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T. cruzi has a complex life cycle involving four developmental stages namely,
epimastigotes, metacyclic trypomastigotes, amastigotes and bloodstream
trypomastigotes. Although trypomastigotes are the infective forms, extracellular
amastigotes have also shown the ability to invade host cells. Both stages can invade a
broad spectrum of host tissues, in fact, almost any nucleated cell can be the target of
infection. To add complexity, the parasite presents high genetic variability with differential
characteristics such as infectivity. In this review, we address the several strategies T. cruzi
has developed to subvert the host cell signaling machinery in order to gain access to the
host cell cytoplasm. Special attention is made to the numerous parasite/host protein
interactions and to the set of signaling cascades activated during the formation of a
parasite-containing vesicle, the parasitophorous vacuole, from which the parasite
escapes to the cytosol, where differentiation and replication take place.

Keywords: invasion, internalization, lysosome-mediated invasion, exocytic pathway, autophagic pathway, host
signaling, host/parasite interaction
INTRODUCTION

Chagas Disease is a serious life-threatening disease caused by the protozoan parasite Trypanosoma
cruzi and transmitted by blood-sucking triatomine insects from the Reduviidae family. In addition
to an estimated of 6–8 million infected people and an alarming 50,000 deaths per year, 65–100
million people are living in areas at risk for infection (Lidani et al., 2019). This regional issue is now
becoming global due to the migration of infected people to non-endemic countries, resulting in an
estimated global economic burden of $7.19 billion (Lee et al., 2013).

T. cruzi has a complex life cycle, involving an insect vector and a mammalian host. Typically,
metacyclic trypomastigotes (MTs) gain access to the mammalian host through feces contamination
at the insect bite wound. Upon internalization by the host cells close to the site of entry, MTs
initially reside in a parasite-containing vesicle, the parasitophorous vacuole (TcPV), from which
they escape to the host cell cytoplasm and differentiate into the proliferative amastigote form. After
several rounds of replication, amastigotes differentiate into motile flagellated trypomastigotes,
bloodstream (BSTs), or tissue culture-derived (TCTs) trypomastigotes, that are released into the
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bloodstream, from where they could disseminate by infecting
distant tissues or taken up by the triatomine vector during a
bloodmeal (Monteón et al., 1996). Interestingly, although the
parasite could potentially infect any nucleated cells, it has been
demonstrated that different strains exhibit distinct tropism,
measured as parasite load, for organs such as esophagus, liver,
spleen, intestine, heart, and skeletal muscle, during acute phase of
the infection, while tropism in the chronic phase has shown to be
more homogeneous and restricted to intestine, skeletal muscle, and
heart (Santi-Rocca et al., 2017). In this regard, it isworth tomention
that adipocytes are also an important target cell during the acute
phase of the disease, and may represent an important long-term
reservoir for parasites during chronic infection (Combs et al., 2005).
Additionally, it has been shown that amastigotes represent 10% of
the parasites circulating in the blood of infected animals during the
acute phase of infection (Andrews et al., 1987). Extracellular
amastigotes (EAs), originated from premature rupture of infected
cells or transformed from BSTs, are also infective and can
disseminate in the infected hosts (Walker et al., 2014; Bonfim-
Melo et al., 2018a).

In addition to a complex life cycle, T. cruzi has shown to be a
remarkably heterogeneous taxon, that presents multiple strains
with a high degree of genetic variability. This immense genetic
diversity has been classified into six Discrete TypingUnits (DTUs):
the ancestral strains DTU-I and II, homozygote-derived hybrids
DTU-III and IV, and heterozygote hybrids DTU-V and VI
(Zingales et al., 2009). T. cruzi’s genome presents a conserved
core of genes and extremely variable multigene surface proteins
families (Berná et al., 2018). Thesemultigene families are expanded
in the genome, accordingly to its repetitive structure, and there is a
rich source of diversity between different strains (De Pablos and
Osuna, 2012). Among these families are the Trans-sialidase (TS)
superfamily (about 1400 genes), the mucin family (about 860
genes), the Dispersed Gene Family-1 (DGF-1) family (565 genes)
and theMucin-Associated Surface Proteins (MASPs) family, which
comprises around1370genes (El-Sayed et al., 2005;Kawashita et al.,
2009). This incredible number of genes, coupled to tightly regulated
post-transcriptional control of gene expression, are key players in
the specific stage expression of the main surface constituents
(Herreros-Cabello et al., 2020). As a consequence of the great
expansion of surface protein families, the parasite is able to
interact with a large number of surface receptors on the different
host cells, a fundamental requirement for invasion.

In the process of invasion, the parasite hijacks the host
cellular functions with the ultimate goal of establishing
the replicative niche. Several pathways, converging in the
formation of the TcPV, have been implicated in host cell
invasion (Barrias et al., 2013). In general, T. cruzi invasion can
be divided into four major steps: 1) host cell recognition and
adhesion, 2) parasite internalization, 3) TcPVformation and
maturation, and 4) escape to the cytosol. In this review, we
highlight the different host cell signaling pathways that the
parasite exploits to promote internalization, TcPV formation
and the establishment of a productive intracellular infection.

The focus will be first placed on three strategies that T. cruzi
uses to hijack host cell signaling pathways to facilitate invasion:
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
1) Engagement of host cell surface receptors (Alba Soto and
González Cappa, 2019); 2) Protein and molecule shedding,
including microvesicles and other vesicles, such as exosomes
(Borges et al., 2016; Watanabe Costa et al., 2016); and 3) Host cell
plasma membrane mechanical wounding (Fernandes and
Andrews, 2012). These events converge in preparing the cell
for subsequent invasion. The display of redundant strategies is
crucial because it guarantees an effective invasion by T. cruzi.

Second, attention will be placed on the strategies that lead to
the internalization of the parasite. T. cruzi exploits three main
mechanisms in the host cell to facilitate internalization: a) Ca2+-
dependent recruitment of lysosomes, b) Endocytosis, and c)
Autophagy. As a result of the activation of these pathways,
invading trypomastigotes end up localizing inside the TcPV.
The mechanism for vacuolar escape is known to be lysosome-
and pH- dependent, involving secretion of a porin-like/
complement 9-related factor TcTOX (Andrews, 1994). As an
obligate intracellular parasite, ensuring cell integrity is essential
for the establishment of a productive infection. Accordingly,
signaling pathways are also manipulated to avoid apoptosis
(Stahl et al., 2014).

Bidirectional signaling pathways are activated in both the
parasite and the host cell during invasion. T. cruzi specific signal
transduction pathways have recently been reviewed elsewhere
(Schoijet et al., 2019). This review provides a general overview of
the key parasite/host interactions and signaling pathways
activated in the host cell during T. cruzi invasion, which are
summarized in Table 1 and Figure 1.
THE PRELUDE TO INVASION: HOST CELL
RECOGNITION, ADHESION, AND
ACTIVATION

Stage-Specific Surface Molecules
Early studies have shown that proteolytic treatment of
trypomastigotes resulted in 90% inhibition of invasion,
establishing a clear correlation between parasite surface
proteins and infectivity (Andrews et al., 1984). Since then,
several surface proteins have been identified and characterized.
More recently, the first mass spectrometry-based exhaustive
glycoproteome analysis of T. cruzi was completed, allowing the
identification of 690 glycoproteins. Among them, 170
were exclusively identified in epimastigotes and 334 in
trypomastigotes (Alves et al., 2017). In addition, it has been
well established that every infective form of T. cruzi (MTs, TCTs
and EAs) expresses on its surface a distinct set of stage-specific
glycoproteins (Alba Soto and González Cappa, 2019). Several
parasite stage-specific glycoprotein/host cell receptor
interactions, and the corresponding signaling cascade activated
in the host, are currently known (Figure 1 and Table 1).

