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A B S T R A C T

Investigation of the brain's functional connectome can improve our understanding of how an individual brain's
organizational changes influence cognitive function and could result in improved individual risk stratification.
Brain connectome studies in adults and older children have shown that abnormal network properties may be
useful as discriminative features and have exploited machine learning models for early diagnosis in a variety of
neurological conditions. However, analogous studies in neonates are rare and with limited significant findings.
In this paper, we propose an artificial neural network (ANN) framework for early prediction of cognitive deficits
in very preterm infants based on functional connectome data from resting state fMRI. Specifically, we conducted
feature selection via stacked sparse autoencoder and outcome prediction via support vector machine (SVM). The
proposed ANN model was unsupervised learned using brain connectome data from 884 subjects in autism brain
imaging data exchange database and SVM was cross-validated on 28 very preterm infants (born at 23–31weeks
of gestation and without brain injury; scanned at term-equivalent postmenstrual age). Using 90 regions of in-
terests, we found that the ANN model applied to functional connectome data from very premature infants can
predict cognitive outcome at 2 years of corrected age with an accuracy of 70.6% and area under receiver op-
erating characteristic curve of 0.76. We also noted that several frontal lobe and somatosensory regions, sig-
nificantly contributed to prediction of cognitive deficits 2 years later. Our work can be considered as a proof of
concept for utilizing ANN models on functional connectome data to capture the individual variability inherent in
the developing brains of preterm infants. The full potential of ANN will be realized and more robust conclusions
drawn when applied to much larger neuroimaging datasets, as we plan to do.

1. Introduction

The high risk of neurodevelopmental impairments is a major con-
cern for parents and clinicians caring for premature babies, especially
for those born very preterm (Jarjour, 2015). Up to 40% of very preterm
infants (i.e. ≤32weeks gestational age) in the United States are diag-
nosed with cognitive deficits at 2 years of age (Hamilton et al., 2016).
Unfortunately, cognitive impairments cannot be accurately diagnosed
until 3 to 5 years of age (Hack et al., 2005; Ment et al., 2003; Spencer-
Smith et al., 2015). While recent studies demonstrate the importance of
genetic factors in premature birth (Zhang et al., 2017) and outcome,
there remains a gap in our knowledge about early identification of in-
fants at high-risk for cognitive deficits. This gap limits our ability to
target early interventions (Nordhov et al., 2010; Spittle et al., 2012) to

the highest risk infants during periods of optimal neuroplasticity in the
first 3 years after birth to enhance their ability to reach their full in-
tellectual potential.

The human brain is a highly interactive and organized system that
exhibits functional units. Each brain unit is connected to multiple other
units. Resting-state functional connectivity MRI (fcMRI) has made
possible quantitative mapping of the connections within and between
these units. The architecture conveys intrinsic information about the
connectivity of the brain, referred to as the brain connectome (Glasser
et al., 2016; Sporns, 2013), which has opened a window for observing
the human mind (Sporns, 2013; Sporns et al., 2005). Mathematically, a
connectome is a graph, representing the brain connectivity (described
as a set of edges) between pairs of brain regions of interest (ROI) (de-
scribed as a set of nodes). The connectome can also be encoded as an
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adjacency matrix, in which each entry represents the brain connectivity
between each pair of ROIs.

Research supports the notion that cognitive deficits may result from
a perturbation of neural connection and communication (Fei et al.,
2014). The brain connectome also shows a high degree of individual or
inter-subject variability (Finn et al., 2015). Investigation of the brain
connectome will improve our understanding of how individual brain
organizational changes influence cognitive function, resulting in an
improved individual risk stratification. Brain connectome studies in
adults and older children have shown that abnormal network properties
may be useful as discriminative features for early diagnosis in a variety
of neurological conditions. Many of these studies have exploited ma-
chine learning models using brain connectome data for such early
prediction (Arbabshirani et al., 2013; Barkhof et al., 2014; Fei et al.,
2014; Finn et al., 2015; Jie et al., 2014a; Jie et al., 2014b; Khazaee
et al., 2015; Khazaee et al., 2016; Prasad et al., 2015; Sacchet et al.,
2015; Vanderweyen et al., 2015; Wee et al., 2012; Wee et al., 2016;
Zhan et al., 2015; Zhu et al., 2014). The progress has now begun to be
extended to neonatal population (Kawahara et al., 2017; Smyser et al.,
2016; Ziv et al., 2013).

