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Abstract: Heart failure (HF) is one of the leading causes of mortality and hospitalization worldwide.
The accurate prediction of mortality and readmission risk provides crucial information for guiding
decision making. Unfortunately, traditional predictive models reached modest accuracy in HF
populations. We therefore aimed to present predictive models based on machine learning (ML)
techniques in HF patients that were externally validated. We searched four databases and the
reference lists of the included papers to identify studies in which HF patient data were used to
create a predictive model. Literature screening was conducted in Academic Search Ultimate, ERIC,
Health Source Nursing/Academic Edition and MEDLINE. The protocol of the current systematic
review was registered in the PROSPERO database with the registration number CRD42022344855. We
considered all types of outcomes: mortality, rehospitalization, response to treatment and medication
adherence. The area under the receiver operating characteristic curve (AUC) was used as the
comparator parameter. The literature search yielded 1649 studies, of which 9 were included in the
final analysis. The AUCs for the machine learning models ranged from 0.6494 to 0.913 in independent
datasets, whereas the AUCs for statistical predictive scores ranged from 0.622 to 0.806. Our study
showed an increasing number of ML predictive models concerning HF populations, although external
validation remains infrequent. However, our findings revealed that ML approaches can outperform
conventional risk scores and may play important role in HF management.

Keywords: artificial intelligence; machine learning; deep learning; heart failure; predictive model;
systematic review

1. Introduction

Heart failure (HF) remains a major clinical and public health problem. HF is associated
with substantial morbidity and mortality but also with poor quality of life. HF affects more
than 64 million people worldwide [1]; its prevalence is estimated at 1–3% in the general
population and is expected to rise due to the ageing of the population and improved
survival of treated patients. In consequence, HF represents 1–2% of all hospitalizations and
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is still a leading cause of admissions in Europe and the United States [2]. Given that, risk
stratification and prognosis prediction in HF populations is significant. Risk assessments
play a crucial role in identifying high-risk cases and in guiding clinical decisions. A tailored,
patient-level approach improves survival and quality of life and could reduce the rate of
readmissions and the burden on the health care system. However, precisely predicting
outcomes in heart failure patients remains difficult. There is a great need to develop and
validate data-driven predictive models supporting this purpose.

Recently, artificial intelligence (AI) methods are successfully implemented in several
medical fields e.g., in radiological images analysis or in prediction of suicide attempts [3–10].
The same applies to heart failure population. The clustering technology enables classifi-
cation of HF patients with regard to their clinical characteristic [11–14]. Machine learning
techniques provides tools to discriminate HF patients from subjects with no HF, where
most of current models use heart rate variability to detect heart failure [15–19]. One of the
widely known problem in clinical practice is accurate selection of candidates for cardiac
resynchronization therapy (CRT). The high percentages of nonresponders for CRT remains
an important problem. ML methods showed the possibility of improving decision making
in CRT [20–23]. ML approaches can be also used to predict untypical outcomes such as
treatment adherence [24] and left ventricular filling pressure among HF patients [25] and
can reveal relationships between HF symptom profiles and depressive symptoms [26].
Finally, AI algorithms can predict crucial outcomes in HF management such as mortality
and readmission rates. Currently, clinicians have at their disposal several predictive models
focusing on heart failure such as Get with the Guide- lines-Heart Failure (GWTG-HF)
score and Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score [27,28]
(Table 1). These models used conventional statistical approaches, mostly multivariate
analysis based on logistic regression. These scores have several limitations such as inability
to capture multidimensional correlations between variables in medical records. Moreover,
their usefulness can be hampered in specific situations; they were developed on selected
cohorts and therefore may achieve only modest accuracy. Furthermore, the clinical imple-
mentation of these tools is limited due to the requirement of medical staff involvement in
each patient’s risk estimation.

Table 1. Predictor variables used in MAGGIC and GWTG-HF scores. COPD—Chronic Obstructive
Pulmonary Disease, NYHA—New York Heart Association, ACEI—angiotensin-converting enzyme
inhibitor, ARB—angiotensin receptor blockers, BMI—body mass index, BUN—blood urea nitrogen.