Metacyclic Trypomastigotes
- gp82
Among surface glycoproteins involved in the adhesion of T. cruzi to
the host cell is gp82, a MT-specific virulence factor, member of the
March 2021 | Volume 11 | Article 634793

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ferri and Edreira Trypanosoma cruzi Roads to Cytosol
gp85/TS family (Teixeira and Yoshida, 1986; Cortez et al., 2012;
Maeda et al., 2012). Gp82 is attached to the outer cell membrane of
the parasite by a glycosylphosphatidylinositol (GPI) anchor, which
is susceptible to cleavage by an endogenous phosphatidylinositol-
specific phospholipase C (PI-PLC) and released into the
extracellular medium (Bayer-Santos et al., 2013a). During the
MTs invasion process, secreted, and/or surface-anchored gp82
molecules interact with a host receptor and trigger signaling
pathways leading to intracellular Ca2+ and lysosome mobilization
in the host cell (Manque et al., 2003). Gp82 mediates the
mobilization of Ca2+ from thapsigargin-sensitive intracellular
stores (Yoshida et al., 2000). The activation of PLC in the host
cell generats diacylglycerol (DAG) and inositol 1,4,5-trisphosphate
(IP3), which induces protein kinase C (PKC) and promotes the
release of Ca2+ from IP3-sensitive compartments (Maeda et al.,
2012). Mammalian target of rapamycin (mTOR) and
phosphatidylinositol 3-kinase (PI3K) are also activated during
MTs invasion. The elevation in the cytosolic Ca2+ concentration
triggered by these pathways, promotes actin cytoskeleton disruption
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and lysosome mobilization to the cell periphery, both events
promoting the internalization of the parasite (Martins et al., 2011;
Cortez et al., 2014). The lysosome-associated membrane protein 2
(LAMP‐2) has been recently identified as the host cell receptor for
gp82 (Rodrigues et al., 2019). In this work, Rodrigues et al. have
shown that antibodies directed against LAMP‐2, but not to LAMP‐
1, significantly inhibit MTs internalization. Moreover, co‐
immunoprecipitation assays demonstrated that gp82 binds to
LAMP‐2 protein in a receptor‐mediated manner (Rodrigues
et al., 2019).

- gp90
Another key MTs surface glycoprotein is gp90, also a member of
the gp85/TS superfamily, which in opposition to gp82, has a
negative effect on parasite invasion (Bubis et al., 2018). Early
studies have shown an inverse correlation between gp90
expression levels and MTs infectivity (Málaga and Yoshida,
2001). Moreover, monoclonal antibodies confirmed low levels
of gp90 in a highly invasive strain (CL), while high expression of
TABLE 1 | Stage-specific proteins involved during invasion by T. cruzi.

Stage Molecule Surface, secreted,
or both

Signaling Function Ref.

Metacyclic
trypomastigotes (MTs)

gp82 Both PLC, mTOR and PI3K Ca2+ and lysosome mobilization (Teixeira and Yoshida, 1986;
Cortez et al., 2014)

gp90 Both Inhibit gp82-mediated internalization (Cordero et al., 2008; Martins
et al., 2009; Rodrigues et al.,
2017)

gp35/50 Both Ca2+ elevation and actin cytoskeleton-
dependent invasion

(Ramirez et al., 1993; Dorta
et al., 1995; Ferreira et al., 2006)

SAP Secreted Enhance gp82-mediated internalization (Baida et al., 2006; Zanforlin
et al., 2013)

TcSMP Both Enhance gp82-mediated internalization (Martins et al., 2015)

Tissue-culture
trypomastigotes (TCTs)

TS and iTS Both PI3K/Akt and MAPK/Erk Promotion of invasion and sialylation
pattern

(Chuenkova et al., 2001; Butler
et al., 2013; Campetella et al.,
2020)

Tc85 Surface ERK1/2 Host cell attachment and invasion (Magdesian et al., 2007; Mattos
et al., 2014)

TSSA Surface ERK1/2 Host cell attachment and Ca2+ signaling (Cánepa et al., 2012a; Cámara
et al., 2017)

TcOPB Secreted PLC and Rac1 Produces an unknown structure soluble
factor that triggers Ca2+ mobilization

(Caler et al., 1998; Motta et al.,
2019)

Extracellular amastigotes
(EAs)

Amastin Surface Inhibit cell invasion (Cruz et al., 2012)

P21 Secreted ERK and PI3K Phagocytosis and actin cytoskeleton
remodeling

(Rodrigues et al., 2012; Teixeira
T. L. et al., 2015)

TcMVK Secreted P38/ERK and FAK/PAK Protein glycosylation and cytoskeletal
assembly

(Ferreira et al., 2016)

Ssp-4 Secreted Rac1/WAVE2 and
Cdc42/N-WASP

Associated with host cell invasion (Florentino et al., 2018)

TCTs and EAs TcPLA1 Both PKC Lipid profile modification and
amastigote development

(Wainszelbaum et al., 2001;
Belaunzarán et al., 2007)

All forms Cruzipain Secreted PI3K/Akt and MEK/ERK Ca2+ signaling (Taketo et al., 1997; San
Francisco et al., 2017)
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gp90 was observed in a poor invasive strain (G) (Ruiz et al.,
1998). Although gp90 binds to the host cell, it fails to trigger
cytosolic Ca2+ mobilization (Ruiz et al., 1998). The inhibition of
host cell lysosome spreading has been recently proposed as the
mechanism by which gp90 exerts its down-regulatory role
(Rodrigues et al., 2017).

- gp35/50
Gp35/50 mucins are highly glycosylated proteins expressed by
MTs forms of T. cruzi (Ramirez et al., 1993). Like gp82, gp35/50
has the ability to trigger intracellular Ca2+ elevation when binding
to host cell (Dorta et al., 1995; Ruiz et al., 1998). However, gp35/
50-medited invasion induces actin recuitment, in contrast to gp82,
that triggers signaling pathways leading to disassembly of F-actin
(Ferreira et al., 2006). In addition, high level expression of gp35/50
was found to be inversely correlated to infectivity (Ruiz et al.,
1998), although, when treatment of MTs with neuraminidase was
applied before invasion assays, an increase in infectivity was
observed, probably due to the fact that desialylated gp35/50 can
interact with the host cell (Yoshida et al., 1997).

