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Hepatocellular carcinoma (HCC) is a common malignant tumor of which the occurrence
and development, the tumorigenicity of HCC is involving in multistep and multifactor
interactions. Interleukin-6 (IL-6), a multifunctional inflammatory cytokine, has increased
expression in HCC patients and is closely related to the occurrence of HCC and
prognosis. IL-6 plays a role by binding to the IL-6 receptor (IL-6R) and then triggering
the Janus kinase (JAK) associated with the receptor, stimulating phosphorylation and
activating signal transducer and activator of transcription 3 (STAT3) to initiate downstream
signals, participating in the processes of anti-apoptosis, angiogenesis, proliferation,
invasion, metastasis, and drug resistance of cancer cells. IL-6/STAT3 signal axes elicit
an immunosuppressive in tumor microenvironment, it is important to therapy HCC by
blocking the IL-6/STAT3 signaling pathway. Recent, some inhibitors of IL-6/STAT3 have
been development, such as S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb),
Madindoline A (Inhibits the dimerization of IL-6/IL-6R/gpl30 trimeric complexes), C188-9
and Curcumin (Inhibits STAT3 phosphorylation), etc. for treatment of cancers. Overall,
consideration of the IL-6/STAT3 signaling pathway, and its role in the carcinogenesis and
progression of HCC will contribute to the development of potential drugs for targeting
treatment of liver cancer.

Keywords: IL-6/STAT3 signal, hepatocellular carcinoma, targeted treatment, IL-6 receptor, malignant transformation
Abbreviations: AFP, Alpha-fetoprotein; ANG, Angiogenin; AP-1,Activator protein-1; APRF, Acute phase response factor;
CCD, Coiled-coil domain; CAFs, Carcinoma-associated fibroblasts; DC, Dendritic cell; DBD,DNA binding domain; EGFR,
Epidermal growth factor receptor; EMT, epithelial-mesenchymal transition; HCC, hepatocellular carcinoma; HBV, hepatitis B
virus; HBx, Hepatitis B virus X protein; HCV, hepatitis C virus; HIF-1,Hypoxia inducible factor 1; IFN, Interferon; IL-1b,
Interleukin-1b; IL-6,interleukin-6; IL-6R,interleukin-6 receptor; LD, Linker domain; LCSCs, liver cancer stem cells; MAPK,
Mitogen Activated Protein Kinase; mIL-6R, membrane- bound IL-6R; MAPK, Mitogen-activated protein kinase; MDR,
multidrug resistance; MMP, Matrix metalloproteinase; PD-L1,Programmed cell death-ligand 1; PH, pleckstrin homology;
PI3K, phosphatidylinositol 3-kinase; PIAS, Protein inhibitors of activated stats; PTP, Protein tyrosine phosphatases; RTK,
Receptor Tyrosine Kinases; SH2,Src homology 2; SOCS, Suppressors of cytokine signaling; STAT3,Signal transducer and
activator of transcription 3;STATs,signal transducer and activator of transcription proteins; TAMs, tumor-associated
macrophages; TIMP-1,Tissue Inhibitor of Metalloproteinases-1; TNF, Tumor necrosis factor; VEGF, Vascular endothelial
growth factor.
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INTRODUCTION

Cellular signaling pathways refer to the process of intracellular
biochemical effects after extracellular signals act on membranal
or intracellular receptors. The interleukin-6 (IL-6)/signal
transducer and activator of transcription 3 (STAT3) signaling
pathway participates in various physiological processes,
including cell growth, differentiation, and immune regulation.
Many studies have shown that abnormal IL-6/STAT3 signaling
pathways play a crucial role in tumorigenesis and development.
Continuous activation of the IL-6/STAT3 signaling pathway has
been detected in liver cancer, lung cancer, breast cancer, ovarian
cancer, gastric cancer and other cancers (1–5), and IL-6/STAT3
may be a promising biotarget to prevent and treat cancer.

Hepatocellular carcinoma (HCC) is a serious worldwide
disease, with over 900,000 new HCC cases and 830,000 deaths
in 2020 (6). China is a populous country, and the number of new
tumor cases and the number of deaths are the highest in the
world. In 2020, 410,000 new HCC cases ranked fifth and 390,000
HCC deaths ranked second worldwide (6, 7). The etiology and
exact molecular mechanism of HCC genesis are not fully clear,
and its etiology is currently considered to be a multifactor,
multistep complex process. Hepatitis B virus (HBV) and
hepatitis C virus (HCV) infection are the primary causes,
during infected with HBV or HCV in liver tissue,
inflammation is induced by the hepatitis viruses, the
inflammatory cells secreted IL-6 to activate STAT3 signal
pathway to stimulate tumorigenicity (8–10). Although great
progress in treatment of HCC(including surgery, targeted
therapy and immunotherapy), the treatment effect is still not
satisfactory (11). Therefore, it is important to explore the
occurrence and development mechanism of HCC, and seek a
potential novel biotarget for treatment of HCC.

The occurrence and development of HCC is associated with
disorders of many signaling pathways. IL-6/STAT3 is one of the
key signaling pathways involved in HCC occurrence and plays an
important role in the initiation, development, invasion and
metastasis of HCC cells (12). IL-6 family cytokines are
commonly used of the signal-transducing receptor chain
glycoprotein 130 (gp130) to transduce the growth signal in
cells, these cytokines play a crucial role in promoting
carcinogenesis and progression of HCC (13). Accumulating
evidences indicated the pro-inflammatory, IL-6 in tumor
microenvironment has a trait to activate IL-6/STAT3 signal
pathway, and promote the development of cancer, include
HCC and the aggressiveness of HCC cells (14–16), IL-6 is
highly expressed in liver cancer tissue and loaded in serum,
and overexpressed IL-6 is closely associated with the staging,
severity, and prognosis of HCC (17). IL-6, as an inflammatory-
related tumor cytokine, activates a series of factors downstream
by activating the IL-6/STAT3 signaling pathway, leading to the
occurrence of malignant behaviors, such as HCC cell
proliferation, drug resistance, invasion and metastasis (18, 19).

