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ABSTRACT

Background: Although the immune checkpoint inhibitors,
nivolumab and pembrolizumab, were found to be promising
in patients with advanced NSCLC, some of them either do
not respond or have recurrence after an initial response. It
is still unclear who will benefit from these therapies, and,
hence, there is an unmet clinical need to build robust
biomarkers.

Methods: Patients with advanced NSCLC (N ¼ 323) who
were treated with pembrolizumab or nivolumab were
retrospectively identified from two institutions. Radio-
mics features extracted from baseline pretreatment
computed tomography scans along with the clinical var-
iables were used to build the predictive models for
overall survival (OS), progression-free survival (PFS), and
programmed death-ligand 1 (PD-L1). To develop the im-
aging and integrative clinical-imaging predictive models,
we used the XGBoost learning algorithm with ReliefF
feature selection method and validated them in an inde-
pendent cohort. The concordance index for OS, PFS, and
area under the curve for PD-L1 was used to evaluate
model performance.

Results: We developed radiomics and the ensemble
radiomics-clinical predictive models for OS, PFS, and PD-L1
expression. The concordance indices of the radiomics model
were 0.60 and 0.61 for predicting OS and PFS and area
under the curve was 0.61 for predicting PD-L1 in the
validation cohort, respectively. The combined radiomics-
clinical model resulted in higher performance with 0.65,
0.63, and 0.68 to predict OS, PFS, and PD-L1 in the valida-
tion cohort, respectively.

Conclusions: We found that pretreatment computed to-
mography imaging along with clinical data can aid as pre-
dictive biomarkers for PD-L1 and survival end points. These
imaging-driven approaches may prove useful to expand the
therapeutic options for nonresponders and improve the
selection of patients who would benefit from immune
checkpoint inhibitors.
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Introduction
Immune checkpoint inhibitors (ICIs) have modified

the therapeutic landscape to treat several aggressive
cancer types, including NSCLC. Compared with conven-
tional cytotoxic therapies, ICIs targeting programmed
cell death protein-1 (PD-1) significantly extend the
overall survival (OS) in patients with a broad variety of
malignancies.1–3 ICIs have now become the standard of
care for patients presented with advanced NSCLC. In
addition, the recent Food and Drug Administration ap-
provals of nivolumab and pembrolizumab represent the
beginning of a significant paradigm shift for treating
patients with NSCLC.4,5 Although there have been several
clinical trials and studies that revealed the survival
benefits of ICIs than conventional therapies,2–7 a subset
of patients do not respond to these therapies or have a
relapse of cancer after an initial response. So far, it is
unclear as to who will benefit from these therapies or
what are the mechanisms driving the treatment failure.
Importantly, the primary resistance to ICIs remains un-
predictable and exceeds 60%, whereas secondary resis-
tance rates approach 100%, highlighting the need to
develop novel predictive biomarkers.

Programmed death-ligand 1 (PD-L1) is the only
approved test to guide a patient’s treatment with ICIs,
and currently it affects the management of cancer.
Although clinical trials have found that PD-L1 expres-
sion above 50% is associated with increased likelihood
of response to checkpoint inhibitors, it neither gua-
rantees durable response in patients with a high PD-L1
tumor expression nor eliminates the possibility of
response in tumors with low PD-L1 expression. There
have been efforts from the scientific community to
develop novel predictive biomarkers to identify and
select patients with advanced NSCLC who will receive
clinical benefit from ICIs. Building a robust and
reproducible data-driven biomarker can potentially
spare these patients from a prolonged administration
of these expensive compounds and from unnecessary
toxicities.

In recent years, computational imaging approaches,
such as radiomics, have achieved success in quantifying
the characteristics of tumors using medical imaging data.
Radiomics is a high-throughput computational tool that
aims to provide a deeper understanding into the
subvisual characteristics of a tumor.8,9 Radiomics-based
techniques have a number of benefits, including the
fact that they are noninvasive and the features can be
derived from routine medical images.10,11 These make
them ideal for translating to clinical practice as the
method does not involve invasive procedures to predict
or monitor a patient’s response to various therapeutic
interventions. Studies in the literature have found that
radiomics can be used to build diagnostic or predictive
biomarkers in a variety of malignancies, including
advanced solid tumors, melanoma, and other types of
NSCLC.12–14 There have been several research efforts in
the literature that focused on building imaging-based
biomarkers leveraging medical imaging data.