Brain connectome data are inherently complicated and have high
dimensionality, which makes it very challenge to effectively extract
intrinsic information embedded in the data. The most popular method
is through principal component analysis (PCA), however, it is a linear
method. The complexed patterns embedded in the brain connectome
data may not be explained linearly. In addition, it is unclear how many
components are needed to reconstruct the data to a reasonable ap-
proximation, as many of the components are trivial. On the other hand,
significant progress has been made on learning high-level representa-
tion of the raw data using artificial neural network (ANN) model
(Hinton and Salakhutdinov, 2006).

In this paper, we propose a Stacked Sparse Autoencoder (SSAE)
based ANN framework for early prediction of cognitive deficits in very
preterm infants based on functional connectome data. Specifically, we
build an unsupervised SSAE model using functional connectome data
from 884 subjects in autism brain imaging data exchange database
(ABIDE) to discover low-dimensional latent representations/features
from the original high-dimensional data. 28 very preterm infants are
used to cross-validate a support vector machine (SVM) classifier to
predict cognitive deficit. We hypothesize that our proposed ANN fra-
mework analyzing functional brain connectome data at birth can ac-
curately predict cognitive deficits at 2 years corrected age at an in-
dividual level in very preterm infants.

2. Methods

2.1. Overview

The proposed ANN framework for early prediction of cognitive
deficits consists of three components: 1) construct whole brain func-
tional connectome; 2) implement SSAE to take functional connectome
as input and extract its high-level connectome features (these features
capture the embedded salient information that is useful for differ-
entiating a single subject); and 3) implement SVM (Arbabshirani et al.,
2017; Chang and Lin, 2001; Levman and Takahashi, 2015) classifier to
conduct 2-class classification (i.e. high risk of cognitive deficits vs. low
risk) using extracted functional brain connectome features. This re-
search design is summarized in Fig. 1.

2.2. Subjects and cognitive assessments

The Nationwide Children's Hospital Institutional Review Board ap-
proved this study and written parental informed consent was obtained
for every subject. The data for this study is from a cohort of 28 very
preterm infants, ≤32 weeks gestational age, cared for in the neonatal
intensive care unit at Nationwide Children's Hospital. Infants with

known structural congenital central nervous system anomalies, con-
genital chromosomal anomalies, or congenital cyanotic cardiac defects
were excluded. In addition, parents were not approached for consent if
their infant remained on persistently high mechanical ventilator sup-
port (e.g., peak inspiratory pressure > 30 and/or fraction of inspired
oxygen>50%) within the first 28 days after birth. All 28 infants now
reached 2 years corrected age and completed their standardized Bayley
Scales of Infant and Toddler Development III test. The Bayley-III nor-
mative cognitive scores are on a scale of 50 to 150, with a mean of 100
and standard deviation (SD) of 15. We grouped our cohort using a cut-
off of 85 into those at high vs. low risk for cognitive deficits (i.e. two
classes). A child with a cognitive score of< 85 is considered to have
moderate to severe deficit and is comparable to a child with a mental
developmental index< 70 on the Bayley-II (Johnson et al., 2014). The
demographic information for these infants are provided in Table 1. We
conducted two-sided t-tests (assuming unequal variance) and found that
between the high and low risk groups, there were no significant dif-
ferences in birth weight (p=0.08), gestational age at birth (p=0.28)
and postmenstrual age at scan (p=0.34). There was significance dif-
ference of cognitive scores (P < 0.0001) between two groups.