Therefore, we review the role of the IL-6/STAT3 signaling
pathway in HCC occurrence and development, and describe the
current therapeutic strategies for targeting treatment of HCC in
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the IL-6/STAT3 signaling pathway. In recent years, the role of
the IL-6/STAT3 signaling pathway in the tumorigenicity and
development of HCC has become increasingly valued. Blocking
this signaling pathway may inhibit the development of liver
cancer, and many drugs with molecular targets have been used in
the clinical diagnosis and treatment of cancers.
THE IL-6/STAT3 SIGNALING PATHWAY

The role of IL-6/STAT3 signaling pathway in stimulating
origination of inflammation and cancer was initially discovered
by researchers, it was found that interferons (IFNs) and IL-6
were able to regulate the activity of downstream signaling
molecules, which play an important role in tumorigenesis and
development by regulating downstream transcription factors and
can serve as a potential target for cancer therapy.

Constituents of the IL-6/STAT3
Signaling Pathway
IL-6 is a multifunctional inflammatory cytokine, a small
molecular polypeptide consisting of four a helices with a
molecular weight of 19-228 kD, with 184 amino acid residues
located in the p21 region of chromosome 7 (20). Studies have
shown that bone marrow stem cells secrete IL-6, and tumor cells
themselves and tumor-associated macrophages (TAMs) also
release IL-6. Meanwhile, IL-6 can be subjected to upregulation
of interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), and
stress reactions. The expression of IL-6 is very low in normal
human cells, with increased serum concentration in patients with
hepatitis and liver cancer (21, 22). The most fundamental action
of IL-6 and plays multipotent functions due to bind with its
receptor. The IL-6 receptor(IL-6R) system is mainly composed of
the IL-6 ligand binding chain and signal transduction chain,
namely, IL-6R and gp130. IL-6R is usually found in many cells,
such as hepatocytes, monocytes, macrophages and neutrophils,
and is generally divided into membrane-bound IL-6R (mIL-6R)
and soluble IL-6R (sIL-6R). mIL-6R is located on the cellular
membrane surface, and sIL-6R is formed by protein hydrolysis of
mIL-6R on the cellular membrane or directly by splicing mRNA
during the translation phase (23). In the classical signaling
transduction pathway, IL-6 contacts mIL-6R on the
membrane, causes dimerization and then starts transduction of
signaling, mainly participating in autoimmunity, metabolism,
tumor development, etc. During signal transduction, first, IL-6
binds with sIL-6R, and then the complex binds with membrane
gp130. This binding pattern plays a main role in inducing
inflammatory reactions (24–26) (see Figure 1).

Signal transducers and activators of transcription proteins
(STATs) are important in cellular signaling and include seven
families: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B
and STAT6 (27). STAT3 was originally found by Shi et al (28) as
an acute phase reaction factor (APRF) in IL-6 signaling when
studying interferon-induced gene transcription in 1996. STAT3
is a family of cytoplasmic proteins, and its encoding gene is
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located on chromosome 12, consisting of 750-795 amino acid
residues with a molecular weight of 89-99 kDa. Its activation sites
are primarily the SH2 domain (Src homology 2 domain) as well
as tyrosine phosphorylation site 705 (Tyr705) and serine
phosphorylation site 727 (Ser727) in the transcriptional
activation region. The core structure of STAT3 mainly consists
of a coiled-coil domain (CCD), DNA binding domain (DBD),
linker domain (LD), Src homology 2 (SH2), amino acid terminal
region, and carboxy-end trans activation region (29), where
Tyr705, SH2 and DBD play a key role in STAT3 functions
(30). The DBD is structurally an immunoglobulin folding
domain that binds to DNA in the form of a dimer and is
involved in the transfer of STAT3 from the cytoplasm to the
nucleus. The SH2 region is the most conserved domain of the
STAT3 protein and is mainly involved in the phosphorylation of
tyrosine residues, promoting protein interactions with tyrosine
phosphorylation proteins (31). This region has three binding
pockets, the phosphorylated Tyr705 (pTyr705) binding site, a
side pocket, and a hydrophobic binding pocket, where STAT3
participates in phosphorylation and plays an important role in
the phosphorylation of STAT3. During STAT3 activation, the
Frontiers in Oncology | www.frontiersin.org 3
tyrosine and serine residues are phosphorylated by the upstream
kinase and identified by the SH2 domain (32) (see Figure 2).