No. Variables MAGGIC GWTG-HF

1. Age X X

2. COPD history X X

3. Systolic blood pressure X X

4. Gender X

5. Diabetes X

6. Heart failure diagnosed within the last 18 months X

7. Current smoker X

8. NYHA class X

9. Receives beta blockers X

10. Receives ACEI/ARB X

11. BMI X

12. Creatinine X

13. Ejection fraction X
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Table 1. Cont.

No. Variables MAGGIC GWTG-HF

14. BUN X

15. Sodium X

16. Black race X

17. Heart rate X

Conversely, AI algorithms seem to have certain advantages in these fields. Machine
learning (ML) algorithms are able to capture nonlinear, unstructured interactions between
the data, including clinical features, and their associations with a patient’s prognosis [29].
Thus, this type of approach can achieve superior accuracy compared with the linear models.
ML-based predictive models provide an opportunity for more individualised, patient-level
management. Of note, a significant increase in the number of studies which included
AI-based predictive models in medicine has been reported recently [30]. The role of this
novel approach will be increasing in clinical practice in the near future. Hence, this study
aims to screen and analyse predictive models based on AI algorithms among HF patients.
We took into consideration all types of outcomes: mortality, rehospitalization, response to
treatment and medication adherence among patients with already detected HF. To the best
of our knowledge, this is the first systematic review concerning ML predictive models with
external validation.

2. Methods
2.1. Search Strategy

A systematic literature review was guided by the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) statement [31]. Two independent reviewers
(M.B. and S.U.) engaged in online searches, and all disputable issues were solved through
discussion with the third reviewer (M.J.). Literature searches were conducted in Academic
Search Ultimate, ERIC, Health Source Nursing/Academic Edition and MEDLINE until
31 March 2022. In addition, the references of eligible reports and papers which cited the in-
cluded studies were screened. The protocol of the current systematic review was registered
in the PROSPERO database with the registration number CRD42022344855. In order to find
the relevant studies, we used the following combination of keywords: Mortal* OR Death
OR Readmi* OR Rehosp* OR Hospital* OR Risk* OR Predict* OR Prognos* OR Admission*
OR Outcome*) AND (Machine Learning OR Deep Learning OR artificial intelligence OR
artificial neural network* OR Unsupervised OR supervised) AND (Heart Failure OR Heart
Failure Systolic OR Heart Failure Diasystolic OR Acute Heart Failure OR AHF OR Chronic
Heart Failure OR CHF OR Heart Failure with preserved ejection fraction OR HFpEF OR
Heart Failure with mid-range ejection fraction OR HFmrEF OR Heart Failure with reduced
ejection fraction OR HFrEF).

2.2. Eligibility Criteria

All records that incorporated machine learning and/or deep learning models among
patients with heart failure (risk prediction of readmission after index hospitalization, risk of
mortality, prediction of response to treatment and medication adherence) were considered
important and included in our systematic review. Other inclusion criteria were: external
validation of the model and confirmed heart failure. Analysed records were excluded
from the systematic review if they met the following conditions: internal validation only,
implemented logistic regression alone, models predicted first incidence of HF, congenital
HF was a studied population, unconfirmed heart failure, reviews, commentaries, editorials,
not available in English language, did not have full text available and animal model studies.
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2.3. Data Extraction and Quality Assessment

The following data were extracted from eligible publications: (1) year of publication,
(2) data source, (3) size of training cohort, (4) size of validation cohort, (5) setting,
(6) outcomes, (7) predictor variables, (8) algorithm used, (9) AUC, (10) comparator score
in the particular dataset and (11) management of missing values. Quality assessment
was performed using a checklist for quantitative studies [32]. This checklist contains
14 questions, and evaluation was performed by two reviewers (M.B. and M.J.). The total
score of this scale range between 0 and 28. In the first step, the mean of the two assess-
ments was calculated. In the next step, quality scores were expressed as the percentage of
maximum quality score which can be assigned to a particular study. A higher percentage
indicates a better-quality study (Table 2).

Table 2. Characteristic of included ML predictive models. MIMIC—Medical Information Mart for
Intensive Care, UCSD—University of California, San Diego, KorAHF—Korea Acute Heart Failure,
EHR—electronic health record, TOPCAT—Treatment of Preserved Cardiac Function Heart Failure
with an Aldosterone Antagonist Trial.