In a study by Ligero et al.,15 the authors developed a
radiomics signature from baseline (pretreatment)
computed tomography (CT) scans to predict response to
anti–PD-1 and PD-L1 in patients with advanced solid
tumors. Zhao et al.16 developed a radiomics and a com-
bined radiomics-clinical model to predict PD-L1 in pa-
tients with NSCLC using positron emission tomography
imaging. In another retrospective study done by Liu
et al.,17 the authors developed a radiomics model to
predict the clinical outcomes of patients with advanced
NSCLC treated with nivolumab. Three machine learning
classifiers were trained and tested on a relatively small
data set with only 46 cases. Although the leave-one-out
cross-validation was applied for building the classifiers
to avoid biases, the robustness and effectiveness of their
model still need to be evaluated on larger data sets. To
predict OS and progression-free survival (PFS) in pa-
tients with NSCLC treated with first-line pembrolizumab,
Zerunian et al.18 developed a CT-derived radiomics
signature. Nevertheless, their model was validated on a
sample size of 21 patients, and a study with larger co-
horts was needed to confirm the results in a clinical
setting. In the study of Franzese et al.,19 radiomics and
clinical features were investigated for their predictive
value relative to locoregional failure, PFS, OS, and the
built multivariate models. They used five radiomic fea-
tures along with two clinical features significantly pre-
dictive for both PFS and OS. The limitation of their study
is that they built the models using a small cohort of
patients from a single institution and did not separate
their data into training and testing subgroups, thus
affecting both the robustness and reproducibility of the
results.

Studies in literature have revealed the utility of
radiomics as a promising noninvasive biomarker strat-
egy for patients with advanced NSCLC amenable to ICIs,
although most of them have been based on a single-
center retrospective study, or the sample size was
small to validate the predictive models. Moreover, none
of these studies have attempted to build survival and
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PD-L1–predictive models integrating imaging and clin-
ical features from a multicenter perspective to predict
PFS, OS, and PD-L1 in patients treated with ICIs nivolu-
mab and pembrolizumab. On the basis of this premise, in
this study, we aimed to develop radiomics and ensemble
radiomics-clinical models for predicting OS, PFS, and
PD-L1. We used two independent cohorts from different
institutions to develop and validate the radiomics bio-
markers, which will make them more generalizable and
clinically relevant.

Materials and Methods
Description of Cohorts

This retrospective study included 323 patients pre-
sented with advanced NSCLC and treated with nivolu-
mab or pembrolizumab between 2015 and 2021. The
cohorts were obtained from two thoracic oncology
reference centers, the Institut Universitaire de Car-
diologie et de Pneumologie de Québec (Quebec Heart
and Lung Institute, IUCPQ) and the Centre Hospitalier
Universitaire de Montréal (CHUM). The samples used in
this study came from the IUCPQ’s Quebec Respiratory
Health Network Tissue Bank (https://rsr-qc.ca/
biobanque/). A research consent form was obtained
from each patient, and the study was approved by the
institutional review board at the two academic in-
stitutions where patient data were acquired (MP-10-
2020-3397/CÉR CHUM: 19.390). All patients with
advanced NSCLC treated with ICIs and who had a pre-ICI
CT scan were eligible for retrospective review. Response
Evaluation Criteria in Solid Tumors version 1.1 was used
to assess tumor response. The progression was defined
by the qualitative evaluation of the radiologist. All pa-
tients were followed until death or until the date of
censoring at the last time the subject was known to be
alive, that is, in January 2022. To assess disease pro-
gression after treatment initiation, at least one breath-
hold chest pre-ICI CT scan (2 mo before treatment)
and one post-treatment CT scan (every 8 wk for nivo-
lumab and every 9 wk for pembrolizumab) were avail-
able. The two centers’ data set included 323 patients in
total, with 174 patients from the discovery cohort
(CHUM) and 149 patients from the in-house validation
cohort (IUCPQ) who were administered with pem-
brolizumab or nivolumab.