Activation of the IL-6/STAT3
Signaling Pathway
IL-6, as a classic extracellular stimulation factor of this signaling
pathway, during the hepatocarcinogenesis and HBV or HCV
stimulates initiation of HCC, the secretion of IL-6 is emerged in
the microenvironment of liver tissue cells, then IL-6 interaction
with its receptor, conformation of IL-6 changes after binding
with its receptor, and then activation of gp130 on the cell
membrane surface to trigger isodimer formation of gp130, thus
leading to activation of Janus kinases(JAKs). After the activation
process of JAKs, the binding sites interacting with STAT3 in the
cytoplasm are exposed, wherein STAT3 acts primarily with the
binding site of the corresponding tyrosine receptor through its
SH2 domain. STAT3 binding to the tyrosine binding site to
trigger phosphorylation of C-terminal domain tyrosine residues
(Tyr705) on STAT3, and simultaneous activation followed by
substantial aggregation and activation of STAT3 within the
cytoplasm. Phosphorylated STAT3 forms homologous dimers
FIGURE 1 | Production source and main signaling pathway of IL-6. IL-6 transduction is mainly produced by monocytes, macrophages, T cells, B cells, fibroblasts,
etc. IL-6R binds to the surface of the cellular membrane through the classical pathway. In the signaling transduction pathway, IL-6 binds to sIL-6R and then initiates
signaling transduction.
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through their SH2 domains, and the dimers are transported from
the cytoplasm into the nucleus with the participation of the DBD.
Then, the dimers bind to the promoter region of the downstream
effector targeted genes, lead to change in the transcript activity of
numerous genes, including antiapoptotic genes, angiogenic
genes, proliferating genes, transformational genes, and the
immune response factors. The expression of apoptosis-,
growth- and metastasis-related proteins, such as Bcl-xL, Bcl-2,
VEGF, Src, CXCR4, and MMP2/9 were also regulated by
phosphorylated STAT3 forms, thus promoting the growth,
development and inhibition apoptosis of cancer cells (33)
(see Figure 3).

Negative Regulation of the IL-6/STAT3
Signaling Pathway
A positive/negative feedback pathway exists in cellular signaling.
Negative regulation of IL-6/STAT3 mainly includes three classes
of negatively regulated proteins: suppressors of cytokine
signaling (SOCS), protein inhibitors of activated STAT (PIAS)
and protein tyrosine phosphatases (PTPs) (see Figure 4).

The SOCS family consists of SOCS1-SOCS7 and CIS, with an
N-terminal region, SH2 region and C-terminal SOCS box region.
The SH2 region contains an SH2 domain, which can cooperate
with N regions to make different SOCS proteins identify different
targets by binding to specific cytokine receptors and then
regulate various cytokine signal transduction pathways. SOCS
molecules are negative feedback regulatory proteins of the
classical IL-6/STAT3 signaling pathway, and they inhibit the
phosphorylation of STAT3 and the formation of dimers or
directly inhibit the phosphorylation of JAK, thus negatively
regulating the IL-6/STAT3 pathway to inhibit the continuous
proliferation and differentiation of cancer cells (34, 35). Its
inhibitory effect on the IL-6/STAT3 pathway also disappears
after SOCS inactivation, resulting in continuous proliferation
and invasion of cancer cells. Overexpression of the SOCS
proteins can inhibit the activity of STAT3 and thus promote
apoptosis of cancer cells. Increasing evidence has shown that
SOCS is closely related to the initiation and development of HCC
(36), and evidence has shown that the absence of the SOCS
protein or knockout of the SOCS3 gene in mice, leads to the
Frontiers in Oncology | www.frontiersin.org 4
disappearance of the negative regulation of IL-6/STAT3 by
SOCS, thus causing continuous activation of STAT3 and
ultimately promoting the occurrence and development of liver
cancer (37).

The PIAS family includes PIAS1, PIAS2 (PIASx), PIAS3 and
PIAS4 (PIASy), where PIAS3 is the primary specific suppressor
of STAT3 and is naturally present in the cytoplasm. On the one
hand, PIAS3 specifically binds to STAT3 dimers, thus concealing
the DBD of STAT3, and on the other hand, it can bind with the
STAT3 monomer to hinder its dimerization (38, 39). A PIAS3-
deta peptide can significantly downregulate the expression of the
tumor proliferation-related proteins STAT3, pSTAT3, Bcl-2,
Cyclin D1, PCNA and c-myc and effectively inhibit the
proliferation of HCC cells (40).

The PTP family includes SHP1, SHP2, CD45PTP1B, T-cell
PTP (TC-PTP), PTPRT, and PTPBL, where SHP-1 and SHP-2
are the most representative and can bind to a phosphorylated
receptor or JAK to dephosphorylate activated molecules, thus
blocking the activation of the IL-6/STAT3 signaling pathway.
Bard-Chapeau et al. (41) performed selective silencing of SHP-2
in HCC cells, which significantly increased phosphorylation of
STAT3 induced by IL-6, thus promoting the transduction of the
IL-6/STAT3 signaling pathway. Additionally, SHP-1 plays a
strong inhibitory role in HCC epithelial-mesenchymal
transition (EMT) by directly lowering pSTAT3 (Tyr705) by
exerting its tyrosine phosphatase activity (42).