Cell-Derived Trypomastigotes
- Trans-sialidase
Among the different surface molecules involved in TCTs
invasion is the unique T. cruzi trans-sialidase (TS), an
important parasite virulence factor. Unable to synthesize sialic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
acid (SA), TS enables TCTs to transfer terminal SA residues
linked a2,3 to terminal b-galactopyranoses from host cell donor
macromolecules to glycans of mucin-type proteins displayed on
the parasite membrane (Schenkman et al., 1991; da Fonseca et al.,
2019; Campetella et al., 2020). The generation of a sialylated
surface plays a central role in promoting the evasion of immune
responses, favoring survival and the establishment of the chronic
disease (Nardy et al., 2016). In addition, the transference of SA to
the parasite surface creates the Stage-Specific Epitope 3 (Ssp-3)
that promotes invasion of the host cell (Schenkman et al., 1991).
TS has also been postulated as counter-receptor for TCTs
binding to a2,3-sialyl receptors on the host cell, as a prelude to
T. cruzi invasion (Ming et al., 1993). Signaling pathways
implicated in TS mediated promotion of invasion includes the
PI3K/AKT (Chuenkova et al., 2001; Butler et al., 2013) and the
MAPK/ERK (mitogen-activated protein kinase/extracellular
regulated kinase) pathways (Chuenkova and Pereira, 2001).
Furthermore, shedding of TS into the bloodstream allows T.
cruzi to manipulate the surface sialylation pattern of the target
cell and different cell types distant from the site of infection. This
soluble form of TS has been involved, among other processes, in
host immunomodulation and haematological alterations, mainly
by disruption of cell surface sialyl homeostasis (Campetella et al.,
2020). Moreover, differential TS expression and gene dosage
between different T. cruzi strains, have been reported. In a
murine model, highly virulent strains of the parasite, belonging
FIGURE 1 | Schematic model of T. cruzi/host cell protein interactions and activated signaling pathways during invasion. Stage-specific Surface Molecules expressed
on the membrane of the parasite or shed into the extracellular medium, play an essential role in the recognition, adhesion and activation of signaling pathways that
lead to a successful invasion of the host cell. Figures were created using images from Servier Medical Art Commons Attribution 3.0 Unported License. (http://smart.
servier.com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
March 2021 | Volume 11 | Article 634793
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to DTU-VI, expressed and shed high amounts of TS, whereas the
opposite was observed in mice infected by the low-virulence
DTU-I strains (Risso et al., 2004; Burgos et al., 2013).
Intriguingly, a naturally occurring point mutation, the Y342H
substitution, accounts for the lack of trans-sialylation activity
that generates an inactive form of TS (iTS) (Cremona et al.,
1995). Still, iTS behaves as a lectin-like protein, that maintains
the ability to bind SA and b-galactose residues (Cremona et al.,
1999). Experimental data strongly suggest that iTS confers
alternative and/or complementary roles to TS in the parasite
virulence and pathogenesis (Campetella et al., 2020).

- Tc85
Another TCTs surface molecule with affinity for the extracellular
matrix is the Tc85 family (Giordano et al., 1999). Belonging to the
gp85/TS superfamily, Tc85 proteins lack enzymatic activity and,
although unable to transfer SA, they have been implicated in cell
adhesion and invasion (Mattos et al., 2014). A Laminin-G like
domain (LamG) at the C-terminus of gp85/TS seems to be
responsible for binding different receptors present in the
extracellular matrix and host cell surface (Teixeira A. A. R. et al.,
2015). Two motifs in the LamG domain have been described: The
FLY motif (VTVxNVxLYNRPLN), present at the C-terminus of
Tc85 proteins, mediates the interaction with cytokeratins (Tonelli
et al., 2010), and the TS9 motif that showed significant cell binding
capacity (Teixeira A. A. R. et al., 2015). In particular, FLY has been
implicated in cytokeratin remodeling, ERK1/2 signaling pathway
activation and increased internalization (Magdesian et al., 2007). It
was shown that the FLY interacts with the endothelium in an
organ-dependent manner with significantly higher avidity for the
heart vasculature (Tonelli et al., 2010). These results, and the fact
that TS9 and FLY are separated from each other by approximately
100 amino acids in the primary sequence of the gp85/TS proteins,
are in agreement with the idea that TS9 and FLY comprise a non-
linear conformational binding site (Teixeira A. A. R. et al., 2015).

- TSSA
The trypomastigote small surface antigen (TSSA) is a small mucin-
like protein from the TcMUC family of T. cruzi mucin genes, the
main mucins on the surface of TCTs and the scaffolds of the Ssp-3
epitope (Buscaglia et al., 2004; Campo et al., 2006). Although TSSA
is not a SA acceptor, it binds to mammalian cells and induces Ca2+

signaling (Cánepa et al., 2012a). There are four allelic variants
(TSSA I-IV), each one corresponding to an ancestral DTU (I-IV),
while in hybrid genomes (DTUV-VI) TSSA isoforms II and III can
be found (Balouz et al., 2021). TSSAII showed higher adhesion to
host cells than TSSAI. Furthermore, TSSAII elicited a much more
rapid and sustained increase in intracellular Ca2+ and promoted a
stronger stimulation of the ERK1/2 pathway, than TSSA I (Cánepa
et al., 2012a). Mapping experiments and cell-binding assays
revealed that at least two peptidic motifs are critical for
the interaction of the “adhesive” TSSA variant to host cell surface
receptor(s) prior to trypomastigote internalization. These
observations were supported by the fact that transgenic
trypomastigotes over-expressing the ‘adhesive’ TSSA displayed
improved adhesion and infectivity towards non-macrophagic cell
lines (Cámara et al., 2017).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Extracellular Amastigotes
- d-Amastin
The amastin multi-gene family was originally identified by
screening an amastigote cDNA library (Teixeira et al., 1994). In
particular, d-Amastin, a transmembrane glycoprotein highly
expressed on the surface of intracellular amastigotes, has been
implicated in EAs cell invasion and differentiation (Cruz et al.,
2012). Although amastin is present in all sequenced T. cruzi
strains (Cerqueira et al., 2008), transcript levels were found to
be down-regulated in amastigotes of the G strain (Cruz et al., 2012;
Kangussu-Marcolino et al., 2013). It was shown that recombinant
d-amastin binds to cells in a saturable and dose-dependent
manner and was able to inhibit parasite internalization,
suggesting a role for amastin in T. cruzi invasion (Cruz et al.,
2012). Moreover, in transgenic EAs, the overexpression of amastin
promoted liver tropism during in vivo infections in mice and
accelerated amastigogenesis (Cruz et al., 2012). The involvement
of amastins in T. cruzi virulence was also supported by knocking
down d-amastins in Leshmania braziliensis, which resulted in a
decrease in survival and proliferation of intracellular parasites
after in vitro macrophage infection and no detectable parasites
after in vivo infections (de Paiva et al., 2015).

Protein Secretion and Extracellular Vesicles Cargo
Trypomastigotes (MTs and TCTs) and EAs shed a wide number
of GPI-anchored surface proteins/glycoproteins such as
members of the gp85/TS family, mucins and MASPs (Trocoli
Torrecilhas et al., 2009; Cánepa et al., 2012b; Bayer-Santos et al.,
2013b; Lantos et al., 2016; Watanabe Costa et al., 2016). These
proteins are not secreted by the classical endoplasmic reticulum
(ER)/Golgi-dependent secretion pathway, but instead, gradually
released into milieu by the action of an endogenous PI-PLC
(Andrews et al., 1988), or associated to extracellular vesicles
(EVs) involved in host cell invasion, immunomodulation and
pathogenesis (Borges et al., 2016; Torrecilhas et al., 2020).