PD-L1, PFS, and OS Assessment
On the surface of activated T-cells, PD-1 is expressed

and down-regulates the T-cell activity by binding to its
ligands, PD-L1 and PD-L2.20,21 Immunohistochemistry
labeling (Dako Autostainer) was used to assess the PD-
L1–positive tumor cells (or tumor proportion score
[TPS]) with the 22C3 clone as part of standard patient
management after lung cancer diagnosis (pharmDx kit).
To calculate PD-L1 expression, the TPS value was used,
expressed as a percentage of tumor cells with positive
membranous staining ranging from 0% to 100%. Ac-
cording to the clinical cutoff for PD-L1 TPS, each tumor
was reclassified as 1%, 1% to 49.9%, or more than 50%.
In this study, we combined the categories 1% and 1% to
49% into a singular class. With this, we ended up with
two groups, namely, PD-L1 less than 50% and PD-L1
more than or equal to 50%, and considered it as a bi-
nary classification task.

The period of time between the start of treatment
and the point at which the disease progresses is known
as PFS. It is determined by the number of days between
the start of treatment and the date of illness progression,
death from any cause, or the final follow-up (censored).
Imaging techniques such as CT, magnetic resonance
imaging, or positron emission tomography/CT are
frequently used to confirm the progression of the dis-
ease. OS is the period of time from the date of diagnosis
to the date of death from any cause or to the date of
censoring at the last time the subject was known to be
alive. We considered the survival end points, OS and PFS,
as a regression-based task.
CT Scan Annotation
A radiation oncologist or radiologist manually an-

notated each primary lesion on deidentified CT scans
obtained 2 months before immunotherapy administra-
tion. To extract the radiomics features, the region of
interest (ROI) was determined as follows: (1) After CT
scan alignment, mathematically-based denoising fol-
lowed by the chest segmentation was used for the
connected regions; (2) the contour for the lung was
roughly segmented and after skin boundary detection,
the pulmonary parenchyma was refined; and finally, (3)
the lung nodule ROI was identified, which was inde-
pendent of the size, position, and spreading near or
through the pleura because of the relative symmetry of
the lung.
Extraction of Radiomics Features and
Preprocessing

PyRadiomics (version 3.0.1),22 an open-source Py-
thon tool for extracting custom radiomics characteristics
from CT scan data region of interests, was used. These
are interpretable engineered features of the tumor that
comply with the image biomarker standardization
initiative. All scans’ slice thicknesses were interpolated
to voxel sizes of 1 � 1 � 1 mm3, and features were
computed in three dimensional. The radiomics charac-
teristics were extracted and categorized into four pri-
mary categories in a traditional pipeline using
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Figure 1. Analysis pipeline of the study. CHUM, Centre Hospitalier Universitaire de Montréal; IUCPQ, Institut Universitaire de
Cardiologie et de Pneumologie de Québec (Quebec Heart and Lung Institute).
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PyRadiomics, including tumor intensity-based, shape-
based, texture-based, and wavelet-based features.
Intensity-based features are first-order statistical fea-
tures that quantify tumor intensity characteristics on the
basis of a histogram of all voxel intensity values. Shape-
based characteristics, such as sphericity or compactness,
describe the shape of the tumor. Texture-based charac-
teristics describe the texture changes within the tumor
volume. This was accomplished by the use of a gray-level
co-occurrence matrix, a run-length gray-level matrix, or
a gray-level size-zone matrix to cluster voxels with
similar appearance. After applying a Laplace of Gaussian
transformation to the image, wavelet-based features
were derived on the intensity and textural data.

Model Development
Several preprocessing operations were carried out

before the feature selection, and machine learning pro-
cedures were implemented. Standard-Scaler from
Sklearn was used to normalize the entire data set.23

After fitting the scalar to the data, the values are
changed so that the mean is 0 and the SD is 1. To
construct imaging-based prediction models for all tasks,
we used the ReliefF-based feature selection method,
which is frequently used to identify the most relevant
features.24,25 This method is based on the original Relief-
based algorithm.24 The main idea behind ReliefF is to
find the most relevant features by estimating their
quality using the feature-weighting scheme.26 The
ReliefF has a few advantages over other feature selection
methods. First, it is simple and efficient, and it can
handle large data sets with a large number of features.
Second, it is sensitive to both linear and nonlinear in-
teractions between features and can identify feature
dependencies that might not be captured by other
methods. Finally, it is robust to noise and missing values,
as it only considers the differences between instances
and their neighbors rather than the actual values of the
features.