2.3. MRI acquisition

Infants were scanned on a 3T GE HDx scanner equipped with an
eight-channel infant head coil (Lammers Medical Technology,
Germany). Functional images were collected using a single-shot echo
planar image sequence sensitized to T2* weighted blood oxygenation
level dependent (BOLD) signal changes. Acquisition parameters are:
repetition time TR=3000ms, echo time TE=35ms, flip angle
FA=90°, resolution 2.8×2.8×3.0mm3. A total of 100 frames were
collected in 5.2min. This acquisition time was chosen because it was
more clinically feasible without compromising data quality (Van Dijk
et al., 2010). Anatomical scans were conducted with a Proton Density/
T2-weighted sequence (TR/TE1/TE2=11,000/14/185ms, FA=90°,
resolution 0.35× 0.35× 2mm3). All subjects were scanned during
natural sleep without the use of any sedation after being fed and
swaddled. A 3T MRI-compatible transport incubator (Nomag 3.0IC,
Lammers Medical Technology, Germany) was used for the inpatient
scans. MRI noise was minimized using Insta-Puffy Silicone Earplugs
(E.A.R. Inc., Boulder, CO) and Natus Mini Muffs (Natus Medical Inc.,
San Carlos, CA).

2.4. Whole-brain functional connectome construction

A four-dimensional fcMRI dataset requires extensive preprocessing
before resting-state network analyses can be conducted (Glasser et al.,
2013; Smith et al., 2013). We developed a neonatal-optimized pipeline,
(He and Parikh, 2015) that can be briefly summarized as follows: 1)
Reorientation – acquired scans are aligned with anterior commissure
(AC) - posterior commissure (PC) line into a standard image plane; 2)
Skull stripping – remove non-brain parts of the image; 3) Realignment –
align each time point's frame to the mean frame, reducing the effects of
subject head motion during the acquisition; 4) Normalization – align
fcMRI frames to the same subject's high-resolution structural image
using rigid body registration and also align this structural image to a
neonatal template (Shi et al., 2011) using affine transformation. This
allows both fcMRI and structural images to be in the same “standard
space” reference coordinate system; 5) Spatial smoothing – apply iso-
tropic Gaussian filter with 6mm kernel to improve signal-to-noise ratio
and ameliorate the effects of functional misalignments across subjects;
6) Band-pass filtering (0.008 < f < 0.09 Hz) – remove the lowest and
highest temporal drifts in the data; 7) Motion artifact reduction – de-
tects corrupted time points using motion scrubbing (Power et al., 2012)
and regresses this confounding factor out of the data (Behzadi et al.,
2007). The above preprocessing methods are achieved using FMRIB
Software Library (FSL, Oxford University, UK), Statistical Parametric

L. He et al. NeuroImage: Clinical 18 (2018) 290–297

291



Mapping software (SPM, University College London, UK) and Artifact
Detection Tools (ART, MIT, Cambridge, US). Ninety ROIs are defined
based on a neonatal automated anatomical labeling (AAL) atlas (Shi
et al., 2011). The edges in the functional connectome describe the de-
gree of functional connectivity; defined as a partial correlation between
two ROIs. This results in a 90×90 adjacency matrix symmetric about
the diagonal, in which each entry represents the brain connectivity
between each pair of ROIs. To compute the partial correlation between
two BOLD time signals, the effect of every other time signal is first
removed (via regression) and then Pearson's correlation is computed.
We then use Fisher's r-to-z transform to convert correlation values into
Z-scores in order to prevent bias from being introduced in subsequent
steps (Marrelec et al., 2006; Whitfield-Gabrieli and Nieto-Castanon,
2012). This is implemented using functional connectivity toolbox
(CONN) (Marrelec et al., 2006; Whitfield-Gabrieli and Nieto-Castanon,
2012).

2.5. Stacked sparse autoencoder (SSAE) for high-level connectome feature
learning

Autoencoder (AE) is a class of ANN. It aims to develop better feature
representation of input high-dimensional data which is sufficiently
useful for identifying individual subject by a classifier.

2.5.1. SSAE model
SSAE is a neural network consisting of a stack of multiple sparsed

AEs (SAE). We build a SSAE in an unsupervised sequential fashion,
where each SAE is optimized separately to increase the likelihood of
finding the global optimum. A SAE consists of a neural net with one
input layer, one hidden layer and one output layer (Fig. 2). A sparsity
constraint is imposed on nodes in the hidden layer to reduce the over
fitting issue. Nodes between different layers of an SAE are fully-con-
nected. The SAE is able to reproduce the input patterns on the output
layer through the intermediate hidden layer, so the number of nodes in
the input layer and the output layer are equal. We denote x=[x1,…
xn−1,xn] a n-dimension input vector of the SAE (i.e. original unlabeled
connectome data, in this work); h=[h1,…hm−1,hm] denote the acti-
vation of m hidden nodes, (m < n) and ̂ = … −x x xx [ , , ]n n1 1   denote the
reconstructed input. Assume that input x is encoded to h by a linear
deterministic mapping with encoding weights w and bias b.