No Author Year Data
Source Population Setting Validation

Size
Number of
Variables Outcome Quality

1. C. Luo et al.
[33] 2022

MIMIC-
III

database
5676 inpatient 1349 24 in-hospital mortality

in intensive care unit 87%

2. E. Adler et al.
[34] 2020 UCSD

database 5822
inpatient

and
outpatient

1512 + 888 8 general mortality 80%

3. J. Kwon et al.
[35] 2019 KorAHF 2165 inpatient 4759 23

in-hospital, 12-month
and 36-month

mortality
87%

4. L. Jing et al.
[36] 2020 Geisinger

EHR 26,971
inpatient

and
outpatient

548 209 1-year all-cause
mortality 73%

5. J. Chirinos [37] 2020 TOPCAT 379
inpatient

and
outpatient

156 12

composite endpoints
of death or heart
failure–related
hospitalization

87%

6. J. Kwon et al.
[38] 2019 register 20,651 inpatient 1560 65 in-hospital mortality 87%

7. S. Mahajan [39] 2019 register 27,714 inpatient 8531 Not
reported 30-day readmission 66%

8. S. Mahajan [40] 2019 register 1279 inpatient 340 Not
reported 30-day readmission 66%

9. S. Kakarmath
et al. [41] The protocol for the study

3. Results
3.1. The Review Process

The initial search identified 1297 publication records through database searching and
352 through other sources (Figure 1). After screening titles and abstracts, only 9 studies
met the inclusion criteria and did not meet exclusion criteria. The excluded publications
were: 307 duplicates, 578 based on a different model, 159 different studied populations,
73 reviews, 13 systematic reviews, 29 editorials, 4 animal studies, 8 posters, 4 lectures
and 7 that were not available in English. What we mean by different model is studies
using conventional, statistical methods or an AI analysis other than prediction. In the next
step, the full texts of 115 studies were assessed concerning type of validation. External
validation was missing in 106 studies, which were excluded. Additionally, we analysed the
references of eligible publication records and studies that cited the included papers. None
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of the 352 screened records met the inclusion criteria. Finally, nine predictive models were
included in the systematic review (Table 2).
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Figure 1. Flow chart of the systematic literature research.

3.2. Comparison of the Predictive Value

We aimed to thoroughly describe and compare the predictive value of the different
models, and thus, we decided to use the area under the receiver operating characteristic
curve (AUC) as a standard parameter. The AUC is commonly used to compare the per-
formance of models with each other and with conventional prediction scores. The AUC
represents the sensitivity against 1-specificity (Figure 2). The AUC of a classifier means
the probability that the classifier model will rank a randomly chosen positive instance
higher than a randomly chosen negative instance. The AUC is always between 0 and 1.0,
where an AUC of 0.5 means no better accuracy than chance and an AUC of 1.0 means
perfect accuracy [42]. To compare the certain AUC scores, we can refer to the following
rule: AUC = 0.5 means no discrimination, AUC = 0.5–0.7 means poor discrimination,
AUC = 0.7–0.8 means acceptable discrimination, AUC = 0.8–0.9 means excellent discrimina-
tion, AUC > 0.9 means outstanding discrimination [43].