To build the predictive model, we used the well-
known XGBoost machine learning algorithm. XGBoost
was first introduced by Chen and Guestrin,27 which
stands for “eXtreme Gradient Boosting.” It is an
ensemble approach that is based on the gradient
boosting algorithm.28,29 The gradient boosting algorithm
was improved to make the predictive model work better
and to cut down on the computational time by making it
run in parallel. Extreme is used to describe how much
better it works than the original gradient boosting al-
gorithm. By putting together several weak models, such
as decision trees, ensemble methods like gradient
boosting make stronger models. In XGBoost, errors in
existing models are fixed by adding new models. This
makes the overall performance better. XGBoost is easy to
use, has low computational costs, and is known to be
good at making predictions.30–32

Analysis Framework
Figure 1 illustrates the analysis pipeline for devel-

oping the radiomics model and the integrated radiomics-
clinical model using the feature selection method and
machine learning approach. The CHUM data set was
used as the discovery cohort, whereas the IUCPQ data set
was used for validation. On the discovery data set, we
first performed the prevalidation phase, which consisted
of 10 iterations/repetition of fivefold cross-validation for
the predictive model presented previously. The perfor-
mance of the model was evaluated using the concor-
dance index (C-index) and the area under the receiver
operating characteristic curve (AUC). The C-index is
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defined as the probability that two variables will rank a
random pair of samples in the same order. A random
predictor would yield a C-index of 0.5, whereas a perfect
predictor yields a C-index of 1. In simple words, it is a
generalization of the AUC.
Radiomics Model Development
In general, we performed the following steps to

develop the predictive models leveraging imaging and
clinical data:

� The empty rows were removed from CHUM and IUCPQ
cohort.

� Data standardization: All variables were required to
have a mean of zero and a SD of one for both cohorts.

� We used Lasso regression for the OS and PFS tasks and
Lasso Logistic regression with penalty “l1” for the PD-
L1 challenge, as our first-step feature selection
approach. Using the primary feature selection Relief
and the XGBoost machine learning approach inde-
pendently, Lasso and Lasso Logistic regression are
applied to the entire training cohort. Nevertheless, we
used grid search with fivefold cross-validation to
determine the best alpha for Lasso regression and C
for Logistic regression. After training Lasso on the
entire CHUM cohort, we eliminated features with zero
coefficients.

� We incrementally chose features for the ReliefF
feature selection method and XGBoost machine
learning method from the generated features
(including those maintained after the LASSO). This was
carried out in the discovery data set’s prevalidation
phase, which consisted of fivefold cross-validation
with 10-times repetitions. For each fold, the ReliefF
feature selection approach was used at this stage.

� The highest C-index for OS, PFS, and AUC for PD-L1
was used to determine the best number of features
using Relief-based method.

� GridSearchCV from SciKit-Learn was used to conduct a
cross-validation for XGBoost’s hyperparameter tuning.
Scikit-learn version 1.0.2, Python version 3.9.13,
XGBoost version 1.6.2, and Skrebate version 0.62 were
used to implement the ReliefF feature selection and
the XGBoost regressor and classifier, respectively.

� We used the final model with the best features and
best hyperparameters to test the model’s performance
on the validation data set.
Radiomics-Clinical Model
After the selection of the best radiomics features with

the highest C-index for OS, PFS, and AUC for PD-L1, we
integrated the statistically relevant clinical features. We
combined Eastern Cooperative Oncology Group (ECOG)
and sex for model building of OS/PFS and first-line
treatment for the PD-L1 task. The model’s performance
was evaluated on the discovery data set using fivefold
cross-validation with 10-times repeats. In other words,
the radiomics-clinical model was built using both
radiomic and significant clinical variables to predict
continuous values of OS, PFS, and binary values for PD-
L1 expression.

Survival Analysis
The prognostic value of radiomics-only signatures

was assessed using a log-rank test for Kaplan-Meier
survival curves, as implemented in the survcomp R
package. Median value was used to split the data into
two groups, whereas OS and relapse-free survival were
used as the end points.