= w bfh x +( ) (1)

where f is a Sigmoid logistic function =
+ −
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Initializing with random values, we define an unsupervised opti-
mization problem to iteratively determine the values in w, b, wT, bTthat
minimize the reconstruction error ̂= −ε x x|| ||2, a difference between
input x and its reconstruction ̂x . Then the cost function can be modeled
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The first part of cost function is the reconstruction error, and the
second part is the sparsity penalty term. For the sparcity penalty term,
we adopted Kullback-Leibler (KL) divergence KL(ρ‖ρj') (Shin et al.,
2013), defined as:
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is the average activation of the hidden node j

Fig. 1. Overview of proposed ANN framework for early prediction of cognitive deficits.

Table 1
Demographic summary of all very preterm infants.

Group N Sex BW(g) GA at birth (weeks) PMA at Scan (weeks) Cognitive score

Low-risk subjects 14 9M, 5F 1080 ± 295.4 27.3 ± 2.0 39.6 ± 1.5 92.6 ± 4.2
High-risk subjects 14 5M, 9F 878 ± 283.5 26.4 ± 2.2 39.1 ± 0.9 77.4 ± 9.7
All subjects 28 14M, 14F 979 ± 302.1 26.8 ± 2.1 39.4 ± 1.3 85.0 ± 10.7

N=Number; F=Female; M=Male; BW=Birth weight; GA=Gestational age; PMA=Postmenstrual age. All± values are mean ± standard deviation.

Fig. 2. Basic architecture of a SAE. The input layer transforms high-dimensional features
x to the corresponding representation h, and the hidden layer h can be seen as a new low-
dimensional representation of the input data. The output layer is a decoder which can
reconstruct an approximation of the input ̂x from the hidden representation h.
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over the training dataset. Sparsity parameter ρ is a pre-defined small
fraction constant. β is the weight control parameter for the sparsity
penalty term. Using the stochastic gradient descent algorithm (Bishop,
1995), the optimal weights w, w′, and bias b, b′ can be obtained for a
single SAE. In other words, the input layer transforms high-dimensional
features x to the corresponding representation h, and the hidden layer h
can be seen as a new low-dimensional representation of the input data.
The output layer is a decoder which can reconstruct an approximation
of the input ̂x from the hidden representation h. Considering the
amount of available data, we apply a 2-layer SSAE in this work.
Stacking more SAEs may learn more complex patterns, but require more
training data. In SSAE, the nodes in the hidden layers of each SAE are
wired to the input nodes of each successive SAE (Bengio, 2009; Bengio
and LeCun, 2007). For the first layer of SSAE, we optimize first SAE(1)

by using original brain connectome features as input x(1) so that
weights w(1) and bias b(1) can be obtained. Then, activation vector of
hidden nodes h(1)in first layer was used as input x(2) to optimize second
SAE(2) for the second layer of SSAE, where weights w(2) and bias b(2)

can be obtained. At the end, we connect two SAEs into a 2-layer SSAE
(Fig. 3) with parameters optimized in two individual SAEs.

2.5.2. Independent data set for SSAE model optimization
One of the challenges of SSAE model optimization in this proposed

study is the relatively small data set (fcMRI in preterm infants is not
routinely performed in clinical practice). By adopting a transfer
learning concept (Gupta et al., 2013; Pan and Yang, 2010; Raina et al.,
2007), we propose to use 884 ABIDE subjects, an independent data set,
to train and optimize SSAE model in an unsupervised fashion. This
strategy prevents model overfitting and also ensure independent data
sets are used for model training and testing, respectively.