IL-6/STAT3 Interacts With Other
Signaling Pathways
Classical IL-6/STAT3 signaling pathways are theoretically simple,
but they can also interact with other signaling pathways, these
signals interlace interaction to exert complex biological effects. (1)
Ras signaling pathway: Activated JAKs can phosphorylate tyrosine
residues of their associated receptors, leading to the assembly of
sites for proteins containing SH2 domains from other pathways,
such as SHP-2, which can recruit a large number of GRB2
molecules, and then continuous activation of cascade events,
such as the Ras, Raf, MEK, and ERK signaling pathways (43).
The IL-6/STAT3 pathway can also indirectly activate the Ras
pathway through SOCS3 (44). (2) RTK signaling pathway:
FIGURE 2 | Structure of STAT3 protein. STAT3 consists of six major components, including CCD, DBD, LD, SH2, N-terminal, and transactivation. The N-terminal
domain mediates the interaction between STAT3, promoter binding and transcription mechanisms. CCD domains promote the interaction of regulatory proteins and
transcription factors. The DBD is involved in the regulation of STAT3 gene promoters. The SH2 domain forms a dimer by binding the phosphorylation of the STAT3
monomer with the Tyr705 region site, which is responsible for transcriptional activation of the target gene.
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Numerous studies verified that STAT3 can be activated through
receptor tyrosine kinases (RTKs) (45), and activation of some
RTKs, such as epidermal growth factor receptor (EGFR), can cause
STAT3 tyrosine phosphorylation through Src kinase. Activation of
the RTK pathway results in the upregulation of mitogen-activated
protein kinase (MAPK) activity, and MAPK specifically
phosphorylates one serine (Ser) in the C-terminus of most
STAT3 proteins. Phosphorylation of Ser greatly enhances the
transcriptional activity of STAT3. (3) Tumor necrosis factor
(TNF) signaling pathway: the TNF signaling pathway interacts
with JAK/STAT3 at multiple levels (46). (4) PI3K/Akt signaling
Frontiers in Oncology | www.frontiersin.org 5
pathway: IL-6 binding with its receptor causes phosphorylation of
JAK, thus recruiting phosphatidylinositol 3-kinase (PI3K) to the
plasmalemma, and a large accumulation of PI3K produces
pleckstrin homology (PH) domain binding of Akt. The
phosphorylation at Thr308 and Ser473 sites of Akt molecule,
leading to changes in the downstream substrate mTOR and thus
playing a crucial role in promoting growth, proliferation, survival,
differentiation, invasion and metastasis of cancer cells (47).
Therefore, the biological effects of IL-6 family cytokines may be
involved in the interactions between many signaling pathways
(see Figure 4).
FIGURE 3 | Activation of the IL-6/STAT3 signaling pathway. Liver tissue cell is infected with hepatitis B virus(HBV) or hepatitis B virus(HCV), the viruses promote liver
tissue cell to secretion of IL-6, IL-6 binds to the cellular surface receptor, thereby phosphorylating the JAK protein and phosphorylating the STAT3 monomer to form
a STAT3 dimer. Phosphorylated STAT3 dimers are transported to the nucleus, promoting the transcription of targeted genes. The activated STAT3 complex is
transferred from the cytoplasm to the nucleus to initiate transcription of STAT3 targeted genes (including Bcl-xL, Bcl-2, VEGF, Src, CXCR4, MMP2/9, etc.) and thus
participate in cancer cell proliferation, apoptosis, invasion, metastasis etc. PIAS, SOCS, and PTP are negative regulators of IL-6/STAT 3 by inhibiting the activation of
JAK or STAT3 phosphorylation itself.
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THE ROLE OF THE IL-6/STAT3
SIGNALING PATHWAY IN THE
INITIATION OF LIVER CANCER

Effect of the Il-6/Stat3 Signaling
Pathway on the Malignant
Transformation of Hepatocytes
Effects on Production of Liver Cancer Stem Cells
The existence of cancer stem cells (CSCs) was first proposed by
Mackillop in 1983 (48), who argued that tumors were initiated
and maintained by a small fraction of CSCs or tumor-initiating
cells capable of self-updating and differentiation into different
cell lineages. CSCs can be distinguished by various biomarkers,
such as CD133, CD24, EpCAM and CD44, and are often
considered to cause tumor initiation, development, metastasis,
and recurrence. Previous studies have also confirmed the
presence of liver cancer stem cells (LCSCs), and many
signaling pathways are associated with the maintenance and
propagation of LCSCs (49). The IL-6/STAT3 signaling pathway
has attracted attention in LCSCs (50), and researchers have
reported that the inhibition of LCSCs can be achieved by
suppressing the transduction of IL-6/STAT3 signaling (51).
Continuously elevated activity of pSTAT3 can increase the
expression of the surface marker molecules CD133, EpCAM
Frontiers in Oncology | www.frontiersin.org 6
and CD44 in LCSCs (52). Wan et al. (53) also found that tumor-
associated macrophages(TAMs) stimulated STAT3 to promote
production of LCSC through the secretion of IL-6; the activation
of IL-6/STAT3 signals promotes liver cancer cells to produce
LCSC, facilitating the resistance of liver cancer cells to sorafenib
(54). These findings suggest that IL-6/STAT3 signaling pathway
is a crucial factor in the occurrence of LCSCs and drug resistance.
The Role of IL-6/STAT3 Signaling in Promoting
Malignant Transformation of Hepatocytes After
HBV or HCV Infection
Chronic hepatitis is an important risk factor for stimulating the
occurrence of liver cancer, including HBV and HCV. Hepatitis B
virus X protein (HBx) promotes LCSCs production (55), and
HCV also induces the occurrence of LCSCs (56, 57). Both HBV
and HCV can promote IL-6 production and secretion in
inflammation -associated cells. When acute aggravation occurs
in patients with chronic hepatitis, it is also accompanied by a
sharp increase concentration of IL-6, and high levels of IL-6 can
further activate inflammation or tumor-related signaling
pathways, thus realizing the trilogy of chronic hepatitis to
cirrhosis to liver cancer. Studies have found that HBV can be
involved in the translation and nuclear translocation of
angiogenin (ANG) through IL-6-mediated pathways, thereby
FIGURE 4 | Interaction of IL-6/STAT3 signaling pathways and other pathways. IL-6/STAT3 signaling pathways cross-talk with other signaling pathways, such as
Ras, RTK, TNF and PI3K/Akt, and the biological effect of cytokine production is the interaction between many signaling pathways.
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promoting tumor cell proliferation (58). Quetier et al. (59)
established in a study of post hepatectomy (PH) monitoring of
liver regeneration in transgenic mouse models, the results
indicated that HBx expression was controlled by viral
regulatory elements. The upregulation of IL-6 promotes
elevated STAT3 phosphorylation levels in the liver of HBx
protein transgenic mice, HBx affects the regeneration capacity
of hepatocyte after PH, and HBx may be involved in accelerating
cell cycle and progression of liver disease. A study of HBV-
induced liver fibrosis, cirrhosis and HCC in mouse model (60),
the DTNA/STAT3 signaling pathway can be activated and in
turn further activates the STAT3 signaling pathway, stimulating
expression of TGF-1, thus promoting the progression of HBV-
induced liver fibrosis, cirrhosis, and HCC.