3.3. Relevant Studies

The first study conducted by Luo et al. aimed to create a risk stratification tool
assessing the all-cause in-hospital mortality in intensive care unit (ICU) patients with
HF [33]. The model was developed based on records from the Medical Information Mart for
Intensive Care MIMIC-III database and externally validated with the use of eICU database.
The study included patients admitted to the ICU due to their first manifestation of HF. The
demographic data and comorbidities were collected at admission, and then vital signs and
laboratory records were collected hourly during the first 24 h after admission. In this way,
physicians took the minimum, maximum, mean and range of the values over a period.
After records extraction, the variables with missing data of more than 40% and patients with
more than 20% missing parameters were excluded to avoid bias. The XGBoost algorithm
was used to develop the machine learning model. The derivation data (5676 patients)
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were randomly divided into a training cohort (90%), and then the rest of the cohort (10%)
was used to validate the performance. Finally, 24 features were selected as the most
important from the predictive model as follows: mean anion gap, mean Glasgow Coma
Scale, urine output, mean blood urea nitrogen (BUN), maximum Pappenheimer O2 (pO2),
age, mean plasma calcium, minimum plasma glucose, mean plasma magnesium, mean
respiratory rate (RR), mean arterial base excess, mean creatinine, body mass index (BMI),
mean temperature, maximum temperature, maximum platelet, minimum prothrombin
time (PT), mean systolic blood pressure (SBP), mean partial thromboplastin time (PTT),
mean oxyhaemoglobin saturation (spO2), mean PT, mean diastolic blood pressure (DBP)
and minimum PTT. In internal validation (10% of the derivation data), the AUC reached
0.831. In the next stage, records from the eICU database were used to conduct external
validation; the AUC was 0.809. In effect, the current classifier had only a slight deterioration
in performance in the external cohort. Anion gap, blood coagulation status and volume of
urine output were found to be the three most important predictors in this model.
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Kwon et al. described a deep-learning-based artificial intelligence algorithm for
predicting mortality of patients with acute heart failure (DAHF) [35]. The endpoints were
in-hospital, 12-month and 36-month mortality. The patients’ electronic health records
(demographic information, treatment therapy, laboratory results, electrocardiography
(ECG) and echocardiography results, final diagnosis and clinical outcomes during their
hospital stay) were collected from two hospitals during their admission and used to train the
algorithm (2165 patients). The deep neural network was used to develop a prediction model.
Further, separate data from the independent Korea Acute Heart Failure register (KorAHF)
with 4759 patients were implemented as an external validation cohort. The age, sex, body
mass index, SBP, DBP, heart rate (HR), present atrial fibrillation, QRS duration, corrected
QT interval, left atrial dimension, left ventricular dimension end-diastole, left ventricular
dimension end-systole, ejection fraction (EF), white blood cell (WBC), haemoglobin, platelet,
albumin, sodium, potassium, blood urea nitrogen, creatinine and glucose were assessed
as the predictor variables. These data were obtained during each ECG assessment, and
in consequence, complete datasets for each patient were created. The AUCs for DAHF
were 0.880 for predicting in-hospital mortality and 0.782 and 0.813 for predicting 12- and
36-month mortality, respectively, in the KorAHF register. The well-established scores
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revealed poorer AUCs: 0.782 (GWTG-HF) for in-hospital mortality, 0.718 for 12-month
mortality and 0.789 for 36-month mortality (MAGGIC).

Another study by Kwon et al. aimed to develop a machine learning predictive model
for mortality among heart disease patients based only on the results of echocardiogra-
phy [38]. The data from the first hospital (20,651 patients) were used as the derivation data
and for internal validation (by splitting), and data from the second hospital (1560 patients)
were used for external validation. The derivation data consists of patients with atrial
fibrillation/flutter (AF/AFL), HF and coronary artery diseases (CAD). The internal valida-
tion group contained 3840 subjects from the first hospital. The external validation group
consisted of 604 subjects with CAD and 760 subjects with HF. Patients with missing values
were excluded. The primary outcome was in-hospital mortality. Only echocardiography
features were used as predictor variables: 11 continuous (age, weight, height, HR, left
ventricular diastolic diameter (LVDD), left ventricular systolic dysfunction (LVSD), septum
thickness, posterior wall thickness (PWT), aorta dimension, left atrium dimension and EF)
and 54 categorical (rhythm, mitral valve description (10 features), aortic valve description
(9 features), mitral valve description (9 features), left ventricle regional description
(12 features), left ventricle functional description (2 features), pericardium description
(2 features), inferior vena cava (2 features) and right ventricle description (2 features)).
The deep neural network (DNN) was used to develop a prediction model. In internal
validation, the model yielded AUC = 0.912 for predicting in-hospital mortality for heart
diseases. In external validation, the model achieved AUC = 0.898 for heart diseases and
0.958 for CAD. In the HF group, the created model produced AUC = 0.913 in external
validation in comparison with the MAGGIC score (0.806) and GWTG-HF (0.783). The ML
model outperformed the existing predictive models regardless of the underlying disease.

The machine learning assessment of risk and early mortality in HF (MARKER-HF)
risk scale was developed based on a cohort of 5822 patients from out- and inpatient care.
They were identified from medical history by their first episode of HF [34]. The boosted
decision tree algorithm was used to build the model. During the training process, eight
variables were identified as the predictor features: DBP, creatinine, BUN, haemoglobin
(Hb), WBC count, platelets, albumin and red blood cell distribution width (RDW). The
external validation was performed with the use of two, independent registers containing
1512 and 888 subjects. The model was designed to distinguish patients with high and low
risk of death. The patients who died before 90 days since the index hospitalization were
considered the high-risk group, and patients with a last-known follow-up 800 or more days
after the index hospitalization were classified as the low-risk group. In internal validation,
AUC = 0.88, while external validation in two independent cohorts gave AUCs of 0.84
(888 patients) and 0.81 (1516 patients). Moreover, the authors compared the performance of
the model with the levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP), which
were available in the derivation database. NT-proBNP is a well-established biomarker
associated with mortality amongst HF patients [45,46]. A higher MARKER-HF score is
associated with high NT-proBNP, but in the comparison of predictive power, MARKER-HF
reached superior AUC to that of natriuretic peptide (0.88 vs. 0.69). In comparison with the
GWTG-HF (AUC = 0.74), the created model presented superior discriminatory power in all
three populations.