EVs canbedivided into:microvesicles or ectosomes (100nmto1
mM), directly originated by budding from plasma membrane, and
exosomes (30–100 nM), that are secreted following the fusion of
multivesicular endosomes with the membrane at the flagellar
pocket (Evans-Osses et al., 2015). Quantitative proteomic analysis
revealed differences in protein content between these two
populations of EVs (Bayer-Santos et al., 2013a). An interesting
case is the trypomastigote excreted/secreted antigens (TESA),
around 80 parasite proteins with the majority being highly
immunogenic gp85s, associated with exosomal vesicles shed by
MTs, TCTs, and intracellular amastigotes, used as a reagent in the
diagnosis of the disease (Berrizbeitia et al., 2006; Bautista-López
et al., 2017). AlthoughEVs are secreted by all forms ofT. cruzi, only
those shed by infective forms are able to enhance internalization of
host cells, by inducing intracellular Ca2+ mobilization (Moreira
et al., 2019). Inoculation of EVs before infection in mice produced
an increment of parasitemia in early days post-infection and more
amastigote nests in mice hearts (Lovo-Martins et al., 2018).
Moreover, it has been shown that vesicles from TCTs from the T.
cruzi strains Colombiana (DTU I), YuYu (DTU I), Y (DTU II), and
CL-14 (DTU VI) presented differences in their protein and a-
galactosyl contents and were able to differentially modulate host’s
March 2021 | Volume 11 | Article 634793
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immune responses and parasite invasion (Nogueira et al., 2015).
Although all strains were capable of activating MAPKs like p38,
JNK, and ERK 1/2, CL-14, and YuYu activated MAPKs via TLR2,
while EVs fromColombiana andY strainsneeded tobe internalized
to activate the MAPK pathway (Nogueira et al., 2015). Thus, the
composition and effects of EVs on host cell seems to be
strain-dependent.

In addition to glycoproteins, a substantial number of other
molecules are released into the extracellular medium, like
complement regulatory proteins (CRPs), cruzipain (Czp),
peptidyl-prolyl cis-trans-isomerases, oligopeptidases and
proteases, phospholipases A1 and C, P21, and amastigote specific
proteins (Torrecilhas et al., 2012; Watanabe Costa et al., 2016).

Interesting examples are SAP (serine-, alanine-, and proline-
rich protein) and TcSMP (Trypanosoma cruzi Surface
Membrane Proteins), which have been involved in MTs
invasion by binding to host cells and triggering Ca2+ signaling
and lysosome mobilization (Baida et al., 2006; Zanforlin et al.,
2013; Martins et al., 2015).

- SAP
Diverse paralogs of SAPs, with different cellular localization, are
expressed in the different development stages of the parasite. In
particular, SAP peptides were identified by by mass spectrometry
in vesicle and soluble-protein fractions from epimastigotes and
MTs conditioned medium. Although, SAP transcript levels and
protein expression in MTs were found to be twice as high as in
epimastigotes, in agreement with their proposed role in cell
adhesion and invasion (Zanforlin et al., 2013). In this regard,
the fact that gp82 and SAP share the ability to induce Ca2+

signaling and lysosome mobilization, led to the hypothesis that
both molecules display a synergistic effect in the process of MTs
host-cell invasion (Baida et al., 2006; Zanforlin et al., 2013).

- TcSMP
Recently described, the TcSMP family, possesses two main
features typical of surface proteins, an N-terminal signal
peptide and a C-terminal hydrophobic sequence, predicted to
be a transmembrane domain, rather than the most prevalent GPI
anchoring (Martins et al., 2015). TcSMPs are expressed in all T.
cruzi developmental stages, located at the surface and present in
the secretome of epimastigotes and MTs. Similarly to SAP,
TcSMPs have been shown to promote a weaker lysosome
mobilization and parasite internalization than gp82, suggesting
an auxiliary role in parasite invasion (Martins et al., 2015).

- TcPLA1
The membrane-associated phospholipase A1 (TcPLA1) can be
also found in the extracellular medium of TCTs and EAs
(Belaunzarán et al., 2007). Host cells exposed to the conditioned
medium of EAs, TCTs, or recombinant TcPLA1, showed
modified lipid profiles, with increased cellular concentrations of
free fatty acids, diacylglycerol and lysophosphatidylcholine, that
contributed to the concomitant activation of the PKC pathway
(Belaunzarán et al., 2013). Remarkably, PKC has been previously
implicated in parasite invasion, suggesting that Tc-PLA1 would
participate in the events preceding host cell invasion (Watanabe
Costa et al., 2016).
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Peptidases
Peptidases, a class of hydrolytic enzymes responsible for
breaking peptide bonds, has attracted the attention of distinct
research groups because of their role in several crucial steps of
the life cycle of the trypanosomatid parasites. The T. cruzi
genome contains several families of peptidases that play central
roles in diverse processes, such as adhesion and cell invasion
(Alvarez et al., 2012; Rawlings et al., 2014).

- Cruzipain
Cruzipain (Czp), the most notorious cysteine peptidase, is
expressed as a complex mixture of isoforms in all forms of
T. cruzi and mainly located in lysosome-related organelles (Lima
et al., 2012), have been shown to be required but not essential for
invasion (San Francisco et al., 2017). Czp released by
trypomastigote promotes invasion through its cysteine protease
activity by producing bradykinin from membrane-bound
kininogen on the surface of the host cell and triggering IP3-
mediated Ca2+ signaling upon recognition by bradykinin B2
receptor (B2R) (Scharfstein et al., 2000). More recently, a second
cruzipain-mediated route, blocked by a cysteine protease
inhibitor, thapsigargin and immunodepletion of Czp, but not
by kinin receptor antagonists, was described for TCTs (Aparicio
et al., 2004). Experimental data evidenced that this effect is
mediated by a soluble trypomastigote-associated factor released
by Czp (Aparicio et al., 2004).

- Oligopeptidase B
Oligopeptidase B (OPB), a serine endopeptidase from the prolyl
oligopeptidase family, is conserved in trypanosomatids but not
present in any mammalian genome (Motta et al., 2019). OPB has
a cytosolic localization and there is not any strong evidence
suggesting its secretion by the parasite. Instead, it has been
involved in the cytoplasmatic processing of a trypomastigote-
specific precursor that generates a soluble factor of unknown
structure which is shed by TCTs (Burleigh et al., 1997).

Upon binding to the host cell receptor, the OPB-agonist induces
PLC activation and an IP3-dependent release of Ca2+ from
intracellular stores. This Ca2+ mobilization promotes lysosomal
recruitment to the entry site and F-actin filaments disruption, both
events associated with an increased parasite invasion (Burleigh
et al., 1997; Caler et al., 1998). Surprisingly, even today, with
genomes of several T. cruzi strains available, the identity of the
precursor it is still unknown. However, the secretion of OPB cannot
be ruled out since OPB activity has been found in trypomastigotes
supernatants (Fernandes et al., 2005; Motta et al., 2019).
Trypanosoma brucei and Trypanosoma evansi OPBs, are released
into the extracellular milieu and contribute to pathogenesis by
hydrolyzing host circulating factors (Motta et al., 2019). In the case
of T. cruzi, hydrolyzed peptides would mimics ligands capable of
activating GPCR and/or RTK (Motta et al., 2019).