Effects of IL-6/STAT3 Signaling Pathway on the
Expression of p53 and AFP in HCC Cells
P53 is one of tumor suppressor genes that most widely studied in
human cancer, and the activation of p53 mainly leads to the
inhibition of cancer cells growth and promotes DNA repair and
apoptosis, the role is mainly mediated by its transcriptional
activity. In tumor cells, accompanied by the activation of the IL-
6/STAT3 signaling pathway, phosphorylated STAT3 can bind to
the promoter of the p53 gene to inhibit its transcription, thereby
blocking the inhibitory effect of p53 on oncogene transcription
(61). Alpha-fetoprotein (AFP) is a single-stranded serum
glycoprotein, an important biomarker commonly used in the
clinical diagnosis of HCC, it is a specific protein with high
expression during the occurrence of liver cancer. Recent studies
have found that AFP has many biological functions to promote
hepatocarcinogenesis; it also plays a pivotal role in stimulating the
proliferation, invasion and metastasis of HCC cells, and inhibiting
HCC cells apoptosis and autophagy, and participating in
immunosuppression (62–66).

Studies have shown that p53 has a repressor effect on the afp
gene promoter (67). In HBV-related HCCs, HBx can, by
interacting with p53, stimulate the expression of AFP by
blocking the inhibitory effect of p53 on the promoter of afp
gene (67). These mechanisms may be associated with the
promotion of IL-6 secretion and the activation of the IL-6/
STAT3 signaling pathway in HCC cells. Additionally, HBx
may destroy the p53 interaction with protein partners, thereby
affecting the transcriptional regulatory function of p53 and thus
promoting the expression of AFP. Because AFP has an important
role in promoting normal liver cell transfer to LCSCs, the IL-6/
STAT3 signaling pathway may lead to the development of HCC
by promoting the expression of AFP.

Effect of the IL-6/STAT3 Signaling
Pathway on the Microenvironment in HCC
The tumor microenvironment was first formally proposed in
1979, and the microenvironment is a pivotal influence factor
when treating cancer (68, 69). The internal environment where
the tumor is located, consists of tumor cells themselves,
interstitial cells, microvessels, microlymphocytes, tissue fluid,
numerous cytokines and a small number of infiltrating cells
Frontiers in Oncology | www.frontiersin.org 7
(70, 71). Hyperactivation of STAT3 is important in the
microenvironmental formation of inflammatory tumors and
promotes tumor proliferation and metastasis (72). The tumor
microenvironment changes dramatically when chronic
inflammation and fibrosis occur in liver tissue, and activation
of STAT3 can induce the expression and release of cytokines,
chemokines and other media associated with chronic
inflammation that play a key role in inducing and maintaining
the cancer-promoting inflammatory environment. Studies have
found that the phagocytosis of macrophages on apoptotic bodies
promotes liver fibrosis, thus accelerating the circulation of
hepatocyte death and compensatory hyperplasia and eventually
leading to the occurrence of HCC. Tumor-associated
macrophages (TAMs) promote tumor progression by secreting
IL-6 to activate IL-6/STAT3 signals in adjacent HCC stem cells
in liver tissue microenvironments (52). Zheng, et al. (73) found
that activation of the HCC cells IL-6/STAT3 signaling pathway
was possible by upregulating the expression of tissue inhibitor of
metalloproteinases-1 (TIMP-1) to stimulate the transformation
of normal liver fibroblasts (LFs) toward carcinoma-associated
fibroblasts (CAFs), thus promoting the initiation of liver cancer.

Anti-Apoptotic Effect of the IL-6/STAT3
Signaling Pathway on HCC Cells
Apoptosis of HCC cells is mainly achieved by upregulating the
expression of anti-apoptotic factors or promoting survival
signals. After IL-6-mediated STAT3 activation, promotes the
expression of anti-apoptotic protein (Bcl-xL, Bcl-2, survivin and
P53, etc.) plays an important role in the anti-apoptosis of HCC
cells (73–76). Bcl-2 is particularly important proteins that
promotes tumor cell survival. The key factor in apoptosis due
to the balance between pro- and anti-apoptotic proteins.
Activation of the IL-6/STAT3 signaling pathway may increase
the ratio of apoptotic factors to anti-apoptotic factors, and
increased IL-6 most likely changes this ratio (77). Meanwhile,
phosphorylation of STAT3 can bind directly to the promoter of
the survivin gene, upregulate survivin expression and promote
the survival of tumor cells; by inhibiting STAT3 activity, survivin
gene expression can be downregulated to promote apoptosis of
liver cancer cells (78). These findings demonstrate that activation
of the IL-6/STAT3 signaling pathway can promote the
expression of survival-related proteins that inhibit apoptosis of
HCC cells.