Results
Patient Characteristics

Table 1 displays the clinical characteristics of the two
cohorts used in the current study. Continuous data were
presented as mean ± SD, whereas categorical data were
presented as counts and percentages. For OS and PFS,
the CHUM discovery cohort consists of 174 patients with
a mean age of 66.2 years (9.3). Of the patients in the
smoking category, 63% were former smokers, whereas
30% are current smokers. The IUCPQ validation cohort
consists of 149 patients with a mean age of 67.7 years
(7.3). Of these patients, 70.5% were former smokers,
whereas 24.2% are current smokers. For PD-L1, the
CHUM discovery cohort consists of 146 patients with a
mean age of 66.6 years (9.4). Of the patients in the
smoking category, 64.4% were former smokers, whereas
30.2% are current smokers. The IUCPQ validation cohort
consists of 121 patients with a mean age of 67.7 years
(7.0). Of these patients, 69.4% were former smokers,
whereas 24.8% are current smokers. The number of
nonsmoker patients for PD-L1, PFS, and OS was less than
10% in both cohorts.

We retrospectively selected data from patients who
had been treated with at least one cycle of nivolumab or
pembrolizumab at the CHUM and IUCPQ centers. The
number of patients was 90 and 84 who were treated
with nivolumab or pembrolizumab, respectively, on the
CHUM cohort, and 82 and 67 on the IUCPQ cohort for the
OS and PFS task. For PD-L1, 83 patients were treated
with nivolumab and 63 patients were treated with
pembrolizumab in the CHUM cohort; 81 patients were
treated with nivolumab and 40 patients were treated
with pembrolizumab in the IUCPQ cohort. The range of
OS values was 0.3 to 67.3 months in the CHUM data set
and 0.4 to 59.4 months in the IUCPQ data set. In addition,
the range of PFS values was 0.13 to 62.1 months in the



Table 1. Clinical Characteristics of Discovery and Validation Cohorts

Clinical Features OS and PFS PD-L1

Characteristics CHUM (Discovery) IUCPQ (Validation) CHUM (Discovery) IUCPQ (Validation)

No. of samples 174 149 146 121
Age (mean) 66.2 ± 9.3 67.7 ± 7.3 66.6 ± 9.4 67.7 ± 7.0
Sex, n (%)

Female 87 (50.0) 73 (49) 74 (50.6) 63 (52.0)
Male 87 (50.0) 76 (51) 72 (49.4) 58 (48.0)

Smoking status, n (%)
Former 110 (63.0) 105 (70.5) 94 (64.4) 84 (69.4)
Current 52 (30.0) 36 (24.2) 44 (30.1) 30 (24.8)
Never 12 (7.0) 8 (5.4) 8 (5.5) 7 (5.8)

ECOG status, n (%)
0 49 (28.2) 44 (29.5) 45 (48.6) 37 (30.5)
1 89 (51.1) 94 (63.0) 71 (30.8) 75 (62.0)
2 32 (18.4) 8 (5.4) 26 (17.8) 6 (5.0)
3 4 (2.3) 3 (2.1) 4 (2.7) 3 (2.5)

First-line treatment, n (%)
No 120 (69.0) 94 (63.1) 92 (63.0) 67 (55.3)
Yes alone 54 (31.0) 48 (32.2) 54 (37.0) 48 (39.7)
Yes combined - 7 (4.7) - 6 (5.0)

Subtype group, n (%)
Adenocarcinoma 140 (80) 112 (75) 118 (81) 91 (75.2)
Squamous 26 (15) 19 (12.8) 20 (13.8) 14 (11.6)
Other 8 (5) 18 (12.2) 8 (5.2) 16 (13.2)

IO type
Nivolumab 90 (52) 82 (55) 83 (57) 81 (66)
Pembrolizumab 84 (48) 67 (45) 63 (43) 40 (34)
OS (mean) 18.4 mo 21.1 mo – –

PFS (mean) 13.4 mo 13.1 mo – –

PD-L1 expression, n (%)
<50% 57 (39) 40 (33)
>50% – – 89 (61) 81 (67)

CHUM, Centre Hospitalier Universitaire de Montréal; ECOG, Eastern Cooperative Oncology Group; IO, immunotherapy; IUCPQ, Institut Universitaire de Car-
diologie et de Pneumologie de Québec; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival.