EAs Specific Proteins
EAs are capable of invading mammalian cells in an actin-
dependent mechanism, forming a phagocytic cup that engulfs
the parasite (Mortara et al., 2005). Secreted proteins from EAs,
such as P21, mevalonate kinase (TcMVK) and specific-surface
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protein 4 (Ssp-4), mediate host cell signaling during the
phagocytosis-like mechanism of invasion (Rodrigues et al.,
2012; Ferreira et al., 2016; Florentino et al., 2018).

- P21
P21 is a 21kDa protein expressed in all developmental stages of
T. cruzi and secreted by EAs to induce host cell invasion (da Silva
et al., 2009). Evidence for this observation came from the use of a
recombinant version of P21 (rP21) that bound to the CXCR4
chemokine receptor and promoted phagocytosis by induction of
actin cytoskeleton polymerization and the modulation of the
expression of actin-related genes in a PI3K-dependent manner
(Rodrigues et al., 2012; Teixeira et al., 2017). In addition, in mice
infections with the T. cruzi naturally attenuated TCC strain, rP21
lead to an exacerbated infection and parasite load in target
organs (Brandán et al., 2019).

- TcMVK
MVK is a key enzyme involved in the early steps of the sterol
isoprenoids biosynthesis pathway (Ferreira et al., 2016). In T.
cruzi, TcMVK localizes to glycosomes, and may be also secreted
into the extracellular milieu where it modulate host cell invasion,
independently of its catalytic function. More precisely, TcMVK
activates the actin-related kinases FAK (focal adhesion kinase)
and PAK (p21-activated kinase), and the MAPK pathway
components, ERK, and p38 to promote EAs internalization
(Ferreira et al., 2016).

- Ssp-4
Ssp4 is a major surface GPI-anchored glycoprotein that is
secreted by the EAs (Andrews et al., 1987). Although EAs Ssp-
4 expression does not correlate with infectivity, glycosylation of
Ssp-4 was associated with host cell invasion. It has been shown
that only EAs from highly infective strains secreted a
differentially glycosylated Ssp-4 into vesicle trails at the site of
entry, contributing to Galectin-3 (Gal-3) recruitment and
establishing a physical link between the parasite and the host
cell surface (Florentino et al., 2018). Gal-3, a 31kDa b-
galactoside-binding protein, is recruited to the site of EAs
entry during cell invasion and participates in the intracellular
trafficking of the parasite (Machado et al., 2014).

Plasma Membrane Damage
It has been proposed that flagellar motility of trypomastigotes
strongly attached to the host cells surface through their posterior
end produces membrane damage in the host cell. An active
gliding motility of parasites firmly attached to host cells was
evidenced using time-lapse phase-contrast live images of
trypomastigotes interacting with a HeLa cells (Fernandes et al.,
2011). Supporting evidence was also obtained from the analysis
of scanning electron microscopy images of T. cruzi during early
steps of invasion, showing parasites gliding under cells or in close
contact with the plasma membrane at the cell periphery
(Fernandes et al., 2011). Parasite-mediated membrane damage
triggers Ca2+-dependent fusion of lysosomes and internalization
through Plasma Membrane Repair Mechanism (PMR), that will
be discussed below.
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HIJACKING HOST’S SIGNALING
MACHINERY

To maintain homeostasis, host cells have a complex vesicular
transport system, that consist of multiple connected networks
with different levels of cross-talk (Salimi et al., 2020). T. cruzi has
developed the ability of subverting and exploiting the most
suitable mechanism at the time of invasion to gain access to the
host cell (Figure 2). Three main mechanisms of internalization,
involving several coordinated and integrated pathways, are used
by the parasite to gain access to the target cell: 1) Ca2+-mediated
recruitment and fusion of lysosomes to the entry site (Figures
2.1–3), 2) Endocytosis of plasma membrane (Figures 2.4–7) and
3) Autophagy (Figure 2.8).

It is important to note that regardless of the parasite strain, the
developmental stage, the repertoire of surface/secreted molecules
expressed and the signaling cascades activated to prepare the host
cell for invasion, all the internalization mechanisms lead to the
biogenesis of TcPV (Batista et al., 2020). Moreover, despite the
invasion mechanism as well, the acquisition of lysosomemarkers by
the TcPV during the process of internalization has shown to be
essential for intracellular retention of the parasite and the
establishment of a successful infection (Andrade and
Andrews, 2004).

Plasma Membrane Repair Mechanism
In order to maintain cellular homeostasis, membrane disruptions
are rapidly resealed by a conserved PMR. Upon wounding, toxic
levels of Ca2+ and oxidants from the extracellular milieu enter the
cell. To avoid cell death, the damage is rapidly repaired by an
extracellular Ca2+-induced recruitment of intracellular vesicles
(Blazek et al., 2015) (Figures 2.1–3). It has been shown that
conventional lysosomal exocytosis mediates the resealing in
primary skin fibroblasts (Reddy et al., 2001). After wounding,
Ca2+-dependent fusion of lysosomes to the host cell membrane
was evidenced by the exposure of the luminal domain of
lysosomal LAMP-1 and Synaptotagmin isoform VII (SytVII), a
putative Ca2+ sensor in exocytosis (Sugita et al., 2001).

Moreover, a SytVII regulation of lysosome Ca2+-dependent
exocytosis was evident by a dramatic inhibitory effect on plasma
membrane resealing by antibodies directed against the cytosolic
domain of this protein (Reddy et al., 2001). In addition to the
exposure of lysosomal luminal proteins on the surface of the cell,
the lysosomal enzyme Acid Sphingomyelinase (ASM) is secreted
during cell injury and promotes plasma membrane repair (Tam
et al., 2010) (Figures 2.1–3).

Invasion assays in the presence the pore-forming bacterial toxin
Streptolysin O (SLO) increased parasite internalization, while
bromoenol lactone (BEL), a lysosomal exocytosis inhibitor,
strongly restrained invasion by T. cruzi trypomastigotes.
Moreover, PMR and T. cruzi internalization have been shown to
depend on the secretion of ASM, the lysosomal enzyme responsible
for catalysing the breakdown of sphingomyelin to ceramide and
phosphorylcholine in the outer leaflet of the plasma membrane
(Tam et al., 2010; Fernandes et al., 2011). Lysosomal cysteine
proteases cathepsin B and L are also secreted and may participate
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in the repair process by facilitating membrane access of ASM
(Castro-Gomes et al., 2016). As a result, surface staining with
anti-ceramide monoclonal antibodies and EEA1(early endosome-
associated protein)-positive vesicles increased after treatement with
extracellular ASM, suggesting that ceramide-enriched endocytic
vesicles formation can facilitate trypomastigote entry. In the same
line, inhibition of ASM reduced trypomastigote entry and this
inhibition was reverted by the addition of extracellular
sphingomyelinase (Fernandes et al., 2011). Proteomics studies
have shown that trypomastigotes express and shed a neutral
sphingomyelinase (Brossas et al., 2017) that might be
contributing to the production of the required ceramide in the
outer leaflet of the plasmamembrane during host cell invasion byT.
cruzi, although this hypothesis has not been yet explored. In
accordance with the PMR-mediated invasion model, it was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
recently reported that the parasite could modulate the expression
of plasma membrane repair-related proteins and the fold of change
depends on the number of parasites interacting with the host cell
(Brıǵido et al., 2017) (Figures 2.1–3).