The IL-6/STAT3 Signaling Pathway
Promotes Angiogenesis in Liver
Cancer Tissues
Vascular endothelial growth factor (VEGF) also plays an
important role in tumor invasion and metastasis, which
promotes vascular endothelial cell growth and tumor
neoangiogenesis. VEGF is higher expression in liver tumor
tissue than in cirrhosis and normal liver tissue (79). Hypoxia is
an important factor in regulating the expression of VEGF, which
can induce the secretion and expression of VEGF in tumor tissue
through hypoxia inducible factor 1 (HIF-1). IL-6 binds with IL-
6R to induce the activation of STAT3, and activated STAT3
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binds to the promoter region of the VEGF gene to increase
transcription, promoting the formation of tumor angiogenesis.
The expression of VEGF can also be promoted through HIF-1a
to stimulate angiogenesis in tumor tissues. In addition, there may
be a positive feedback mechanism during malignant cell
transformation between STAT3 and VEGF, namely, STAT3
upregulates VEGF, while VEGF combines with the cellular
surface VEGF receptor (VEGFR) to activate the IL-6/STAT3
signaling pathway to further upregulate expression of VEGF and
promote the generation of blood vessels in tumor tissues. Studies
have shown that STAT3 can inhibit the degradation and increase
synthesis of HIF-1a. Therefore, STAT3 is necessary for
endothelial cell proliferation, migration, and angiogenesis.
Blocking the IL-6/STAT3 signaling pathway can inhibit
endothelial cell metastasis and angiogenesis, and hinder the
tumorigenesis pathway (80). Additionally, a methylation study
of liver cancer indicated that low expression of IL-6 can reduce
angiogenesis in HCC tissues (81), suggesting that the IL-6/
STAT3 signaling pathway can promote angiogenesis in tumor
tissues and provide nutrient guarantees for the development
of tumorigenesis.

Effect of the IL-6/STAT3 Signaling
Pathway On The Proliferation, Invasion,
and Metastasis of HCC Cells
IL-6 promotes the abnormal proliferation of cancer cells through
the activation of the IL-6/STAT3 pathway, and the proliferation
genes of cancer cells, such as Ras, Src, and cyclin D1, are the
direct targets of STAT3 (82). Studies have found that IL-6-
induced TAMs promote the amplification of CD44+ T cells to
increase sphere and heterograft formation in culture, and
blocking the IL-6/STAT3 signaling pathway can reduce the
sphere formation ability of CD44+ T cells in the culture and
growth of mouse xenotransplantation tumors (53). STAT3
inhibitors can inhibit the proliferation and development of
cancers by blocking IL-6/STAT3 signaling, suppressing cancer
cells proliferation and promoting apoptosis (83).

Generally, the destruction of the basement membrane is an
important characteristic during cancer cells invasion. Cancer
cells must penetrate the basement membrane and the natural
tissue barrier formed by the extracellular matrix to undergo
invasion and metastasis. Degradation of the basement membrane
and the extracellular matrix is a crucial step in the invasion and
metastasis of cancer cells. As the extracellular matrix degrades,
cancer cells begin to infiltrate normal tissues and metastasize,
and the process relies on matrix metalloproteinases (MMPs),
particularly MMP-2 and MMP-9 (84, 85). MMPs interact with
activator protein-1 (AP-1), of which expression is mainly
regulated by the IL-6/JAK/STAT3 signaling pathway.
Overexpression of MMP-9 and MMP-2 is associated with
postoperative tumors in patients with liver cancer (84) and
accelerates the invasion and migration capacity of HCC cells
by regulating the JAK/STAT3 signaling pathway (86).

In addition, epithelial-mesenchymal transition (EMT) is
closely related to primary lesion invasion and distant
metastasis of cancer cells (87). The formation of EMT is
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mainly due to loss of the characteristics of epithelial cells,
which is an important manifestation for obtaining the
migration and invasion abilities of HCC cells. STAT3 is an
important transcription factor in the occurrence of EMT, and
studies have shown that STAT3 may play an important role in
stimulating EMT through the regulation of many downstream
genes (such as Snail and Twist) (88). Activated STAT3 signals are
associated with Twist and calcium adhesion protein E (E-
cadherin) expression and mediate the invasion and metastasis
of HCC cells, and an abnormal pSTAT3/Twist/E-cadherin signal
axis leads to poor prognosis in patients with liver cancer (89).

Effect of the IL-6/STAT3 Signaling
Pathway on Immune Escape of HCC Cells
The IL-6/STAT3 signaling pathway is closely related to the
immune escape of HCC cells. Studies have shown that IL-6
inhibits the antigenic presentation capability of dendritic cells
(DCs) by activating IL-6/STAT3 signaling pathway. IL-6 blocked
the antitumor immunity reaction in tumor cells (90, 91). STAT3
activation in DCs significantly reduces tumor immune
surveillance. In the tumor-bearing host, STAT3 activation from
tumor cells or from normal immune cells can both inhibit the
secretion of inflammatory factors and reduce the immune
surveillance of tumor cells. One study demonstrated that IL-6
secretion could upregulate programmed cell death-ligand 1 (PD-
L1) expression in neutrophils, thus inhibiting the activity of T cells
and ultimately accelerating the immune escape of tumor cells (92).
Liu et al. (93) argued that IL-6 could promote the development of
liver cancer by recruiting immunosuppressive cells and excluding
CD8+ T cells in tumormicroenvironments, and that IL-6may also
damage the function of infiltrated T cells in tumor tissues, thus
inhibiting antitumor immunity.