Table 2. Univariate Analysis Between Clinical
Characteristics and OS, PFS, and PD-L1

Characteristics

OS PFS PD-L1

p Value p Value p Value

Age 0.89 0.93 0.89
Sex 0.03 0.02 0.34
Smoking status 0.44 0.43 0.25
ECOG status 1e-6 0.001 0.008
First-line treatment 0.29 0.27 0.000004
Subtype group 0.21 0.42 0.11

ECOG, Eastern Cooperative Oncology Group; OS, overall survival; PD-L1,
programmed death-ligand 1; PFS, progression-free survival.
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CHUM data set and 0.13 to 57.7 months in the IUCPQ
data set.

Univariate Analysis of Clinical Variables
The clinical variables used in this study were the

following: age, sex, ECOG status, smoking status, subtype
group, and first-line treatment of patients. To evaluate
the association between OS and PFS and PD-L1 and
clinical factors, we performed univariate analyses using
Pearson correlation for continuous values indepen-
dently. The p values resulting from the univariate anal-
ysis are presented in Table 2. From our analysis, we
found sex and ECOG status to be clinically significant
variables associated with the OS and PFS as continuous
values. First-line treatment is a clinically significant
variable associated with PD-L1 as a continuous value.

Radiomics Features
Using the PyRadiomics pipeline, a total of 851 radio-

mics features were extracted from the segmented tumor
areas of the pretreatment CT scans of two distinct cohorts
to develop predictive noninvasive radiomics biomarkers.
The CHUM cohort was used for feature selection and
model training, whereas the IUCPQ cohort was used to
evaluate the performance of the model for the end points
OS, PFS, and PD-L1.



Figure 2. Pearson correlation of radiomics features with OS
and PFS in the discovery cohort. OS, overall survival; PFS,
progression-free survival.
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Association of Radiomics Features With Survival
End Points

We used the Pearson correlation to compute the as-
sociation between radiomics features and the clinical
end points OS and PFS in the discovery cohort (Fig. 2).
The highest correlation values were 0.22 and 0.18 and
the lowest correlation values were �0.18 and �0.16 for
OS and PFS, respectively. Overall, we found that 412 and
372 features were associated in the positive direction
with the end points, whereas 439 and 479 features were
associated negatively with OS and PFS, respectively. We
found that for both OS and PFS, the top 10 positively
correlated features were from wavelet-based group and
the top 10 negatively correlated features were from the
wavelet-based group (nine of them) and one from the
texture-based group.
Model Evaluation
In this section, we present the results of the three

objectives presented in this study. After applying the
LASSO feature reduction method, features with zero
coefficients were removed and we ended up with 21
features for OS, 22 features for PFS, and 35 features for
the PD-L1 task.

The performance of the radiomics and radiomics-
clinical models for OS is illustrated in Figure 3.
Figure 3A illustrates the C-index values obtained from the
discovery cohort, and Figure 3B illustrates the C-index
values obtained during the validation phase. To build the
radiomics-clinical integrative model, we used only the
significant features (from Table 2), that is, sex and ECOG
status. The final set of features to predict the OS was all
from the wavelet-based group. The radiomics model
resulted in approximately 0.599 in the discovery set and
approximately 0.554 in the validation cohort. With the
ensemble radiomics-clinical model, the C-index was
enhanced from 0.599 to 0.651 in the discovery cohort and
from 0.554 to 0.591 in the validation cohort. Overall, we
found that the radiomics-clinical model resulted in a bet-
ter model performance than radiomics model alone.

Figure 4 presents the performance of the radiomics
and the ensemble radiomics-clinical models to predict
the PFS. The panels (Fig. 4A) and (Fig. 4B) present the C-
index in the discovery and validation cohorts, respec-
tively. For developing the radiomics-clinical predictive
model, we utilized the significantly associated features
with the PFS (from Table 2), i.e., sex and ECOG status.