Another study conducted by Chirinos et al. concerns associations between plasma
biomarkers of patients with heart failure with preserved ejection fraction and the composite
endpoint of all-cause death or heart failure-related hospital admission [37]. The authors
selected 379 patients from the Treatment of Preserved Cardiac Function Heart Failure
with an Aldosterone Antagonist Trial (TOPCAT) database for creating their predictive
model, and they validated it externally (156 subjects) with the use of data from the Penn
Heart Failure Study (PHFS). Only patients with fully available variables from TOPCAT
were included in the study. The tree-based pipeline optimizer platform was utilized
to build a predictive model, and the following biomarkers were found to be relevant
for predicting death or HF-related rehospitalization: 2 biomarkers related to mineral
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metabolism/calcification (fibroblast growth factor 23 (FGF-23) and osteoprotegerin (OPG)),
3 inflammatory biomarkers (tumour necrosis factor-alpha (TNF-alpha), soluble tumour
necrosis factor receptor I (sTNFRI) and interleukin 6 (IL-6)), YKL-40 (related to liver injury
and inflammation), 2 biomarkers related to intermediary metabolism and adipocyte biology
(fatty acid-binding protein 4 (FABP-4) and growth differentiation factor 15 (GDF-15)),
angiopoietin-2 (related to angiogenesis), matrix metallopeptidase 7 (MMP-7, related to
extracellular matrix turnover), ST-2 cardiac biomarker and NT-proBNP. In this project, test
performance was assessed with the C-index (concordance index), which is analogous to
the receiver operator characteristic curve. In the internal validation, the C-index was 0.743,
whereas in the external validation was 0.717. Moreover, the authors combined their ML
model with the MAGGIC score. As a result, the C-index for this combination was 0.73 in
internal and external validations. There was a slight deterioration in the C-index in the
external validation of the machine learning (ML) model alone, but the model containing
ML and the MAGGIC score revealed the same C-index in both cohorts. This shows the
very similar predictive power between the ML model alone and the model containing
ML and the MAGGIC score. The FGF-23, YKL-40 and sTNFRI were found to be the three
biomarkers most associated with the endpoint.

Jing et al. created a ML model for predicting 1-year all-cause mortality among HF
patients [36]. The data from 26,971 subjects (with 276,819 clinical episodes) were used
to train the model, and data from 548 patients/episodes were used to perform external
validation. All clinical visits since 6 months before HF detection date including outpatient
visits, hospitalizations, emergency department admissions, laboratory tests and cardiac
diagnostic measurements were identified and grouped into episodes. All clinical visits
since 6 months before the HF diagnosis date, which includes outpatient visits, hospi-
talizations, emergency department admissions, laboratory tests and cardiac diagnostic
measurements were identified, grouped into episodes and used as independent sets. The
predictive model was based on the XGBoost algorithm. The following features were incor-
porated from the electronic health records: 26 clinical variables (age, sex, height, weight,
smoking status, HR, SBP, DBP, use of loop diuretics, antihypertensive and antidiabetic
medications and laboratory test values (haemoglobin, estimated glomerular filtration
rate, creatine kinase-muscle/brain, lymphocytes, high-density lipoprotein, low-density
lipoprotein, uric acid, sodium, potassium, NT-proBNP, troponin T (cTnT), haemoglobin A1c
(HbA1c), troponin I (cTnI), creatinine, and total cholesterol), 90 cardiovascular diagnostic
codes (International Classification of Diseases-10th—ICD10), 41 ECG assessments and pat-
terns, 44 echocardiographic measurements and 8 evidence-based “care gaps”: flu vaccine,
blood pressure of < 130/80 mm Hg, HbA1c of < 8%, cardiac resynchronization therapy,
and active medications (active angiotensin-converting enzyme inhibitor/angiotensin II
receptor blocker/angiotensin receptor-neprilysin inhibitor, aldosterone receptor antagonist,
hydralazine, and evidence-based beta-blocker). The authors selected these care gaps as the
important evidence-based interventions in HF treatment for which associations with risk
reduction were assessed. To measure the predicted effect of closing care gaps on reducing
rate of endpoint, the authors closed artificial care gaps according to the following formula:
for binary gap variables, changing the value from 1 (open/untreated) to 0 (closed/treated);
for continuous variables, changing the value to goal. After that, the influence of this simu-
lation on the risk score was calculated. Only complete sets of variables were included. The
model achieved discriminatory power in assessing mortality risk with an AUC of 0.77 in
cross-validation and 0.78 in the external validation. This showed that the model tended to
slightly overestimate the risk of mortality. Moreover, the simulation of closing the 8 care
gaps resulted in a 1.7% reduction of mortality.