2.6. Support vector machine (SVM) classifier for outcome prediction

SVM is a supervised classification based on the concept of decision
planes (Cortes and Vapnik, 1995). A SVM classifier with a linear kernel
is used for outcome prediction (Cristianini and Shawe-Taylor, 2000).
The performance of SVM is assessed using 10-fold cross-validation.
More specifically, the data set is divided into 10 subsets, and the
holdout method is repeated 10 times. Each time, one of the 10 subsets is
used as the test set and the other 9 subsets are put together to form a
training set. Then the average performance across all 10 trials is com-
puted. To reduce variability, we implement a bootstrapping technique
(Varian, 2005). In bootstrapping, 100 rounds of cross-validation are
performed using different partitions and the validation results are
averaged over the rounds. The accuracy of the classification is assessed
using conventional metrics of accuracy, specificity and sensitivity and
area under receiver operating characteristic curve (AUC), (Arbabshirani
et al., 2017) and p-values for binomial probabilities. Sensitivity is de-
fined as the percent of correctly classified as high-risk within all truly
high-risk infants. Specificity is defined as the percent of correctly
classified as low-risk within all truly low risk infants. Sensitivity is the
ability of the classifier to correctly identify those high risk infants (true
positive rate), whereas specificity is the ability of the classifier to cor-
rectly identify those low risk infants (true negative rate). The p-values
represent the probability of observing the reported accuracy (number of
correct classification trials) by chance based upon the binomial dis-
tribution for the given sample size (Smyser et al., 2016). To select the
soft margin parameter C in the linear SVM, we tuned the model using
training data via a linear search (i.e., C=2−10, 2−9, …, 29, 210). The
optimal parameter C of the SVM classifier was selected when AUC was
maximal.

2.7. Identification of discriminative functional connections for prediction of
cognition deficit

We adopt a feature ranking approach (Simonyan et al., 2013) de-
signed for deep learning algorithms to unveil which functional con-
nections are learned by our proposed ANN framework to be most pre-
dictive of cognitive outcome. Specifically, we calculate the partial
derivatives of the SVM output with respect to the connectivity weights
from the brain connectome. For the SVM output r, the partial derivative

∂

∂

r
wi j,

, where i≠ j, i∈ [1,2,…, 90], j∈ [1,2,…,90], is computed for each
brain functional connection w between ROIs i and j. A higher absolute
value of the partial derivative of the connection indicates a higher level
of the importance for cognitive function prediction.

3. Results

3.1. Optimization of SSAE architecture

The optimal architecture (i.e., number of layers and nodes) of a
SSAE for a specific classification application depends on several factors,
including sample size, feature dimension and distribution (Bengio,
2009; Bengio and LeCun, 2007). We stacked two SAEs in a SSAE,
considering the small sample size of our cohort. The number of nodes in
the input layer was set based on the original dimension of functional
connectome data, which is 4005 unique weights of undirected brain
connectome edges. The number of nodes in the two hidden layers was
optimized via a grid search. Specifically, we tested the numbers of
nodes in the 1st hidden layer with empirical values from 100 to 600 in
increments of 100; and the candidate numbers of nodes for 2nd hidden
layer were considered from 5 to 20 in increments of 5, which were
selected to be smaller than our sample size for dimensionality reduc-
tion. For each architecture setting, we repeated 100 times 10-fold cross-
validation to evaluate prediction performance. Table 2 shows the mean
AUC from various SSAE architectures. According to the highest mean

Fig. 3. The architecture of 2-layer SSAE. By adjusting the weight w(1), the first SAE
project raw data x (i.e. original brain connectome features) onto primary features h(1).
Following this, by adjusting the weight w(2), the primary features are fed into the second
SAE to obtain secondary features h(2) (i.e. extracted high-level brain connectome fea-
tures).
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AUC, we set the numbers of nodes in the first and second hidden layers
to be 500 and 10, respectively.

3.2. Cognitive deficit prediction

We compared the prediction performance of SVM among several
approaches, including using raw functional connectome features (noted
as Raw+SVM), high-level connectome features extracted via principle
components analysis (PCA; noted as PCAk+SVM where k is the
number of top components) (Zhou et al., 2009) and via our proposed
SSAE approach (noted as SSAE+ SVM). In addition, as a baseline, we
calculated the prediction accuracy of perinatal clinical variables (in-
cluding sex, birth weight, gestational age at birth and postmenstrual
age at MRI Scan, noted as Clinical+ SVM).