Ca2+-Dependent Lysosome Exocytosis
Originally considered terminal degradative organelles, lysosomes
have been found to participate in many other cellular processes (Pu
et al., 2016). The involvement of lysosomes in these different
processes depends on their sub-cellular distribution and their
ability to move throughout the cytoplasm (Pu et al., 2016).
Lysosomes distribute in a rather immobile perinuclear pool and a
more dynamic pool in the cell periphery (Cabukusta and Neefjes,
2018). Living cells video microscopy during TCTs host cell invasion
showed a directional microtubule/kinesin-mediated migration of
FIGURE 2 | T. cruzi invasion model. Lysosome exocytosis involves surface/secreted proteins (1) or micro-injuries (2) that trigger an elevation in the intracellular levels
of Ca2+ and the microtubule/kinesin-mediated recruitment of lysosomes from surrounding areas to the parasite entry site (3). Host’s Acid Sphingomyelinase (ASM)
and a parasite Neutral Sphingomyelinase (NSM) are secreted to the extracellular milieu and participates in the breakdown of sphingomyelin to ceramide and
phosphorylcholine in the outer leaflet of the plasma membrane (3). Endocytic mechanisms, such as lipid raft-dependent endocytosis (4), clathrin-mediated
endocytosis (5) and macropinocytosis (6) also converge in the internalization of the parasite. Extracellular amastigotes, on the other hand, employ a phagocytosis-like
mechanism for invasion (7). Moreover, autophagy is a key player during the invasion and also promotes trypomastigotes to amastigotes differentiation (8). In brief,
regardless of the parasite stage, or the activated cascade, all internalization pathways culminate in the parasitophorous vacuole, from which parasite escapes to the
cytoplasm and differentiates into amastigotes and proliferates (9). Figures were created using images from Servier Medical Art Commons Attribution 3.0 Unported
License. (http://smart.servier.com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
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lysosomes from surrounding areas to the parasite entry site
(Rodrıǵuez et al., 1996). It was later demonstrated that TCTs uses
the cortical pool of lysosomes in the invasion process (Hissa and
Andrade, 2015) (Figures 2.1–3).

Membrane-associated rafts enriched in cholesterol and
ganglioside GM1 have been also implicated in adhesion and
internalization of all infective forms of T. cruzi (Barrias et al.,
2007; Fernandes et al., 2007). Immunofluorescence analysis
demonstrated a colocalization of GM1, flotillin 1, and caveolin 1
in the nascent TcPV, supporting the fact that membrane rafts
participate in T. cruzi invasion (Barrias et al., 2007). Consistently,
cholesterol involvement in the recruitment of lysosomes was
evidenced using methyl-beta cyclodextrin (MbCD), a cholesterol-
removing agent used for lipid raft disruption.Noteworthy,LAMP-2
have shown to play a major role in cholesterol and caveolin traffic,
membrane repair and T. cruzi invasion. Cells lacking LAMP-2
showeddeficiency in cholesterol delivered to the plasmamembrane
and an altered caveolin-1 distribution, both phenomena being
refractory to TCTs invasion (do Couto et al., 2020). Similarly,
MTs internalizationwas significantly reduced in LAMP-2-depleted
HeLa cells (Cortez et al., 2016).

In MTs invasion of Hela cells, lysosome biogenesis/scattering
was stimulated upon interaction of the parasites with the host cell
and a reduction in the number of cortical lysosomes negatively
affected MTs invasion (Cortez et al., 2016), as previously
reported for TCTs invasion of cardiomyocytes (Hissa et al.,
2012; Hissa and Andrade, 2015). However, in the HeLa model,
the stimulation of lysosome biogenesis/scattering diminished
TCTs ability for invasion, whereas rapamycin-promoted
lysosome accumulation at the perinuclear region led to a
higher TCTs invasion (Cortez et al., 2016). While these
observations may result contradictory, it is important to
consider that different parasite strains have been used in order
to establish the different models of invasion. T. cruzi invasion,
already showed to be a complex process when only taking into
account the different stages of the invading parasite. This
complexity gets even higher when considering different DTUs,
strains, the repertoire of surface/secreted molecules, and
signaling pathways activated in the host cell. In this regard,
differential infectivity has been reported for trypomastigotes of
different strains (Cortez et al., 2012; Santi-Rocca et al., 2017);
thus, it is not unlikely that a particular mechanism of invasion is
exploited depending on the strain and host cell/tissue. For
example, in contrast to the results reported for TCTs, the
absence of extracellular Ca2+ had no effect on MTs invasion,
while the presence of the pore‐forming bacterial toxin SLO
decreased MTs internalization (Rodrigues et al., 2019), strongly
suggesting a PMR-independent mechanism of invasion for MTs.

Ca2+ release fromcellular compartments, suchas the endoplasmic
reticulum, is accompaniedbyanactivationofPLCandanelevationof
intracellular cAMP levels. It has been shown that cAMP is able to
potentiate the Ca2+-dependent exocytosis of lysosomes and
lysosome-mediated cell invasion by T. cruzi (Rodrıǵuez et al.,
1999). In mammalian cells, both cAMP effector pathways, i.e.,
Protein Kinase A (PKA) and Exchange protein activated directly
by cAMP (Epac), are involved in Ca2+-triggered exocytic events
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(Seino and Shibasaki, 2005). Moreover, members of this latter
pathway, including Rap1, have been localized to late endosomes/
lysosomes (Pizon et al., 1994), andEpac-mediated Rap activation has
been involved in regulated exocytosis in human sperm (Miro-Moran
et al., 2012), insulin secretion (Tengholm and Gylfe, 2017) and
pancreatic amylase release (Sabbatini et al., 2008). Accordingly, it
was recently shown that Epac1-mediated signaling represents the
mainmechanism for cAMP-dependent host cell invasion byT. cruzi
(Musikant et al., 2017). Additionally, ERM proteins (ezrin, radixin
and moesin), which are essential for the cell cortex function and
architecture by linking plasma membrane to the underneath actin
cytoskeleton (McClatchey, 2014), have been associated to T. cruzi
invasion (Ferreira et al., 2017). Confocal microscopy studies have
shown that ERMproteins are recruited to the EA invasion site, where
they co-localizewithF-actin, and thatdepletionofhostERMproteins
inhibited T. cruzi invasion in HeLa cells (Ferreira et al., 2017).
Remarkably, radixin was identified as a scaffolding unit for cAMP
effectors in the spatial regulation of cAMP-Epac1-Rap-mediated
signaling (Gloerich et al., 2010; Hochbaum et al., 2011). A link
between radixin and cAMP-Epac-mediated TCTs invasion was
recently evidenced by blocking invasion in pre-treated NRK host
cells with a 15 amino acid permeable peptide spanning Epac’s
minimal ERM-biding domain (Musikant et al., 2017). This
observation was consistent with a co-localization of a pool of Epac1
and radixin, as a requirement for invasion. Also, F-actin regulation is
in part due to the activity of the focal adhesion kinase (FAK), a
cytoplasmic protein tyrosine kinase (PTK) that participates during
invasion by T. cruzi (Melo et al., 2014) (Figure 2.4). Both, inhibition
of FAK autophosphorylation or knockdown of FAK expression by
siRNA in cardiomyocytes, led to a reduction in T. cruzi
internalization, hence showing a key role of the FAK-mediated
pathway in this process (Melo et al., 2014). FAK inhibition was
associated with ERK1/2 dephosphorylation and F-actin
rearrangement, suggesting a crosstalk between this signaling
cascade and the MEK/ERK pathway (Onofre et al., 2019). Likewise,
the interaction between HeLa cells and EAs induced N-WASP-
dependent actin polymerization via PI3K/AKT and ERK but not
SFK (Src family kinases) (Bonfim-Melo et al., 2018a). In opposition,
previousworks on cardiomyocytes have shown that Srcwas required
for TCTs internalization (Melo et al., 2014). However, observations
are not conclusive since internalization experiments were done using
PP1 as Src inhibitor, which also blocks TGF-b-mediated cellular
responses in a Src-independent fashion (Ming et al., 1995; Yoshida
and Cortez, 2008; Ferrão et al., 2015; Silva et al., 2019).