Mahajan et al. developed two predictive models using different ML methods. The first
of them combined structured and unstructured data, and the second one used ensemble
ML methods for predicting the risk of readmissions for HF. All dependent variables were
available, and there were up to 5% missing values of independent variables; thus, in order
to maintain consistency, the authors used multiple imputation by chained equations resam-
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pled over five imputed datasets for the missing values assuming missingness at random.
Both models aimed to predict 30-day readmissions, and both studies used the same struc-
tured data predictors: sodium, potassium, BUN, creatinine, Hb, haematocrit (Ht), glucose,
albumin, B-natriuretic peptide, SBP, DBP, pulse, RR, demographics (age, sex, race, marital
status, insurance type, residential area), pre-index admission factors (appointments in past
year, no show to appointment in past year, emergency department visits in past year, prior
diagnoses, admissions in previous year, telemetry monitor during index admission, index
admission via emergency length of stay concurrent procedures), comorbidities (alcohol
abuse, cardiac arrhythmia, CAD, cancer, cardiomyopathy, cerebrovascular accident, depres-
sion, diabetes mellitus, drug abuse, functional disability, liver disease, lung disease, protein
caloric malnutrition, psychiatric disorder, rheumatic disease group, renal disease group,
vascular disease group, aortic valve disorder), and concurrent procedure (cancer related,
cardiac devices, cardiac surgery, coronary angioplasty, history of mechanical ventilation
devices). In the first instance, the authors used the parametric statistical method and statis-
tical natural language processing (NLP) to create three models: one using structured, one
using unstructured data and one that combined these two approaches [40]. The structured
dataset contained 1619 patients, where 1279 patients enrolled from 2011 to 2014 were the
derivation cohort, and 340 patients from 2015 were the external validation subgroup. Then,
136,963 clinical notes were extracted (as unstructured records) such as history and physician
notes at admission, progress notes, social workers’ notes and discharge summaries. Of
these, 102,055 notes were for the derivation cohort, and 34,908 were for the validation
cohort. The combined dataset had over 4900 predictors, although the authors showed only
10 with relative importance: creatinine, BUN, haematocrit and other not listed administra-
tive predictors. The AUC for the structured model was 0.6494, for the unstructured model,
0.5219 and for the combined model, 0.6447. As a result, the performance of the structured
and combined models was very similar, but the unstructured data model showed very
poor discrimination. In the second instance, the authors selected 27,714 admissions (from
2011 to 2014) that represented a derivation cohort, and 8531 admissions from 2015 were
used as the external validation subgroup [39]. The authors used 10 different base learning
models and two ensemble schemes to combine base learner outputs (Super learner and
Subsemble scheme). Further, the AUCs for each base learner and ensemble schemes were
calculated. The best single base learner achieved AUC = 0.6993 (Extratrees); for Super
Learner, it was 0.6987 and for Subsemble, 0.6914. This showed that ensemble techniques
can ensure performance at least as good as the best-performing single-base algorithm.

The protocol of the study conducted by Kakarmath et al. presents a promising design
for investigations [41]. This project aimed to build a ML model predicting 30-day readmis-
sions in HF patients. The study concerns all types of heart failure: left; systolic, diastolic,
combined; acute, chronic, acute on chronic and unspecified with the expected population
of 1228 index admissions.

