine-derived
immunity induces only a relatively marginal increase in both the
burden and time-to-elimination of the pandemic, incorporating
therapeutic benefits of the vaccine into the model causes a
dramatic reduction in both the burden and time-to-elimination.
If the impacts of therapeutic benefits are incorporated into the
model from the very beginning of the third wave of the pandemic

(October 2020), our simulations show that the pandemic could
theoretically be eliminated in the U.S. by as early as late May,
2021 (note that, in the absence of such therapeutic benefits,
our study estimated the time-to-elimination to be some time in
October, 2021).

In summary, our study suggest that the prospects of COVID-
19 elimination in the U.S. is very promising, using any of
the three vaccines considered in this study. The elimination
prospects are greatly enhanced if the therapeutic benefits of
the FDA-EUA vaccines are incorporated into the multi-group
model we developed and used in this study. While, for the
baseline scenario, the AstraZeneca vaccine requires at least 80%
of the U.S. population to be fully vaccinated to achieve herd
immunity (needed for the elimination of the pandemic), such
herd immunity can be achieved using any of the two FDA-EUA
vaccines (Pfizer or Moderna) if only 59% of Americans are fully
vaccinated. The prospects of eliminating COVID-19 using any of
the three vaccines is greatly enhanced if the vaccination program
is combined with a social-distancing strategy that increases the
baseline compliance level of the social-distancing attained during
the beginning of the third wave of the COVID-19 pandemic in
the United States. In fact, our simulations strongly suggested that
COVID-19 could have been eliminated in the U.S. as early as
May 2021, depending on the level of increase in baseline social-
distancing compliance. In other words, if we can continue to
maintain social-distancing, while large scale vaccination is being
implemented, COVID-19 can be history, and life can begin to
return to normalcy or near-normalcy, in the summer or fall
of 2021.

Some of the limitations of our model include not explicitly
accounting for some important heterogeneities, such as age-
structure, risk-structure, and vaccine dose structure, and the
impacts of SARS-CoV-2 variants. Accounting for these may
alter our results, especially during the early days of the vaccine
administration (e.g., from December 2020 to April 2021) when
the vaccine doses were generally in limited supply and needed to
be prioritized to high-risk groups. Hence, our simulation results
and conclusions should be interpreted with these limitations in
mind. Further, while our multi-group model did not explicitly
account for some other factors potentially relevant to COVID-
19 dynamics, such as waning of natural and vaccine-derived
immunity to COVID-19, mask fatigue and relaxation of mask
mandates for fully-vaccinated individuals and the impacts of
therapeutic benefits of the approved vaccines, our multi-group
model was robust enough to allow for the assessment of
these factors. We showed that, while incorporating waning of
immunity and mask fatigue and relaxation of mask mandates
in fully-vaccinated individuals in the model we developed only
caused a marginal increase in disease burden and time-to-
elimination, incorporating the impacts of the therapeutic benefits
of the approved vaccines (even at a relatively low overall rate)
resulted in a dramatic reduction in both the disease burden and
time-to-elimination of the pandemic.
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APPENDIX I: ENTRIES OF THE
NON-NEGATIVE MATRIX F
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