Endocytic Pathways
Endocytic processes can be divided into different classes: clathrin-
mediated, caveolae-mediated, membrane microdomain-mediated,
macropinocytosis and phagocytosis (Chou et al., 2011). Several of
these endocytic pathways are exploited by T. cruzi for invasion
(Barrias et al., 2013) (Figures 2.4–7). Moreover, lysosome-
independent endocytosis has been proposed to be the main
entry mechanism for TCTs (Burleigh, 2005; Cortez et al., 2016).

- Phagocytosis
Experimental evidence showed that approximately 20 to 25% of the
internalized trypomastigotes were associated to lysosomes, while
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50% of the invading parasites exploited an alternative PI3-kinase-
dependent mechanism of invasion, involving a host cell plasma
membrane-derived vacuole enriched in the lipid products of class I
PI3-kinases, Phosphatidylinositol 3-Phosphate PI3P/
Phosphatidylinositol 3,4-bisphosphate (P3,4P2) (Woolsey et al.,
2003). In this endocytic mechanism of internalization,
downstream of cell entry the EEA1 marker was never associated
to the parasite-containing vacuoles, instead, a gradual lysosomal
fusion was revealed by the acquisition of lysosomal markers such as
LAMP-1 and fluid-phase endocytic tracers from the lysosomal
compartment (Woolsey et al., 2003). However, Rab5, a marker for
early endosomes, was found to associate to a fraction of T. cruzi-
containing vacuoles during and immediately following
internalization. Likewise, the remaining 20% to 30% of the T.
cruzi-containing vacuoles were positive for EEA1, the Rab5
effector, indicating that early endocytic pathway of internalization
took place as well. Interestingly, it has been shown that the Toll‐Like
Receptor 2 (TLR2) was required to activate PI3K and Rab5 binding
to early endosomes in the Rab5/Rab7-endosome-dependent
invasion mechanism (Maganto-Garcia et al., 2008). Accordingly,
a strong activation of PI3K and PKB/AKT was detected when cells
were incubated with trypomastigotes or their isolated membranes
(Wilkowsky et al., 2001). Noteworthy, T. cruzi-infected human
macrophages shed EVs that enhance host cell TLR-2-mediated
invasion (Cronemberger-Andrade et al., 2020).

EAs employ a phagocytosis-like mechanism when invading
non-professional phagocytic cells (Fernandes et al., 2013), with
positive participation of Cdc42, N-WASP, WAVE2, and Rac1,
and negative regulation of RhoA (Bonfim-Melo et al., 2018b)
(Figure 2.7). Furthermore, EAs interaction with HeLa cells
produced an increase in ERK1/2 phosphorylation, while pre-
treatment of HeLa cells with an ERK1/2 inhibitor had a negative
effect on internalization. This results demonstrated a key role for
that PI3K/AKT and ERK pathway during T. cruzi EA invasion
(Ferreira et al., 2019), probably through activation of proteins
that regulate microfilament remodelling such as calpain, FAK
and cortactin (Bonfim-Melo et al., 2018a).

- Clathrin-Mediated Endocytosis
Clathrin-mediated endocytosis in T. cruzi internalization was
recently evidenced (Barrias et al., 2019) (Figure 2.5). Clathrin-
containing vesicles and actin filaments were localized at sites of
parasites attachment and internalization and around the nascent
TcPV. Accordingly, specific inhibition of clathrin-coated pit
formation impaired T. cruzi internalization (Barrias et al., 2019).

- Macropinocytosis
Macropinocytosis, an actin-driven process originally described as
a mechanism of non-specific uptake offluid into large cytoplasmic
vesicles, has also been implicated in host cell invasion by T. cruzi is
(King and Kay, 2019) (Figure 2.6). The nascent macropinosome
accumulates PI3P and active Rab5, that regulates the fusion of
membranous organelles at early stages of endocytosis (Feliciano
et al., 2011). Signaling patches involving PIP3, Ras, and Rac direct
actin polymerization to the periphery of the macropinocytic cup
(Kay et al., 2018). The involvement of macropinocytosis as a
mechanism of entry for T. cruzi was demonstrated by blocking
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parasite internalization using macropinocytosis inhibitors, such as
amiloride, rottlerin and IPA3 (Barrias et al., 2012). In accordance,
the stimulation of macropinocytic activity through activation of
PKC by PMA, showed an increased internalization of parasites
(Barrias et al., 2012). Moreover, colocalization at entry sites of
trypomastigotes with the Rab5 effector rabankyrin 5, tyrosine
kinases , Pak1 and actin microfi laments, confirmed
macropinosomes formation (Barrias et al., 2012).

Autophagic Pathway
Autophagy as an alternative pathway of internalization for T. cruzi
was evidenced in starved cells, where the induction of autophagy
was a positive modulator of invasion (Figure 2.8). On the other
hand, the disruption of mammalian autophagy led to a reduction
in infectivity (Salassa and Romano, 2019). The autophagy
pathway consists of several coordinated and consecutive events:
initiation, elongation, maturation, and fusion of lysosomes to the
autophagosome. Upon activation, autophagosome biogenesis is
initiated with the induction and nucleation of the phagophore, a
double-membrane structure that grows to engulf the autophagic
cargo, and the recruitment of the core autophagymachinery (Dikic
and Elazar, 2018). Lipidated LC3-II is required in autophagosome
biogenesis, and since it forms a stable association with
the membrane of autophagosomes it is used as a marker for
autophagy (Tanida et al., 2008). The presence of LC3 in the
membrane of the TcPV during the internalization process showed
a connection between the TCTs and the host-cell autophagic
pathway (Romano et al., 2009). Accordingly, infection was
reduced in the absence of specific autophagy genes Atg5 or
Beclin1, confirming the requirement of an autophagic-derived
compartment in autophagy-mediated invasion (Romano et al.,
2009). Moreover, starvation and rapamycin treatment induced an
increase of LAMP-1 in T. cruzi-containing vesicles, indicating
lysosomal association to TcPV and the consequent autolysosome
formation were required for an increased internalization (Romano
et al., 2009).
TcPV MATURATION AND ESCAPE TO
CYTOSOL

Several proteins are recruited to the TcPV at different times
during the biogenesis and maturation process (Batista et al.,
2020). Within these proteins are the SNAREs, fusion proteins
that regulate docking of granules and vesicles to target
membranes including the plasma membrane (Wang et al.,
2017). Vesicle associated membrane proteins 3 (VAMP3) and
VAMP7, are consequtively recruited to the TcPV. VAMP3,
usually present in recycling or early endosomes, is not essential
for invasion, whereas SNARE complexes involving VAMP7,
required for late endosome/lysosome fusion, are crucial in the
establishment of T. cruzi infection (Cueto et al., 2017). Besides,
early (Rab5, Rab22a, and Rab21 positive vesicles) and late (Rab7
and Rab39a) endocytic compartments, also recruited to the
TcPV at early times post internalization, regulate the transit of
the TcPV and promote fusion with lysosomes (Salassa et al.,
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2020). TcPV maturation is characterized by an initial interaction
with Rab5 and VAMP3‐positive vesicles, followed by the
recruitment of Rab7 and VAMP7, to finally fuse with
lysosomes (Cueto et al., 2017; Salassa et al., 2020).