As shown in Table 3, the limited clinical factors we considered were
not able to provide discriminative information for risk stratification, as
its accuracy was moderately higher than 50%. As expected, the pre-
diction using raw connectome features performed worse than random
guessing on a two-classification problem. This poor prediction was
caused by a “curse of dimensionality” problem, because the feature size
was far greater than the sample size. To overcome this problem, we
proposed to use SSAE to reduce the dimensionality of functional con-
nectome features and compared with conventional PCA approach. Since
there is no a priori knowing how many components in PCA are required
to reconstruct the data to a reasonable approximation, we conducted
PCA with the consideration of different numbers of top components.
Overall, PCA method performed poorly to capture the salient in-
formation that was useful for differentiating a single subject. Using
SSAE extracted high-level brain connectome features, we accurately
classified 70.6% of very preterm infants at high risk of cognitive deficits
with 70.1% sensitivity, 71.2% specificity and 0.76 AUC, all at
p < 0.00001. Our proposed ANN framework improved prediction ac-
curacy by over 12% with respect to the PCA-based model. The im-
provements (as compared with PCA10 which produced the best AUC) in
sensitivity, specificity and AUC were 10.1%, 18.3% and 0.11, respec-
tively. We ran each approach in Matlab environments (MathWorks,
R2016a) on a workstation with Intel Xeon CPU E51620 and 128 GB
RAM. No GPU was applied for the training acceleration. The execution
of our proposed approach was 11min, which was about 5min longer

than other approaches (Table 3). The training of an ANN model in-
volves iteratively optimizing many parameters, thus requires more time
than PCA modeling.

3.3. Most discriminative brain functional connections

To visualize which brain connections and regions are most pre-
dictive of cognitive outcome, we calculated averaged partial derivatives
of cognitive outcome for all 4005 functional connections, and the
connections having larger partial derivative values are more important
in the prediction. We plotted the top 40 most predictive connections on
line segments connecting centroids of a brain atlas region in BrainNet
Viewer, (Xia et al., 2013) as shown in Fig. 4. While there were several
brain functional connections from the frontal lobe that were predictive
of cognitive deficits in this list, several somatosensory regions were also
identified. For example, connectivity involving bilateral postcentral
gyri and thalamic nuclei appeared to be the most prominent for pre-
diction of cognitive deficits. If we eliminated the top 40 most dis-
criminative connections, the classification accuracy, sensitivity, speci-
ficity and AUC were decreased by about 10%, 14%, 5% and 0.12,
respectively.

4. Discussion

Several systematic reviews have highlighted growing interest in
studies that are developing neuroimaging-based single subject prog-
nostic models to discriminate adult patients with brain disorders from
healthy controls (Calhoun and Arbabshirani, 2012; Dai et al., 2012;
Dazzan, 2014; Demirci et al., 2008; Dyrba et al., 2015; Kambeitz et al.,
2015; Kloppel et al., 2012; Levman and Takahashi, 2015; Retico et al.,
2014; Veronese et al., 2013; Wee et al., 2012; Wolfers et al., 2015;
Zarogianni et al., 2013). In the surveyed studies, the most common
features are volume and cortical thickness from anatomical MRI,
functional connectivity from fMRI data, and apparent diffusion coeffi-
cient from dMRI data. In parallel, brain connectome studies in adults
and older children have shown that abnormal network properties may
be useful as discriminative features for early diagnosis in a variety of
neurological conditions (Arbabshirani et al., 2013; Fei et al., 2014; Jie
et al., 2014a; Jie et al., 2014b; Khazaee et al., 2015; Khazaee et al.,
2016; Prasad et al., 2015; Sacchet et al., 2015; Vanderweyen et al.,
2015; Wee et al., 2012; Wee et al., 2016; Zhan et al., 2015; Zhu et al.,
2014). Although very limited, this progress has now begun to be ex-
tended to the preterm population, especially with regard to neonatal
encephalopathy (Ziv et al., 2013), brain maturity prediction (Smyser
et al., 2016), and the prediction of motor and cognitive deficits
(Kawahara et al., 2017), by analyzing either the structural or functional
connectome. In this work, we developed a ANN framework to analyze
the brain functional connectome using multi-layer ANN to improve
prediction of cognitive deficits in individual, very preterm infants, soon
after birth. We used functional connectomes and identified the most
discriminative networks and connections that presumably support
cognitive function. Further development of this line of research could

Table 2
A grid search for the optimal number of nodes in SSAE's two hidden layers. Each row
stands for the number of nodes in the first hidden layer, and each column indicates the
number of nodes in 2nd hidden layer. The highest mean AUC of 0.76 was achieved when
the numbers of nodes in the hidden layers were 500 and 10 respectively.