Similar to the OS, the C-index was slightly improved
with the integrated radiomics-clinical model compared
with the baseline radiomics model. The model accuracy
improved from 0.608 to 0.63 in the discovery cohort and
from 0.563 to 0.595 in the validation cohort. The final set
of features to predict the PFS was a combination from
the wavelet-, texture-, and intensity-based groups.

The performance of the radiomics and the integrated
radiomics-clinical model for predicting the PD-L1 expres-
sion is presented in Figure 5. To develop the radiomics-
clinical predictive model, we used only those features
that were significantly associated with the PD-L1 expres-
sion (from Table 2), that is, first-line treatment and ECOG
status. The AUC was significantly improved with the
ensemble radiomics-clinical model in comparisonwith the
radiomics model alone—increased from 0.62 to 0.78 for
the discovery cohort (Fig. 5A) and from 0.61 to 0.696 (Fig.
5B) for the validation cohort. Overall, our results indicate
that the radiomics-clinical model has a better predictive
ability comparedwith radiomicsmodel alone and captures
a unique fingerprint by leveraging routine CT scans and
clinical data. Importantly, this will help the clinicians to
expand the treatment horizons toward greater precision to
treat patients with NSCLC with ICI therapies.
Prognostication of Radiomics Signatures
Furthermore, the prognostic value of imaging-derived

signatures was assessed using a log-rank test using
Kaplan-Meier survival curves (Fig. 6). The left and right
panels present the results for OS (Fig. 6A) and PFS (Fig.
6B), respectively. The group with lower than median (OS
or PFS) value has poor outcome, whereas the group with
higher than median (OS or PFS) value has good outcome.
We obtained significant values for both the survival end
points with 0.00022 and 0.013, respectively. Through
these findings, we believe that the developed imaging-
based models have clinical impact and can stratify pa-
tients into low- and high-survival groups.

Discussion
Despite the fact that ICIs have changed the treatment

landscape of many tumor types, response rates remain



Figure 3. Performance of radiomics and the ensemble radiomics-clinical models to predict the OS. (A) C-index in the dis-
covery cohort and (B) C-index in the validation cohort. C-index, concordance index; OS, overall survival.
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suboptimal, and better patient stratification is required.
The activation of the immune system can lead to durable
responses and better response in some but not in all
patients with advanced NSCLC. In addition, the recent
Food and Drug Administration approvals of nivolumab
and pembrolizumab present a paradigm shift in the
treatment fabric for patients with advanced NSCLC.4,5 In
this regard, there is a pressing clinical need to identify
patients who are most likely to respond to ICIs and have
better survival outcomes. Furthermore, predicting those
unresponsive patients to ICIs early may allow the phy-
sicians to choose other effective therapeutic
Figure 4. Performance of radiomics and the ensemble radiomi
covery cohort and (B) C-index in the validation cohort. C-index
interventions and improve their survival, while reducing
the costs and toxicities associated with these com-
pounds. Although there have been efforts to build data-
driven biomarkers for ICIs, there is a dire need to
build robust predictive models for clinical translation.
The recent advent of radiomics through quantitative
image analysis has been gaining interest in oncology as a
novel strategy for predicting treatment response.33–36

Nevertheless, the development of imaging-based signa-
tures that can be robust and generalizable across aca-
demic centers has been a bottleneck to adopt radiomics
in clinical practice.
cs-clinical models to predict the PFS. (A) C-index in the dis-
, concordance index; PFS, progression-free survival.