4. Discussion

Our systematic review revealed several factors with significant impacts on the utility of
AI-based tools in heart failure patient management. First, this study showed an increasing
number of studies concerning artificial intelligence methods incorporated in heart failure
population (Figure 3). Particularly during the last four years, we can observe a significant
increase of interest in this field.

Second, this analysis has shown that tens of predictive models are being generated,
but only a small part of them were externally tested. External validation means the
assessment of predictive performance (discrimination and calibration) with the use of an
independent, individual dataset different from the one used to generate the model [47].
The external validation can be performed in different cohorts including race, geographical
region, period, social-economic settings or type of care (outpatient/inpatient) [48]. This
approach determines objective discriminating ability in different settings from those of the
derivation data, thus revealing the utility of the model in the real world. The evaluation
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of the model based only on the derivation data can lead to misleading performance, for
example, mortality probability models (MPM II) predicting mortality among intensive
care unit patients achieved AUC = 0.836 [49], whereas the external validation performed
16 years later revealed only a modest AUC of 0.66, demonstrating very low discriminating
ability [50]. In the case of HF, it is worth mentioning that this disease is characterized by
different causes, comorbidities and demographic profiles around the world [51,52]. Given
that, the lack of test performance in different circumstances is the first barrier to applying
prediction calculators in clinical practice.
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Third, our analysis revealed that machine learning predictive models can accurately
predict different types of outcomes among HF populations. This is particularly important
when we compare the performance of AI-based models with conventional statistical predic-
tive models [53]. Most of the selected studies in our review showed satisfactory accuracies
in external validation. The AUCs range from 0.6494 to 0.913 in independent datasets,
whereas AUCs for statistical predictive scores range from 0.622 to 0.806 (Table 3). What
is more, the majority of included studies used either tree-based or neural network-based
methods to generate their models. The early assessment of a patient’s clinical risk is crucial
for tailored treatment and improving the patient’s prognosis. Furthermore, we revealed
that these models can use various types of data to predict the outcomes. This indicates that
all types of clinical data such as demographic, laboratory, clinical examination, medication
and echocardiographic and electrocardiographic metrics contain predictive information
and are suitable for building an effective model. Our study showed the potential of the
incorporation of features into predictive models that were not previously considered pre-
dictor parameters. It is especially important to use commonly available features in order
to provide real-time evaluation and to ensure inclusiveness by avoiding subjects with
missing data.

However, ML-based approaches are not free from limitations. First, predictive models
are associated with the overfitting problem. Overfitting can lead to the over-training of
the training data and in consequence limit discriminatory ability in other populations.
One of the solutions is to evaluate the model in an independent cohort. That is why we
established external validation as an inclusion criterium. Second, the interpretability or
explainability of the created models has become a significant topic in the area of machine
learning. The end users are interested not only in the quality of the models but also in
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understanding the classification processes. Some models are easy to understand by their
nature (typical examples are decision trees), but some models, typically neural networks,
work as black-box models. To provide some insights into a particular model’s decisions,
several approaches have been proposed. Local interpretable model-agnostic explanations
(LIME) is an interpretability surrogate model which can be used on any black-box model
to provide local interpretability for the prediction or classification of a single instance [54].
SHapley Additive exPlanations (SHAP) is a game theory-based method of interpreting
any machine learning model’s output [55]. It uses the traditional Shapley values from
game theory and their related extensions to correlate optimal credit allocation with local
explanations. As the explainability issue was not discussed in the reviewed papers, we
cannot assess them from this point of view.

Table 3. Performance metrics for machine learning algorithms and conventional risk scores. IV—
internal validation, EV—external validation, ML—machine learning, NLP—natural language process-
ing, HF—heart failure, HFrEF—heart failure with reduced ejection fraction, HFmrEF—heart failure
with mid-range ejection fraction, HFpEF—heart failure with preserved ejection fraction HD—heart
disease, CAD—coronary artery disease.