Table 3
Performance of different approaches for prediction of cognitive deficits. As a baseline, we calculated the prediction accuracy of perinatal clinical variables (including sex, birth weight,
gestational age at birth and postmenstrual age at MRI Scan, noted as Clinical+ SVM).

Accuracy (%) Sensitivity (%) Specificity (%) AUC Execution time (mins)

Clinical+ SVM 60.0 ± 3.9 62.9 ± 9.3 57.1 ± 5.1 0.63 ± 0.03 4.1
Raw+SVM 48.6 ± 2.0 35.7 ± 7.1 61.4 ± 6.4 0.51 ± 0.02 6.5
PCA3+ SVM 59.3 ± 6.0 59.1 ± 8.9 59.4 ± 9.2 0.58 ± 0.03 5.3
PCA5+ SVM 58.1 ± 4.2 49.3 ± 6.0 67.0 ± 8.2 0.59 ± 0.03 6.3
PCA10+ SVM 56.4 ± 6.4 60.0 ± 8.1 52.9 ± 10.8 0.65 ± 0.03 6.2
PCA15+ SVM 52.1 ± 5.4 46.4 ± 7.8 57.7 ± 10.1 0.52 ± 0.03 5.7
Proposed SSAE+SVM 70.6 ± 4.9 70.1 ± 8.2 71.2 ± 6.2 0.76 ± 0.03 10.8

All± values are mean ± standard deviation.
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facilitate early risk stratification following neonatal intensive care unit
discharge for early intervention and novel neuroprotective therapies
during critical periods of brain development.

We found several somatosensory regions, including multiple con-
nections to bilateral regions of the postcentral gyrus, thalamus, superior
temporal gyrus, supramarginal gyrus and paracentral lobule, that sig-
nificantly contributed to prediction of cognitive deficits on the Bayley-
III at 2 years corrected age. We previously reported that somatosensory
and subcortical gray matter networks exhibit the strongest inter-hemi-
spheric connectivity, even as early as 32 weeks postmenstrual age in
very preterm infants (He and Parikh, 2016). In relation, the con-
nectivity strength of long-range networks such as the executive func-
tion, default mode, and frontoparietal networks are considerably
weaker during the first 6 months after very preterm birth. Furthermore,
the somatosensory and subcortical network connectivity significantly
increases between 32 and 52weeks postmenstrual age (He and Parikh,
2016). We also observed several connections to the superior temporal
gyrus (bilateral) and Heschl's gyrus that are involved in auditory pro-
cessing. These findings suggest the strong influence sensory systems
play in learning and cognition during early infancy. Both the somato-
sensory cortex and supramarginal gyrus are thought to be part of the
mirror neuron system. Infants likely learn a great deal through ob-
servation of others, anticipating and mirroring their activities. Mirror
neurons are thought to play a critical role in action understanding,
anticipation, imitation, and social behavior (Acharya and Shukla,
2012). Learning through observation and imitation of others plays a key
role for developing cognitive functions for motor learning and goal
prediction (Meltzoff et al., 2009). The few identified connections to
motor regions, including precentral gyrus, putamen, and globus

pallidum, likely support these learning behaviors. Connectivity to sev-
eral well-established regions that support cognitive/executive functions
in children/adults, such as the orbitofrontal cortex, superior frontal
gyrus, and middle temporal gyrus, were also highlighted within the top
40 most discriminative regions by our ANN algorithm to be predictive
of cognitive deficits.

Our findings highlighted some of the key functional brain regions
that are involved in cognitive development in preterm infants and
further suggest that ANN's process of functional network selection for
prediction is mostly grounded in well-established brain structure-
function relationships.