Association Between the IL-6/STAT3
Signaling Pathway and Multidrug
Resistance in HCC Cells
Tumor cells multidrug resistance (MDR) is a notable reason for
the clinical treatment failure of liver cancer. The occurrence of
MDR is an extremely complex process involving multiple factors,
genes and mechanisms. Most antitumor therapies can induce
inflammation by killing tumor cells and normal tissues, and in
this process, the expression levels of multiple inflammatory
cytokines, including IL-6, IL-8, TNF-a , and other
inflammatory factors, are upregulated (94). IL-6/STAT3 is
closely related to tumor cells drug resistance, and the
upregulation of the tumor inflammatory factor IL-6 can
promote mitogen activation of protein kinase (MAPK) through
the activation of signaling pathways, such as the IL-6/STAT3,
PI3K/Akt, and Ras-MAPK pathways, thus upregulating the
expression of various drug-resistant proteins, such as MRP, P-
gp and BCRP, and leading to HCC cells resisting drug therapy
(95). Relevant studies showed that knockout of IL-6 was able to
stimulate expression of E-cadherin in HCC cells, and increased
the HCC cells sensitivity to sorafenib (79). These found verified
that the activation of IL-6/STAT3 signaling pathway has a
capacity of promotion HCC cells resist chemotherapy.
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TARGETING THE IL-6/STAT3 SIGNALING
PATHWAY CAN IMPROVE THE CLINICAL
TREATMENT OF LIVER CANCER

At present, tumor-targeted therapy has great promising prospect,
and the current targeted IL-6/STAT3 signaling pathway is a main
biological therapy concentrated on IL-6 blocking antibodies, IL-6
receptor blocking antibodies and specific STAT3 inhibitors.
Experiments concentrated on multiple osteomyelitis,
rheumatoid arthritis/malignant tumors, etc., also shows a
certain curative effect. The results of multiple preclinical trials
showed significant inhibition of tumor growth, both alone and
combined with chemotherapy. The IL-6/STAT3 signaling
pathway is closely related to HCC initiation, development,
metastasis, and drug resistance, which is continuously activated
and overexpressed in a variety of tumor cells and has become a
hot spot in cancer treatment. This pathway has positive
significance for the treatment of HCC and others cancers by
blocking the IL-6/STAT3 signaling pathway.

Anti-IL-6 and IL-6R Antibodies
There is increasing evidence that IL-6 is a therapeutic target for
several cancers, reducing phagocytosis and migration mediated
by STAT3 phosphorylation and by neutralizing IL-6 or
antagonistic IL-6R in cancer cells. Studies have shown that
apoptosis of HCC cells is facilitated by interfering the role and
expression of IL-6, suggesting that blocking IL-6 can be used as a
potential treatment for the sorafenib sensitivity of HCC cells
(96). Evidence has also verified that anti-PD-L1 resistance can be
reversed by blocking IL-6, which provides a potential strategy for
overcoming the resistance of anti-PD-L1 in liver cancer (93).
Recently, studies indicated that Madindoline A, a small molecule
for inhibiting the dimerization of IL-6/IL-6R/gpl30 trimeric
complexes, inhibits the growth of HCC cell line, HepG2 cells
(97). Siltuximab and CNTO-136 are able to neutralize the
activity of IL-6 (98, 99); Suppressing the activity of IL-6 by
ALD518, and blocking IL-6R by monoclonal antibody
(Tocilizumab) is an effective strategy for treatment of some
cancers, such as non-small cell lung cancer (100), multiple
myeloma (101), epithelial ovarian cancer (102), B-cell
lymphoma (103), renal cell carcinoma (104) etc. These studies
imply that blocking IL-6R is applied to therapeutic of HCC.

JAK Inhibitors
Numerous clinical studies have shown that JAK-specific
inhibitors can reduce growth in various tumor models in vivo,
including liver, pancreatic, brain, colorectal, stomach, lung,
ovarian, and breast cancer. The studies revealed the effect of
the JAK inhibitor Ruxolitinib on HCC cells, the results showed
that ruxolitinib could effectively inhibit the JAK/STAT signaling
pathway in HCC cells and significantly reduce the expression of
the downstream JAK target pSTAT3 (105). Ruxolitinib also
significantly reduces the proliferation and colony formation of
HCC cells (105). AG490 is an artificial ester derivative of
phenylacrylonitrile that effectively blocks JAK activation by
competitively binding tyrosine kinase binding sites and thus
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suppresses STAT3 activation. By studying AG490, Thompson
et al. (106) used it in in vitro experiments and found that the
inhibitor AG490 significantly reduced the vitality of hepatoma
SMMC-7721 ce l l s , thus inh ib i t ing the growth of
xenotransplanted HCC cells. AZG1480 and TG101209 inhibit
the activity of JAK to suppress the growth of HCC (106, 107).
These results prove that JAK inhibitors are able to inhibit
activation of STAT3 to suppress the growth of HCC cells.

STAT3 Inhibitors
STAT3 inhibitors can be classified into small molecular types,
oligonucleotide types, peptide analogs, natural product
derivatives, etc., according to the structure, the inhibitors can
be divided into targeted SH2 domain inhibitors, targeted DNA
binding domain inhibitors, targeted N-terminal domain
inhibitors, STAT3 oligonucleotide inhibitors, etc. STAT3
region targeting inhibitors can suppress the proliferation,
survival, and differentiation of HCC cells by preventing
phosphorylation of STAT3, inhibiting the formation of STAT3
dimers, or interfering with their activity of interaction with DNA
sequences. Jung et al. (108) showed that the proliferation of HCC
cell was blocked by the small molecule STAT3 inhibitor C188-9.
Gene expression analysis showed that C188-9-treated HepPten
(-) mice had inhibited signaling pathways downstream of
STAT3. The STAT3 small-molecule inhibitor LLL12 plays a
role in blocking IL-6-induced STAT3 phosphorylation and
nuclear translocation, thus inhibiting proliferation and
promoting apoptosis of HCC cells (109), C188-9, Curcumin,
OPB-31121, S31-201 and AZD9150 inhibit the phosphorylation
of STAT3 to block the proliferation of HCC cells (108, 110–113).
Studies also indicated that destroyed the structure of STAT3
dimer or inhibited the dimerization of STAT3 by small molecule,
S3I-1757, STA-21 also can regress human cancer cells in
xenografts animal model and abnormal proliferation disorders
(114, 115). These evidences implicate that STAT3 inhibitors play
important role in blocking the activation of IL-6/STAT3
signaling pathway, lead to inhibit the proliferation of HCC
cells. The effect on inhibiting IL-6/STAT3 signal pathway for
treatment of cancer is displayed in below table (see Table 1
and Figure 5).
FUTURE AND OUTLOOK