It is well established that fusion of lysosomes to the TcPV
induces acidification that triggers the vacuole disruption and
subsequent release of T. cruzi into the host cell cytosol (Ley et al.,
1990). T. cruzi viability in the TcPV depends on a highly effective
antioxidant defense machinery involving specialized antioxidant
enzymes, such as peroxidases and superoxide dismutases
(SODs), that protects the parasite against reactive oxygen and
nitrogen species (Cardoso et al., 2016). Interestingly, oxidative
stress has been shown to be an enhancer of T. cruzi infection in
macrophages (Paiva et al., 2012). Although, a plausible
hypothesis is that T. cruzi needs minimal levels of ROS,
signaling for replication, while high levels of ROS are
deleterious (Goes et al., 2016). Heavily sialylated LAMP-1 and
2, located in the inner coat of the TcPV, have been shown to
protect the TcPV from lysis (Rubin-de-Celis et al., 2006).
Additionally, LAMP-1 and 2 are essential to retain the
intracellular parasite (Albertti et al., 2010) and avoid reversible
invasion (Caradonna and Burleigh, 2011).

Under acidic conditions, the disruption of de TcPV occurs
through the several T. cruzi proteins, such as secreted TS (Hall
et al., 1992) and two pore-forming proteins, TcTOX (Andrews
et al., 1990) and LYT1 (Manning-Cela et al., 2001). In TCTs,
the expression of TS induces the escape from the TcPV by
desialylation of LAMP-1 and 2, making membranes more
susceptible to disruption by pore-forming proteins (Hall
et al., 1992; Rubin-de-Celis et al., 2006). Pores are then
formed by TcTOX and LYT1. Interestingly, TcTOX and
LYT1 share similar characteristics: both are secreted, present
cross-reactivity with C9 antibodies and have hemolytic activity
at low PH. In fact, the molecular identity of TcTOX still
remains unknown, and all available data suggest that LYT1 is
TcTOX, or a TcTOX‐like protein (Benabdellah et al., 2007;
Friedrich et al., 2012).

Once in the cytoplasm, host cellular and metabolic pathways
will be targeted by amastigotes in order to successfully replicate.
Four to seven days post-invasion, amastigotes differentiate into
the non-replicative infective trypomastigote form, that is released
into the bloodstream (Caradonna et al., 2013; Li et al., 2016;
Oliveira et al., 2020)
CONCLUDING REMARKS

Numerous works have endeavored to comprehend the molecular
basis of T. cruzi invasion. Although some mechanisms involved
in parasite/host interaction have been already described, a
thorough understanding off the process would contribute to
find new key players and provide a more diverse set of
potential molecular targets against the disease. However, the
evolution of this parasite has provided it with redundant and
diverse molecular tools, able to interfere with multiple host cell
pathways, to achieve a successful invasion.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
The process of invasion begins with the recognition and adhesion
of the parasite to the target cell. This interaction, reinforced by EVs
and secreted proteins, leads to the activation of signaling pathways in
the host cell that promote parasite internalization into an encasing
vacuole, from which the parasite escapes to the cytosol where
differentiation and replication take place.

Invasion has a pyramidal structure, in the base the diverse
parasite/host protein interactions involved in internalization
converge in the activation of a smaller set of signaling cascades
and, regardless of the parasite strategy of internalization, all
pathways end at the top of the pyramid with a parasite-
containing vesicle to which lysosomes fuse to generate the
parasitophorous vacuole. Little is known about the events that
occur after TcPV is established, and a better understanding of
this crucial mechanism may be the key to define new therapeutic
targets against Chagas disease.

In this review, we address the several strategies Trypanosoma
cruzi, the etiological agent of Chagas disease, has developed to
subvert the host cell signaling pathways in order to gain access to the
host cell cytoplasm, where replication and differentiation. Special
attention is made to the numerous parasite/host protein interactions
and the set of signaling cascades interfered during the formation of
the parasitophorous vacuole. We first discuss the three strategies
that T. cruzi exploits to trigger host cell signaling pathways to
facilitate invasion: 1) Parasite surface/secreted proteins/host cell
receptor interactions, 2) Protein shedding and 3) Host plasma
membrane wounding. Later, strategies that lead to the
internalization of the parasite, involving three main mechanisms:
1) Ca2+-dependent recruitment of lysosomes, 2) Endocytosis, and
3) Autophagy, are discussed. Finally, we examine the mechanisms
by which the parasite escapes from the parasitophorous vacuole to
establish a successful invasion. The topics discussed in this work
were partially covered by other authors, however, we present a
bigger picture, describing the complexity of the process considering
genetic variability, strains, parasite/host interactions, signaling
pathways activated and host cell. To our knowledge, this would
be the more complete and updated review currently available.
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Ferreira Marques, A., Varela-Ramirez, A., et al. (2013a). Proteomic Analysis of
Trypanosoma Cruzi Secretome: Characterization of Two Populations of
Extracellular Vesicles and Soluble Proteins. J. Proteome Res. 12 (2), 883–897.
doi: 10.1021/pr300947g

Bayer-Santos, E., Cunha-E-Silva, N. L., Yoshida, N., and Silveira, J. F. Da (2013b).
Expression and Cellular Trafficking of GP82 and GP90 Glycoproteins during
Trypanosoma Cruzi Metacyclogenesis. Parasites Vectors 6 (1), 1–10.
doi: 10.1186/1756-3305-6-127

Belaunzarán, M. L.,Wainszelbaum, M. J., Lammel, E. M., Gimenez, G., Aloise, M.M.,
Florin-Christensen, J., et al. (2007). Phospholipase A1 from Trypanosoma Cruzi
Infective Stages Generates Lipid Messengers That Activate Host Cell Protein
Kinase C. Parasitology 134 (4), 491–502. doi: 10.1017/S0031182006001740

Belaunzarán, M. L., Wilkowsky, S. E., Lammel, E. M., Giménez, G., Bott, E.,
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J. M., et al. (2019). Oligopeptidase B, a Missing Enzyme in Mammals and a
Potential Drug Target for Trypanosomatid Diseases. Biochimie 167, 207–216.
doi: 10.1016/j.biochi.2019.10.006

Musikant, D., Ferri, G., Durante, I. M., Buscaglia, C. A., Altschuler, D. L., and
Edreira, M. M. (2017). Host Epac1 Is Required for CAMP-Mediated Invasion
by Trypanosoma Cruzi. Mol. Biochem. Parasitol. 211 (January), 67–70.
doi: 10.1016/j.molbiopara.2016.10.003

Nardy, A. F. F. R., Freire-de-Lima, C. G., Pérez, A. R., and Morrot, A. (2016). Role
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