The biggest concern for our proposed connectome-based ANN pre-
diction is that the number of subjects is markedly smaller than the
number of brain connectome features. To mitigate this issue and to
prevent model overfitting, we 1) employed transfer learning techniques
to use an independent large ABIDE dataset for SSAE optimization; 2)
conducted feature dimensionality reduction via SSAE; and 3) set the
architecture of SSAE to be “shallow” (two layers). With the increasing
availability of connectome datasets from premature infants with sub-
sequent cognitive outcome measures, multi-layer ANN is expected to
improve the modeling fidelity and the prediction performance in the
same way as it has revolutionized other fields (e.g., natural image
classification and retrieval and natural language processing) (LeCun
et al., 2015).

The current study has several limitations. First, we calculated the
accuracy of only a handful of clinical variables for prediction. We re-
cognized this baseline performance should be improved by including
other known perinatal clinical variables into the model. For example,
by addition of maternal (e.g., chorioamnionitis), neonatal (e.g., medical

Fig. 4. Top 40 most discriminative brain functional connections learned by the proposed ANN model. The width of each segment (functional connection) indicates the predictive strength
(i.e., more predictive regions are wider). The size of each node/region indicates the importance of that node/region in the prediction (i.e., more important regions are larger).
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morbidities and therapies), and social/environmental factors (e.g., so-
cioeconomic status). In future analyses, we plan to collect and in-
corporate such variables in the proposed ANN model to further improve
our prediction performance. Second, the current study only conducted
prediction analyses of cognitive deficits by assigning a categorical label
to each subject using classification techniques. We will also be inter-
ested in designing a pattern regression model to estimate cognitive
scores on a continuous scale. Third, we defined ROIs based on an
anatomical labeling atlas in this work. We were aware that functional
connectivity estimation can be effected by within-ROI signal hetero-
geneity. We were also aware of a recent publication (Shi et al., 2017)
that had derived a set of anatomically constrained, infant-specific
functional brain parcellations using functional connectivity-based
clustering. The results from Shi et al., revealed significantly higher le-
vels of signal homogeneity within the newly defined functional par-
cellations compared with other schemes. To date, no studies have
compared the use of automated anatomical labeling with this newly
developed functional atlas. We are planning to employ this functional
atlas for future work and anticipate improved estimation of ROI-based
functional connectivity and resulting higher classification accuracy.
Finally, due to the small sample size, our work can only be considered
as a proof of concept for utilizing ANN models on connectome data to
capture the individual variability inherent in the developing brains of
neonates. The full potential of ANN will only be achieved and more
reliable conclusions drawn when applied to much larger neuroimaging
datasets, as we are currently undertaking.

In summary, we demonstrated that an ANN model applied to
functional connectome data alone from very premature neonates can
predict cognitive outcome at 2 years of corrected age with an accuracy
of 70.6% and AUC 0.76. Future expansion of the approach to extend
ANN application to structural connectome data based on diffusion
tensor and anatomical MRI data and augmentation of the final classifier
with inclusion of clinical data in the same model is likely to improve
performance considerably as shown in previous studies. This approach
defines a path to precise prediction of risk for poor outcomes in infants
born prematurely, which will be critical data to guiding early inter-
vention. As outcome prediction improves with a larger data set and
expanded model, it will also be possible to more precisely define the
specific brain regions and connections that are the most important
determinants of cognitive outcome. Relating these functional and
structural connections to specific genes that are now being identified as
factors in premature birth will be a critical step to fully understand
premature birth and minimize its impact on the population.

5. Conclusions

In this study, we 1) Constructed brain functional connectomes using
neonatal-optimized image processing and analysis methods; 2)
Explicated the brain connectome using SSAE to capture the embedded
salient information that is useful for differentiating a single subject; and
3) Accurately predicted cognitive deficits/function in individual very
preterm infants soon after birth using SVM. Our study shows that
functional brain connectome data are useful as prognostic biomarkers.
It also shows a proof of concept for using ANN on connectome data to
capture individual variability. Our study holds promise as a means of
characterizing brain connectome disturbances before the onset of sig-
nificant overt cognitive differences. A larger study is important to va-
lidate our approach.
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