Molecular targeted-therapy is an advanced scientific technology in
the clinical treatment of cancer, but none of many molecular
targeted drugs are completely designed for liver cancer. It is difficult
to develop targeted drugs to treat liver cancer. Exploration of its
cause is as follows: (1) The occurrence of liver cancer involves
multiple factors and the complex, the developmental mechanism is
still unclear, and specific well-directed development of targeted
drugs is difficult. Simultaneously, normal liver cells possess their
own characteristics and rapid proliferation; once tumorigenesis,
the difference is arise in the proliferation and heterogeneity of
HCC cells, and it is not easy to find specific treatment targets.
(2) At present, most targeted drugs treatment emerge low
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efficiency and poor efficacy. (3) Targeted drugs are not highly
selective for targeting HCC cells, and there are toxicity and side
effects with “off-target effects” and high drug resistance. Expensive
costs of research and development can be prohibitive for wide use.
(4) Patients with liver cancer may have different responses to
targeted drug therapy, with differences in race and sex, and there
is still a lack of effective methods to detect molecular changes in
HCC cells. With the development of many advanced
biotechnologies and exploration of the genesis mechanism of
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HCC, the treatment of liver cancer is facing new opportunities
and challenges. Molecular targeted therapy will gradually become
the favored method and represents the development direction of
liver cancer treatment in the future. The relationship between IL-
6/STAT3 signaling pathway characteristics and their mediated
physiological function needs to be further interpreted.
Meanwhile, inhibitors of the IL-6/STAT3 signaling pathway
should be promoted, and the efficacy and safety of these
targeted inhibitors should be evaluated, it is need to formulate
TABLE 1 | Multiple treatments targeting the IL-6, IL-6R and IL-6-related signaling pathways.

Target Inhibitor/drug Effect References

IL-6/IL-6R Madindoline A Inhibits the dimerization of IL-6/IL-6R/gpl30 trimeric complexes (97)
Siltuximab Neutralize the activity of IL-6 (98)
Humanized anti-IL-6 antibody (ALD518) Neutralize the activity of IL-6 (100, 101)
CNTO-136 Neutralize the activity of IL-6 (99)
Tocilizumab inhibits the binding of IL-6 to IL-6R (102)

JAK AG490 Inhibit the activity of JAK (106)
Ruxolitinib Inhibit the activity of JAK (105)
AZG1480, ZAD9150 Inhibit the activity of JAK (110, 111)
TG101209 Inhibit the activity of JAK (106)

STAT3 S31-201 inhibits the activity of STAT3 (110)
C188-9 Inhibit the phosphorylation of STAT3 (111)
Curcumin Inhibit the phosphorylation of STAT3 (112)
LLL12 Inhibit phosphorylation and nuclear translocation of STAT3 (109)
OPB-31121 Inhibit the phosphorylation of Tyr705 (111)
AZD9150 Inhibit the phosphorylation of STAT3 (112)
S3I-1757 Destroy the structure of STAT3 dimer by binding to site Tyr705 (114)
STA-21 Inhibit the dimerization of STAT3 and binding to DNA (115)
December 2021 | Volume 11 | A
FIGURE 5 | Antitumor effects of suppressing the IL-6/STAT3 signaling pathway through multiple approaches.
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the standardization of clinical individualization treatment for
liver cancer.

The occurrence of liver cancer is closely associated with
inflammation. IL-6 is an important member of the
inflammatory cytokine network. In recent years, an increasing
number of studies have revealed that the IL-6/STAT3 signaling
pathway plays a pivotal role in the development of liver cancer,
and many studies have shown that inhibition of the IL-6/STAT3
signaling pathway can block the occurrence and progress of
HCC. This signaling pathway is still a hot spot of research for
cancer treatment. IL-6/STAT3 is a pivotal signaling pathway to
promote expression of PD-L1 in HCC cells (116), leading to
escape immune surveillance of HCC cells. Meanwhile, tumor
infiltrating immune cells secreted IL-6 is able to stimulate IL-6/
STAT3 signaling pathway to promote the malignant behaviors
of HCC cells. In future, blocking the secretion of IL-6 and
synergizing with the inhibitors of IL-6/STAT3 pathway
signaling is a more effective application prospect for targeting
therapeutic of HCC (117–119) Also, as previously mentioned,
the IL-6/STAT3 signaling pathway may lead to the development
of HCC by promoting the expression of AFP. AFP is specifically
expressed in liver cancer patients. AFP is a very complex
biological activity protein whose biological function is not fully
clear and needs further research. The study of the IL-6/STAT3
signaling pathway in clinical trials of HCC is still limited, because
the expression of AFP is activated by the IL-6/STAT3 signaling
pathway. Inhibits the expression and role of AFP, which may be a
promising strategy for blocking IL-6/STAT3 to stimulate drug
Frontiers in Oncology | www.frontiersin.org 11
resistance, proliferation, invasion, metastasis and recurrence of
HCC. More studies are expected to demonstrate that additional
new drugs can have a role in blocking this signaling pathway in
the future, these project is able to bring new breakthroughs to the
clinical treatment of patients loading HCC.
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