Figure 5. Performance of radiomics and the ensemble radiomics-clinical models to predict PD-L1. (A) AUC in the discovery
cohort and (B) AUC in the validation cohort. AUC, area under the curve; PD-L1, programmed death-ligand 1.
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Most of the studies in literature have revealed the
utility of radiomics as a biomarker strategy for patients
with NSCLC amenable to ICIs. Despite these promising
retrospective studies, the adoption of imaging-based
models in clinical workflows is limited. In a study led
by Zerunian et al.,18 the authors built the predictive
models for PFS and OS using 21 patients from a single
institution who were treated with pembrolizumab only.
Despite obtaining an AUC of close to 0.72, major limita-
tions of this study include the sample size and the po-
tential biases in using only texture features. Considering
the interpretation of the texture features, this reflects the
tumor aggressiveness rather than biomarkers of
response to ICIs, thus, limiting the model’s applicability.
In another retrospective study, Liu et al.17 developed
radiomics model to predict survival outcomes in a cohort
Figure 6. Survival analyses of clinical end points. (A) OS and
of 46 patients with NSCLC treated with nivolumab alone.
The models were trained on a small data set with leave-
out-one–fold cross-validation, suggesting a need to test
for the robustness on diverse datasets. Finally, Trebeschi
et al.12 leveraged radiomics features to assess ICI
response in patients with NSCLC and melanoma.
Although their model was able to predict progressive
disease in NSCLC with a good accuracy, it achieved poor
performance on both pulmonary and hepatic melanoma
lesions (AUC of 0.55). To assess the performance of
radiomics models, they used 133 and 70 patients in the
discovery and test sets from a single institution, lacking
sufficient validation and generalizability. To overcome
the above-mentioned limitations, in this study, we
considered diverse data sets from two academic in-
stitutions to train and test the predictive models. To the
(B) PFS. OS, overall survival; PFS, progression-free survival.
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best of our knowledge, no study has been published on
radiomics biomarkers predicting three clinical end
points in patients with NSCLC treated with nivolumab
and pembrolizumab using a large cohort. The significant
number of patients treated with these two compounds
and trained/evaluated in two institutions (n ¼ 323)
distinguishes our study from prior studies.

On the basis of this premise, we leveraged pretreat-
ment CT imaging data along with the clinical variables to
develop predictive biomarkers for three clinical end
points—OS, PFS, and PD-L1 expression. To build the
predictive models, we used a total of 323 patients across
two institutions. The PyRadiomics platform was used to
extract 851 radiomics features from the pre-ICI CT scan
data, which were then used to develop the predictive
models. To decrease the dimensionality of the features,
we first used the LASSO feature selection strategy fol-
lowed by the ReliefF feature selection method. The
XGBoost machine learning method was used to build the
models for all the clinical end points—OS, PFS, and PD-
L1 expression. For building the ensemble radiomics-
clinical model, we used only the clinically significant
features. Clinical factors, ECOG, and sex were used for
model building of OS/PFS; ECOG status and first-line
treatment were used for the PD-L1 task. For OS, we
found the C-index for the baseline radiomics model to be
approximately 0.599 in the discovery set and 0.554 in
the validation cohort. With the integrated radiomics-
clinical model, the performance of the model improved
from 0.599 to 0.651 on the discovery cohort and from
0.554 to 0.591 on the validation cohort. To predict PFS,
the C-index of the radiomics model was found to be
0.608 and 0.563 in the discovery and validation cohorts,
respectively. The C-index of the ensemble radiomics-
clinical model significantly improved from 0.608 to
0.63 in the discovery data set and from 0.563 to 0.595 in
the validation data set. For predicting PD-L1 expression,
the AUC of the ensemble radiomics-clinical model
significantly improved from 0.62 to 0.78 in the discovery
data set and from 0.61 to 0.696 in the validation data set.
We hypothesize that the model performance can be
further improved by harmonizing image acquisition pa-
rameters across institutions.

Nevertheless, our study has its limitations. First, all
samples were limited to primary tumors only and did
not consider any patients with multiple lesions. Second,
our models were validated on the retrospective cohort
that may have caused potential biases in the cohort
design. Last, few studies evaluated the potential impact
of gray-level discretization and the need for harmoni-
zation of various imaging protocols arising from the two
centers on the predictive model development. We hope
to address these limitations in our future studies. In
conclusion, our findings suggest that CT-based radiomics
signatures from pretreatment ICI scans of patients with
advanced NSCLC can potentially act as predictive bio-
markers for PD-L1 expression and survival outcomes
(for both OS and PFS). Through the developed bio-
markers, clinicians can assess the treatment outcome for
a given patient, accordingly prescribe alternative thera-
peutic interventions, and closely monitor those patients
with a higher risk of cancer recurrence. Albeit, additional
prospective validation of these noninvasive predictive
biomarkers is required to precisely define their clinical
translatability. Motivated by the results and the wide
availability of routine CT scans for patients on cancer
immunotherapy, we believe that this study is a step to-
ward building robust and reproducible imaging-based
models that could potentially be implemented in the
clinical workflow.
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