No. Author Algorithm AUC for ML
in IV

AUC for
MAGGIC in

IV

AUC for
GWTG-HF

in IV

AUC for ML
in EV

AUC for
MAGGIC in

EV

AUC for
GWTG-HF

in EV

1. C. Luo et al.
[33] XGBoost 0.831 - 0.667 0.809 - -

2. E. Adler et al.
[34]

boosted
decision tree 0.88 - 0.74 0.81–0.84 - 0.758

3. J. Kwon et al.
[35]

deep neural
network - - -

0.88—in-hospital
mortality

0.782—12-month
mortality

0.813—36-month
mortality

0.718—
12-month
mortality

0.729—
36-month
mortality

0.728—in-
hospital

mortality

4. L. Jing et al.
[36] XGBoost 0.77 - - 0.78 - -

5. J. Chirinos
[37]

created by the
tree-based
pipeline

optimizer
platform

0.743
(C-index)

0.621
(C-Index) - 0.717

(C-index)
0.622

(C-index) -

6. J. Kwon et al.
[38]

deep neural
network 0.912—(HD) - -

0.913 (HF)
0.898 (HD)

0.958 (CAD)
0.806 (HF) 0.783 (HF)

7. S. Mahajan
[39] ensemble ML - - - 0.6987 - -

8. S. Mahajan
[40]

created by
NLP process - - - 0.6494 - -

9.
S.

Kakarmath
et al. [41]

The protocol for the study

Third, the described models used only variables that were collected in datasets used
as derivation cohorts. Three of all the included studies used a well-established prognostic
marker such as NT-proBNP as a predictive feature, but only one model used troponin
to predict outcomes [56,57]. There exist other, not included parameters that can be also
important prognostic factors for cardiovascular diseases and can potentially improve model
performance [58,59].

There is space for applying complex ML techniques in HF management. In the first
step, during hospitalization, low-cost and non-invasive ML calculators can be used for
patient risk assessments. In the second step, ML models can be used in outpatient care as
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everyday support tools for patients. The absence of sufficient education, inadequate self-
care and lack of medication adherence are well-studied reasons why patients do not reach
clinical goals, leading to readmissions, and all these issues can be addressed using ML-
based solutions [60]. Personal health plans using sensing devices and artificial intelligence
methods can support patients during routine care [61]. The combined approach using ML
tools during hospitalization and in outpatient care may result in clinical benefits.

The perspective of AI-based techniques holds great promise for cardiovascular re-
search and clinical practice. Some fields seem especially attractive. Well-trained models
can perform real-time, automatized patient risk stratification undertaken at the beginning
of the diagnostic path. We can imagine a case when the admitted patient is classified into
one of the pre-established clusters. Affiliation with one of the clusters initially suggests
diagnostics, treatment and risk groups. Basing patients’ management on models trained on
large cohorts could help physicians not to overlook some important issues, especially in
conditions of overwork and lack of personnel. Further, AI tools can provide more infor-
mation about the patient from the same amount of data. Sengupta et al. created a model
which can provide the same amount of information about aortic stenosis severity as if
both echocardiography and cardiac CT/MR were performed using only echocardiography
and the model. Such solutions can be widely implemented in less-developed areas where
sophisticated diagnostic methods are not available [62]. Another field that represents great
potential is predicting pathology from seemingly physiological findings; for instance, there
are successful attempts to identify patients with a history of atrial fibrillation from the ECG
performed during the sinus rhythm [63]. The earlier detection of atrial fibrillation can lead
to vast reductions in vascular changes in the brain and thereby improve patients’ quality
of life.

5. Limitations

Our systematic literature review has several limitations. Our selected inclusion and
exclusion criteria resulted in a low number of analysed studies. All of the eligible records
were markedly heterogeneous in terms of outcomes but did use ML methods and predictor
variables. As a consequence, we did not perform meta-analysis, which could have been
challenging and unrepresentative. However, meta-analysis would have enabled better
insight into the models’ performance, and this issue should be addressed in the next
research investigating this field. Finally, our review focuses mainly on the medical issues of
predictive models in HF. We aimed to show state-of-art achievements in this area, current
solutions and level of advancement. We did not consider technical nuances of modelling
processes such as hyperparameter optimization or the tuning of algorithms. There is an
increasing need for a pragmatic framework for evaluating clinical utility and validity in ML
studies [64]. The development of guidelines for ML implementations in medical research is
a clear field for further investigations.

6. Conclusions

The implementation of artificial intelligence methods in heart failure management is
still in the very early stage. There is a great necessity to evaluate new predictive algorithms,
train models in different populations and try to combine various types of predictor variables.
Our study showed that artificial intelligence techniques may play an imminent role in
heart failure management. Data-driven predictive models showed promise in handling
large volumes of medical data. Machine learning techniques may also enable patient-level
management, allowing for possibly reducing adverse outcomes in this population.
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